ENEE630 ADSP Part IT w/ solution

1. Determine if each of the following are valid autocorrelation matrices of WSS processes.

(Correlation Matrix)

4 1 2 1 1 2j 0 ] 1 0 2
R,=| -1 4 Ry,=|120|,Re=| 0 2 0 |,Rg=]0 1 0
~1 -1 4 10 2 —ji 0 2 2 0 1

Solution:

Recall that the properties of an autocorrelation matrix for a WSS process is that (1) R is
Toeplitz; (2) R = R; (3) R is non-negative definite.

R, is NOT Hermitian; Ry is NOT Toeplitz; R, is NOT Hermitian; Ry is NOT non-negative
definite (A =1, -1, 3).

2. Consider the random process y(n) = z(n) + v(n), where z(n) = Ae?@"*9) and v(n) is zero
mean white Gaussian noise with a variance o2. We also assume the noise and the complex sinusoid
are independent. Under the following conditions, determine if y(n) is WSS. Justify your answers.
(WSS Process)

(a) w and A are constants, and ¢ is a uniformly distributed over the interval [0, 27].

(b) w and ¢ are constants, and A is a Gaussian random variable ~ N (0,0%).

(c) ¢ and A are constants, and w is a uniformly distributed over the interval [wy — A, wp + A]

for some fixed A.

Solution:

(a)
Ely(n)] = Ae"Eyle’’] + Eufv(n)] =0

Elymy™(n = k)] = Eo[(A/m) to(m)) (A% IR0 4o (5 — k)
— APE, (] + o23(k)
— AP+ o2o(k)

1st and 2nd moments are independent of n. Thus, the process is WSS.

Ely(n)] = Ea[Al/“" ) + Ey[u(n)] =0
Ely(n)y*(n—k)] = Ea[(A/“H9) 4 o(n)) (A7) Lo (n — )]
= Ea[AA*)F 4 025(k)

= o%e?F 4 o25(k)



1st and 2nd moments are independent of n. Thus, the process is WSS.

Bl = Bule(n] + Balo(n)] = 4+ Fufei] o0 = A oo
Ael®
= |Ely(n)]] < ‘2jnA‘ 2= 0asn— o
Ely(n)y*(n— k)] = Eu[(ATCm9) 4 y(n)) (A% T@m—R) (5 _ )
= |APE,[™" + a36(k)
= \A|26jw°kM +a26(k)

kA v

The sequence defined here is actually NOT a WSS process, but its 1st and 2nd moment statistics

are approximately independent of n as n — oo.

3. [Rec.IT P2(a) revisited] Determine the PSD of the WSS process y(n) = Ae@0n+9) 4 y(n),
where v(n) is zero mean white Gaussian noise with a variance 02, and ¢ is uniformly distributed

over the interval [0,27]. (Power Spectral Density)

Solution:

In the autocorrelation function in P2(a) is
ry (k) = A2eF 1 025 (k)
By taking discrete time Fourier transform on r,(k), we get

P,(w) = 21 A%5(w — wp) + o2

4. Assume v(n) is a white Gaussian random process with zero mean and variance 1. The two
filters in Fig. RI1.4 are G(z) = W and H(z) = 1—()??' (Auto-Regressive Process)

RN e i)

Figure RII.4:

(a) Is u(n) an AR process? If so, find the parameters.

(b) Find the autocorrelation coefficients r,,(0), r,(1), and 7,(2) of the process u(n).

Solution:

(a) U(z) = WV(Z), u(n) = 0.9u(n — 1) — 0.2u(n — 2) + 2v(n), ag = —0.9, ag = 0.2.



(b) Apply the Yule-Walker equation,

from which we get

Moreover, since 7,,(0) + a7, (1) + aory(2) = 402 (Here, ‘4’ because in this model it is ‘2v(n)’ rather
than ‘v(n)’), we have r,(0) = ﬁ—g;ﬁ = 209 Then, r,(1) = 22, and r,(2) = .
Note:

1. In general, for a p-order AR model, given {02, a1, as,...,a,}, we can find {r(0),7(1),7(2),...};
and vice versa. They are related by Yule-Walker Equations.

2. r(—k) = r*(k) in general (and hence matrix R is Hermitian), and r(—k) = r(k) for real-valued
signals. 7(0) is the power of sequence u(n), and hence 7(0) > 0 from physical point of view.

3. For an AR model, u(n) = Y% _; —aju(n—k)+v(n) has NO correlation with future v(m), m =
n+1,n+2,... (convince yourself). Simply multiply both sides by u*(n) and take expectation, we
get 7(0) = Yh_, —apr(—k) + E(v(n)u*(n)). Note that E(v(n)u*(n)) = E(v(n)(}_t_; —aju*(n —
k) + v*(n))) but E(v(n)u*(n — k)) = 0 for k > 1. Then, r(0) = >_F_, —ayr(—k) + o2, which we
have used to find the relation of r(0) (signal power) and o2 (model parameter) in part (b). We
could multiply u*(n — k) instead of u*(n) and take the expectation, and this is how the Yule-Walker

equations are derived.

