ENEE630 ADSP Part IT w/ solution

1. Determine if each of the following are valid autocorrelation matrices of WSS processes.

(Correlation Matrix)

4 1 2 1 1 25 0 1 0 2
R,=| -1 4 Ry=112 0|,Re=] 0 25 0 |, Rg=|0 1 0
-1 -1 4 1 0 2 -5 0 2j 2 0 1

Solution:

Recall that the properties of an autocorrelation matrix for a WSS process is that (1) R is
Toeplitz; (2) R = R; (3) R is non-negative definite.

R, is NOT Hermitian; Ry is NOT Toeplitz; R, is NOT Hermitian; Ry is NOT non-negative
definite (A =1, -1, 3).

2. Consider the random process y(n) = z(n) + v(n), where z(n) = Ae/“"+9) and v(n) is zero
mean white Gaussian noise with a variance o2. We also assume the noise and the complex sinusoid
are independent. Under the following conditions, determine if y(n) is WSS. Justify your answers.
(WSS Process)

(a) w and A are constants, and ¢ is a uniformly distributed over the interval [0, 27].

(b) w and ¢ are constants, and A is a Gaussian random variable ~ N (0, 0%).

(¢) ¢ and A are constants, and w is a uniformly distributed over the interval [wy — A, wp + A]

for some fixed A.

Solution:

(a)
Ely(n)] = A“"E[e] + E,[uo(n)] = 0

Ely(n)y*(n— k)] = Bgl(AEm9) 4 o(n))(A%e @R 4o (n - )]
= JAPE [ + o%5(k)
= AP + 025 (k)

1st and 2nd moments are independent of n. Thus, the process is WSS.

Ely(n)] = EalAl“" ) 4 E,[v(n)] = 0
Ely(n)y*(n—k)] = Ea[(A4e/“"9) 4 u(n))(A%e TR 4v*(n — k)]
= E[AA*eF 1 625(k)

= o4t 4 625(k)



1st and 2nd moments are independent of n. Thus, the process is WSS.

) ) Aei?® .
_ _ wn b __ wniwo+A
Bly(n)] = Bufa(n)] + Bufo(n)] = 4- Bfe"] - = el bm
Ael®
= |Ely(n)]|] < |2jnA| 2= 0asn— o0
Ely(n)y*(n— k)] = E,[(A/“m9) 4 u(n))(A%e T@ORT0) 4% (n — k)]
= |APE,["] + 036(k)
_ 2_juokSIN(KA) 2
|Al%e A + o;0(k)

The sequence defined here is actually NOT a WSS process, but its 1st and 2nd moment statistics

are approximately independent of n as n — oo.

3. [Rec.II P2(a) revisited] Determine the PSD of the WSS process y(n) = Ae@0n+9) 4 y(n),
2

v

where v(n) is zero mean white Gaussian noise with a variance ¢, and ¢ is uniformly distributed

over the interval [0,27]. (Power Spectral Density)

Solution:

In the autocorrelation function in P2(a) is
ry(k) = A2eF 4 025 (k)
By taking discrete time Fourier transform on r,(k), we get

P,(w) = 2 A%5(w — wp) + o2

4. Assume v(n) is a white Gaussian random process with zero mean and variance 1. The two
filters in Fig. RIL.4 are G(z) = ﬁ and H(z) = T%z*l' (Auto-Regressive Process)
v(n u(n
"6 Rl

Figure RIIL.4:

(a) Is u(n) an AR process? If so, find the parameters.
(b) Find the autocorrelation coefficients r,(0), 7,(1), and 7,(2) of the process u(n).

Solution:

(a) U(z) = —V(2), u(n) =0.9u(n — 1) — 0.2u(n — 2) + 2v(n), a; = —0.9, ag = 0.2.

-2
1-0.92—140.22



(b) Apply the Yule-Walker equation,

from which we get

Moreover, since 7,(0) + a17,(1) + azry(2) = 402 (Here, ‘4’ because in this model it is ‘2v(n)’ rather

3 9 4 2
than ‘v(n)’), we have r,(0) = ﬁgj m = 2. Then, r,(1) = 2, and r,(2) = 5.
Note:

1. In general, for a p-order AR model, given {02, a1, as,...,a,}, we can find {r(0),7(1),7(2),...};
and vice versa. They are related by Yule-Walker Equations.