5. Let a real-valued AR(2) process be described by
u(n) =z(n) + arx(n — 1) + agzx(n — 2)

where u(n) is a white noise of zero-mean and variance o2, and u(n) and past values z(n—1), z(n—2)
are uncorrelated. (Yule-Walker Equation)
(a) Determine and solve the Yule-Walker Equations for the AR process.

(b) Find the variance of the process z(n).

Solution:  (a) Solve the Yule-Walker equation, we have

re(0) = —aims(=1) = agro(~2) +
rz(1) = —a1rz(0) — agre(—1)
re(2) = —airy(1) — agr.(0)

Use the relation that r,(k) = r,(—k) and solve this we get



rz(0) =
1% T
(%+a2+a2(1+a2 (12)
) = g0
a
@) = (a0
(b) The process is zero mean, so the variance is 7,(0).
6. [Problem II.4 continued] Assume v(n) and w(n) are white Gaussian random processes with

2

zero mean and variance 1. The two filters in Fig. RIL.6 are G(z) = W and H(z) = —%5=1-

(Wiener Filter)

w(n)

v(n) u(n) i
—>‘ G(z) }—>‘ H(z) Hé—{n) V\'{_Iirll[gtrar >

y(n)

Figure RIIL.6:

(a) Design a 1-order Wiener filter such that the desired output is u(n). What is the MSE?
(b) Design a 2-order Wiener filter. What is the MSE?

Solution:
w(0) +1 ! (0
(a) R, = ru(0) ru(l) , and pyy = ru(0) . The filter is w = R, 'p with MSE
ru(1) 74(0) +1 ru(1)
ru(0) = PraR; ' Pra-
74(0) + 1 7u(1) Tu(2) 74(0)
(b) Similar to (a), except R, = ro(1) 1 (0)+1 7y (1) ;and pog = | (1)
ru(2) ro(1)  r(0) +1 ru(2)
MSE is still the same expression, i.e. 7,(0) — pL R 'p .

Note:

1. In general, for a p-order AR model, given {02, a1, as,...,a,}, we can find {r(0),7(1),7(2),...};
and vice versa. They are related by Yule-Walker Equations.

2. r(—k) = r*(k) in general (and hence matrix R is Hermitian), and r(—k) = r(k) for real-valued
signals. 7(0) is the power of sequence u(n), and hence 7(0) > 0 from physical point of view.

3. For an AR model, u(n) = Y% _; —arpu(n—k)+v(n) has NO correlation with future v(m), m =
n+1,n+2,... (convince yourself). Simply multiply both sides by u*(n) and take expectation, we
get 7(0) = Yh_, —apr(—k) + E(v(n)u*(n)). Note that E(v(n)u*(n)) = E(v(n)(}_t_; —aju*(n —
k) + v*(n))) but E(v(n)u*(n — k)) = 0 for k > 1. Then, 7(0) = >_F_, —ayr(—k) + o2, which we

have used to find the relation of r(0) (signal power) and o2 (model parameter) in part (b). We



could multiply u*(n — k) instead of u*(n) and take the expectation, and this is how the Yule-Walker
equations are derived.

4. When designing Wiener filtering, one should find R, and p,, first. Then, it’s straightforward
to apply w = R, p,,; with MSE o2 — pL R !p_,.

7. The autocorrelation sequence of a given zero-mean real-valued random process u(n) is
r(0) = 1.25, r(1) = r(—1) = 0.5, and r(k) = 0 for any |k| > 2. (Wiener Filter)

(a) What model fits this process best: AR or MA? Find the corresponding parameters.

(b) Design the Wiener filter when using u(n) to predict u(n + 1). Can we do better (in terms of
MSE) if we use both u(n) and u(n — 1) as the input to the Wiener filter? What if using u(n) and
u(n —2)7

Solution:

(a) Apparently, it is an MA process with order 1, i.e., z(n) = v(n)+bv(n—1), v(n) is a zero-mean
white sequence with variance o2.

Then, r(0) = E(z(n)z*(n)) = (1+ |b]?)o2, and 7(1) = E(z(n)z*(n — 1)) = bo2. We can find two
solutions (b= 2,02 = 0.25) and (b = 0.5,02 = 1).

(b1) R = E(u(n)u*(n)) = r(0), and p = E(u(n)u*(n + 1)) = r(—1). Hence, w = r(0)"1r(-1) =
2/5, i.c. y( ) = 2/5u(n) and MSE = 1.25 — 0.2 = 1.05.

(b2) B = B((,("))lu*(n),w (n=1)) = (1) 16)) = (57 £55)s and p = B((, () ) (n+1)) =
(%) y(n) = 10/21u( ) —4/21u(n — 1), and MSE = 1.25 — 5/21 ~ 1.01. Improved.