2. r(—k) = r*(k) in general (and hence matrix R is Hermitian), and r(—k) = r(k) for real-valued
signals. 7(0) is the power of sequence u(n), and hence r(0) > 0 from physical point of view.

3. For an AR model, u(n) = >-¥_; —arpu(n—Fk)+v(n) has NO correlation with future v(m), m =
n+1,n+2,... (convince yourself). Simply multiply both sides by u*(n) and take expectation, we
get 7(0) = Y h_, —arr(—k) + E(v(n)u*(n)). Note that E(v(n)u*(n)) = E(v(n)(>_h_; —aju*(n —
k) + v*(n))) but E(v(n)u*(n — k)) = 0 for k > 1. Then, 7(0) = Y-¥_; —ayr(—k) + o2, which we
have used to find the relation of r(0) (signal power) and o2 (model parameter) in part (b). We
could multiply u*(n — k) instead of u*(n) and take the expectation, and this is how the Yule-Walker

equations are derived.

5. Let a real-valued AR(2) process be described by

u(n) = z(n) + arz(n — 1) + agz(n — 2)

2 and u(n) and past values z(n—1), z(n—2)

where u(n) is a white noise of zero-mean and variance o
are uncorrelated. (Yule-Walker Equation)
(a) Determine and solve the Yule-Walker Equations for the AR process.

(b) Find the variance of the process z(n).

Solution:  (a) Solve the Yule-Walker equation, we have

r.(0) = —airz(—1) — agry(—2) + o?
rz(1) = —airy(0) — agry(—1)
r2(2) = —ajry(l) —agr;(0)

Use the relation that 7, (k) = r»(—k) and solve this we get



rz(0) =
1% T
C%+a2 +a2(1+a2 as)
1
Tx(l) - _1_5a2rx( )
a
@) = (F2 - w)(0)
(b) The process is zero mean, so the variance is r,(0).
6. [Problem II.4 continued] Assume v(n) and w(n) are white Gaussian random processes with
zero mean and variance 1. The two filters in Fig. RIL.6 are G(z) = 1— 04z—1 and H(z) = 170.2?.
(Wiener Filter)
w(n)
v(n ‘ Gz ‘ H(z \% ) Winner >
x(n) | Filter | y(n)

Figure RIIL.6:

(a) Design a 1-order Wiener filter such that the desired output is u(n). What is the MSE?
(b) Design a 2-order Wiener filter. What is the MSE?

Solution:
(a) Ry = r@+1 (1) ,and p,g = [ ru(0) . The filter is w = R, 'p with MSE
ru(l) 71y (0)+1 ru(l
ru(0) = Pra R 'Pra-
ra(0) +1 (1) ru(2) r4(0)
(b) Similar to (a), except R, = ro(1)  re(0)+1  ry(1) ;and pyg = | (1)
ru(2) ra(l)  ru(0) +1 ru(2)
MSE is still the same expression, i.e. 7,(0) — pL R 'p .

Note:

1. In general, for a p-order AR model, given {02, a1, as,...,a,}, we can find {r(0),7(1),7(2),...};
and vice versa. They are related by Yule-Walker Equations.

2. r(—k) = r*(k) in general (and hence matrix R is Hermitian), and r(—k) = r(k) for real-valued
signals. r(0) is the power of sequence u(n), and hence r(0) > 0 from physical point of view.

3. For an AR model, u(n) = >-¥_; —agu(n—Fk)+wv(n) has NO correlation with future v(m), m =
n+1,n+2,... (convince yourself). Simply multiply both sides by u*(n) and take expectation, we
get 7(0) = Y7_, —agr(—k) + E(v(n)u*(n)). Note that E(v(n)u*(n)) = E(v(n)(3_t_; —aju*(n —
k) + v*(n))) but E(v(n)u*(n — k)) = 0 for k > 1. Then, 7(0) = Y-¥_; —agpr(—k) + o2, which we

have used to find the relation of r(0) (signal power) and o2 (model parameter) in part (b). We



could multiply u*(n — k) instead of u*(n) and take the expectation, and this is how the Yule-Walker
equations are derived.

4. When designing Wiener filtering, one should find R, and p,, first. Then, it’s straightforward
to apply w = R_!p,, with MSE 02 — pglR;xlpxd.

7. The autocorrelation sequence of a given zero-mean real-valued random process u(n) is
r(0) = 1.25, r(1) = r(—1) = 0.5, and r(k) = 0 for any |k| > 2. (Wiener Filter)

(a) What model fits this process best: AR or MA? Find the corresponding parameters.

(b) Design the Wiener filter when using u(n) to predict u(n + 1). Can we do better (in terms of
MSE) if we use both u(n) and u(n — 1) as the input to the Wiener filter? What if using u(n) and
u(n —2)7

Solution:

(a) Apparently, it is an MA process with order 1, i.e., z(n) = v(n)+bv(n—1), v(n) is a zero-mean
white sequence with variance o2.

Then, r(0) = E(z(n)z*(n)) = (1+ |b]?)o2, and r(1) = E(z(n)z*(n — 1)) = bo2. We can find two
solutions (b= 2,02 = 0.25) and (b = 0.5,02 = 1).

(b1) R = E(u(n)u*(n)) = r(0), and p = E(u(n)u*(n + 1)) = r(—1). Hence, w = r(0)"1r(-1) =
2/5, ie., y( ) =2/5u(n) and MSE = 1.25 — 0.2 = 1.05.

(b2) R = B((,(\")) [u*(n), u*(n—1)]) = (;g‘;g ;g})g) = (4% 1), and p = B((,0) Ju*(n+1)) =
(%%). y(n) = 10/21u(n) — 4/21u(n — 1), and MSE = 1.25 — 5/21 ~ 1.01. Improved.

(63) B = (07 ) (n),uw (n=2)]) = (19) 1)) = (137,55, and p = B((,{"), )u(n+1)) =
(005) y(n) = 2/5u(n) + Ou(n — 2) which is exactly the same with (b1).
8. Consider the MIMO (multi-input multi-output) wireless communications system shown in

Fig. RII.8. There are two antennas at the transmitter and three antennas at the receiver. Assume
the channel gain from the i-th transmit antenna to the j-th receive antenna is hj;. Take a snapshot
at time slot n, the received signal is y;(n) = hjiz1(n) + hjoxa(n) + v;(n) where vj(n) are white
Gaussian noise (zero mean, variance Np) independent of signals. We further assume z1(n) and
x2(n) are uncorrelated, and their power are P; and Ps, respectively. Use y1(n),y2(n) and y3(n) as

input, find the optimal Wiener filter to estimate z1(n) and zo(n). (Wiener Filter)

Solution:

Denote y(n) = [y1(n),y2(n),y3(n)]’, and v(n) = [v1(n),va(n),v3(n)]’. We can have a matrix
representation of the system: y(n) = Hx(n) + v(n).

For Wiener filters, we need to find the autocorrelation matrix of the input to the filter, and the
cross-correlation vector of the input and the desired output. (It’s not a big deal whether such signals

are in time domain or other domain, e.g., space domain. )



Wiener
Filter N\
x,(n)

Figure RIL.8:

Ry, = Ely(n)y(n)¥] = E[(Hz(n)+v(n))(Hz(n)+v(n))"] = E[Hz(n)z" (n)H" ]+ E[v(n)v(n))"] =
H [1(’)1 ]92] HY + N,I.
h11
Tye1 = Ely(n)z1(n)*] = E[Hz(n)z1(n)*] = P1 | hy
h31
Then, wy = R;;ryxl. The output is Z1(n) = P1[hi, h3y, h?;l]R;;y(n).

Similar for ws.

9. Given an real-valued AR(3) model with parameters I'y = —4/5, I'y = 1/9, I's = 1/8, and
r(0) = 1. Find r(1),7(2), and r(3). (Levinson-Durbin Recursion)

Solution:
Since I't = —r(1)/7(0), (1) = —I'17(0) =4/5. Py =r(0) = 1.