(63) B = B((,("))lu(n),w (n=2))) = (1) 15)) = (137 195), amd p = E((, (" ) (n+1)) =
(005) y(n) = 2/5u( ) + Ou(n — 2) which is exactly the same with (b1).
8. Consider the MIMO (multi-input multi-output) wireless communications system shown in

Fig. RII.8. There are two antennas at the transmitter and three antennas at the receiver. Assume
the channel gain from the i-th transmit antenna to the j-th receive antenna is hj;. Take a snapshot
at time slot n, the received signal is y;(n) = hj1z1(n) + hjoxa(n) + v;(n) where vj(n) are white
Gaussian noise (zero mean, variance Ny) independent of signals. We further assume x1(n) and
x2(n) are uncorrelated, and their power are P; and P», respectively. Use yi(n),y2(n) and y3(n) as

input, find the optimal Wiener filter to estimate x1(n) and zo(n). (Wiener Filter)

Solution:

Denote y(n) = [y1(n),y2(n),y3(n)]T, and v(n) = [v1(n),va(n),v3(n)]T. We can have a matrix
representation of the system: y(n) = Hx(n) + v(n).

For Wiener filters, we need to find the autocorrelation matrix of the input to the filter, and the
cross-correlation vector of the input and the desired output. (It’s not a big deal whether such signals

are in time domain or other domain, e.g., space domain. )



Wiener
Filter A
x,(n)

Figure RIL.8:

R,, = Ely(n)y(n)"] = E[(Ha(n)+v(n))(Ha(n)+v(n))"] = E[Hz(n)e" (n)H"|+Elv(n)v(n))"]

H [Pl 0 ] HY + N,I.

0 Py
h11
Tye1 = Ely(n)z1(n)"] = E[Hz(n)z1(n)"] = P | hy
h31

Then, w; = R;ylryxl. The output is Z1(n) = P1[h], h3;, h§1]R;y1y(n).

Similar for ws.

9. Given an real-valued AR(3) model with parameters I'y = —4/5, I'y = 1/9, I's = 1/8, and
r(0) = 1. Find r(1),7(2), and r(3). (Levinson-Durbin Recursion)

10. Consider the MA(1) process x(n) = v(n) 4+ bv(n — 1) with v(n) being a zero-mean white
sequence with variance 1. If we use I'y to represent this system, prove that (Levinson-Durbin

Recursion)
I
L1 (1 - ‘PM|2).

Fm—|—1 -

11. Given a p-order AR random process {z(n)}, it can be equivalently represented by any of the

three following sets of values: (Levinson-Durbin Recursion)

e {r(0),r(1),...,r(p)}
e {aj,a,...,ay} and r(0)
o {I'|,I'y,...,I',} and r(0)

(a) If a new random process is defined as x'(n) = cx(n) where ¢ is a real-valued constant, what
will be the new autocorrelation sequence 7/(k) in terms of r(k) (for k =1,2,...,p)? How about a}
and I',.?



(b) Let a new random process be defined as z’(n) = (—1)"z(n). Prove that 7/(k) = (=1)*r(k),
a, = (—1)*aj, and T} = (—=1)*T}. (Hint: use induction when proving I'j, since Ty is calculated

recursively.)

12. Given a lattice predictor that simultaneously generate both forward and backward prediction
errors fr,(n) and by, (n) (m =1,2,..., M). (Lattice Structure)

(a) Find E(fn(n)b}(n)) for both conditions when i < m and i > m.

(b) Find E(fm(n+ m)f*(n+ 1)) for both conditions when ¢ = m and i < m.

(c) Design a joint process estimation scheme using the forward prediction errors.

(d) If for some reason we can only obtain part of forward prediction error (from order 0 to
order k) and part of backward prediction error (from oder k£ + 1 to order M), i.e., we have
{fo(n), fi(n),..., fe(n),bkr1(n),bgr2(n),...,bar(n)}. Describe how to use such mixed forward and
backward prediction errors to perform joint process estimation.

(Hint: the results from (a) and (b) will be useful for questions (c¢) and (d). )

13. Consider the backward prediction error sequence by(n),bi(n),...,by(n) for the observed
sequence {u(n)}. (Properties of FLP and BLP Errors)

(a) Define b(n) = [bg(n),by(n),...,bar(n)]7, and u(n) = [u(n),u(n —1),...,u(n — M)]?, find L
in terms of the coefficients of the backward prediction-error filter where b(n) = Lu(n).

(b) Let the correlation matrix for b(n) be D, and that for u(n) be R. Is D diagonal? What is
relation between R and D ? Show that a lower triangular matrix A exists such that R~ = A7 A,

(c) Now we are to perform joint estimation of a desired sequence {d(n)} by using either {by(n)}
or {u(n)}, and their corresponding optimal weight vectors are k and w, respectively. What is

relation between k and w 7