Fl == —4/5 Then, aio = 1,0,171 == —4/5 P1 == (1 - |F1|2)P0 == 9/25
Al = —Plrg = —1/25 AISO, Al = 7“(—2)@1’0 —l—r(—l)al,l. Hence, 7“(2) = 7”(—2) = Al —
r(—l)au = 3/5.

azo = 1,a21 = —4/5+1/9(—=4/5) = —8/9,a22 =Ty =1/9. P, = (1 — [Iy|*) P, = 16/45.
Ay = —PI's = —2/45 = r(—3)ag,o + r(—2)az1 + r(—1)asz 2, from which we solve r(3) = 2/5.

10. Consider the MA(1) process z(n) = v(n) + bv(n — 1) with v(n) being a zero-mean white
sequence with variance 1. If we use I'y to represent this system, prove that (Levinson-Durbin

Recursion)
FQ
T = m .
T, (= TP)




Solution:

Note that r(k) =0 for |k| > 2. )41 = —]AD—;”.
Ap =1 or(k—(m+1))ame =1(=1)amm = r(—=1)Ty,.
Therefore,

Fm-i—l . Am Pm—l Fm

I‘m - P—mAm—l - Fm—l(l - ‘Fm‘Q)

11. Given a p-order AR random process {z(n)}, it can be equivalently represented by any of the

three following sets of values: (Levinson-Durbin Recursion)

e {r(0),r(1),...,r7(p)}
e {aj,az,...,ay} and r(0)
o {I'l,I'g,...,I'p} and r(0)

(a) If a new random process is defined as z'(n) = cx(n) where c is a real-valued constant, what
will be the new autocorrelation sequence 7’(k) in terms of r(k) (for k = 1,2,...,p)? How about aj,
and I'}7

(b) Let a new random process be defined as 2/(n) = (—1)"z(n). Prove that r'(k) = (=1)Fr(k),
a, = (—1)*ay, and T} = (—=1)*T}. (Hint: use induction when proving Iy, since Ty is calculated

recursively.)

Solution:
(a) r'(k) = E(z'(n)x™*(n — k)) = cr(k).
According to Yule-Walker equations, R’a = —r and R7a’ = —r/. Then ¢2R"a’ = —c*r.

Hence a’ = a, i.e., aj, = ai. As T is recursively calculated out of {ay}, we have I'l, =T,

(b) 7'(k) = E((n)a" (n — k)) = (=1)" " Fr(k) = (=1)*r(k).
Use the scale form of Yule-Walker equations, i.e., Y )_; ayr(k—1) = —r(k) for k =1,2,...,p. Sim-
ilarly, for the modified system, Y7 ajr'(k —1) = —r'(k) for k =1,2,...,p, or >0 aj(—1)*"'r(k —

I) = —(=1)*r(k). Obviously, letting a] = (—1)'a; will make the two equations consistent.

Find Ty, recursively from a,; = a,. Hence, a;%k. = (—1)kap7k. I, = ap,, = (=1)PT). Assume
ag j, = (—1)¥ag,(0 < k < q) for ¢ < n (and hence I, = a/ , = (—1)9y), we have to prove it is also
true for ¢ — 1. Since

*
a Qgk — Qq,q0q q—k
q—1,k —
1—|agql*
we have,
/ I k 2q—k
d gk — aq,qaqquk‘ _ a%k(_l) - (=1)™ aq,qa;q,k = ( 1)ka .
—1,k - -\ q—1.k-
! 1- |a21,q|2 1 —fagql?
QED.



12. Given a lattice predictor that simultaneously generate both forward and backward prediction
errors fr,(n) and by, (n) (m=1,2,...,M). (Lattice Structure)
(a) Find E(fp(n)bf(n)) for both conditions when i < m and i > m.

(b) Find E(fy,(n + m)f*(n+1i)) for both conditions when ¢ = m and i < m.

(c) Design a joint process estimation scheme using the forward prediction errors.

(d) If for some reason we can only obtain part of forward prediction error (from order 0 to
order k) and part of backward prediction error (from oder k + 1 to order M), i.e., we have {fo(n —
k), filn—k+1),..., fr(n),bgr1(n),bgs2(n),...,bar(n)}. Describe how to use such mixed forward
and backward prediction errors to perform joint process estimation.

(Hint: the results from (a) and (b) will be useful for questions (c) and (d). )

Solution:

(a) When i < m, b;j(n) = ZZ:O a; ;i—ru(n—k) is a linear combination of {u(n), u(n— 1),...,u(n—
i)}. Moreover, fp,(n) is the prediction error when estimating u(n) using u(n—1),u(n—2),...,u(n—
m), and hence it is orthogonal to all of them. Thus, E(fmn(n)b;(n)) = E(fn(n)a;u ( ) =17 Py,.

When i > m, fp,(n) is a linear combination of {u(n — 1),u(n —2),...,u(n —m)}, but b;(n) is

orthogonal to {u(n),u(n —1),...,u(n —i+1)}. Hence, E(f,(n)b(n)) = 0.

(b) filn+1) = Zi;:o aj pu(n+i—k) is a linear combination of {u(n),u(n+1),...,u(n+14)}, and
fm(n+m) is the prediction error when estimating u(n+m) using u(n+m—1),u(n+m—2),...,u(n),
and hence it is orthogonal to all of them. Therefore, if i < m, E(fpm(n + m)fi(n +1i)) = 0;
and if i = m, E(fm(n +m)ff(n+ 1)) = E(fm(n + m)lu*(n + m)) = P,. Due to symmetry,
E(fm(n+m)fi(n+1)) =0if i > m.

(c¢) According to (b), if the input to the Wiener filter is f(n) 2

o(n — M), fi(n — M +
1), faln — M + 2),..., far(n)]T (causal), the autocorrelation matrix is a diagonal matrix R =
diag(Py, P1,...,Py). Let the cross-correlation is S = E(f(n)d*(n)), the optimal weight of the
filter is w(k) = Si/Py. See the figure for filter structure.

-
Z M+
f (n)
> p-f (n)
M
b,(n) b, (n)

A .
(d) h(n) = [fo(n — k), filn —k+1),..., fe(n),bpr1(n), bry2(n),...,bar(n)]T. It is easy to check
that R = diag(FPp, P1, ..., Py). The rest follows (c).



Comments: For proofs like (a) and (b), the idea is to expand the lower order one, and then apply
orthogonal properties, i.e., E(fp(n)u*(n —k)) = 0, for 1 < k < m and E(fn(n)u*(n)) = Pp.
E(bp(n)u*(n —k)) =0, for 0 <k <m—1and E(by,(n)u*(n —m)) = Pp,.

13. Consider the backward prediction error sequence bg(n),bi(n),...,byr(n) for the observed
sequence {u(n)}. (Properties of FLP and BLP Errors)

(a) Define b(n) = [bo(n),b1(n),...,by(n)]", and w(n) = [u(n),u(n —1),...,u(n — M)]", find L
in terms of the coefficients of the backward prediction-error filter where b(n) = Lu(n).

(b) Let the correlation matrix for b(n) be D, and that for u(n) be R. Is D diagonal? What is
relation between R and D ? Show that a lower triangular matrix A exists such that R™! = A7 A,

(c) Now we are to perform joint estimation of a desired sequence {d(n)} by using either {by(n)}
or {u(n)}, and their corresponding optimal weight vectors are k and w, respectively. What is

relation between k and w ?

Solution:

(a) Since by, (n) = > 1§ mm—ru(n — k), the matrix is

1
CL171 1
L = CL272 a2,1 1
apM M GMM—-1 - - 1

(b) Due to the orthogonality of b,,(n), i.e., E(by(n)bj(n)) = Pynikm. Therefore, D is a diagonal
matrix with diagonal entries Py, P, ..., Pys.

D = E(b(n)b" (n)) = BE(Lu(n)u (n)L") = LRL".

Since det(L) = 1, L is invertible. R = L™'DL™ . R™! = (L'DL#)"' = LYD™'L =
(D~Y2L)H(D~Y2L) where D~/?L is a lower-triangle matrix.

(¢c)w = R™'E(u(n)d*(n)) = LYD ' LE(u(n)d*(n)). On the other hand, k = D~1E(b(n)d*(n)) =
D 'LE(u(n)d*(n)). We can conclude that w = L¥k.



