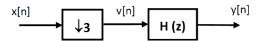
ENEE 630 Review¹

1. Consider the following processing where x[n] is a zero-mean wide sense stationary process. Is v[n] wide sense stationary? Is y[n] wide sense stationary? Explain why or why not. If yes to both, determine the relation between autocorrelation functions of x[n] and y[n].



- 2. An adventure on cross-correlation and cross-spectrum.
 - (a) Let s[n] be a process generated by a stable LTI filter with impulse response h[n] to filter a white noise process v[n]. For the v[n] process, we have $E[v[n]] = \mu \neq 0$, and $Var[v[n]] = \sigma^2$. Derive the cross-correlation function $r_{sv}(k)$ between s[n] and v[n] in terms of h[n], μ , and σ .
 - (b) Let x[n] and y[n] be two zero-mean, jointly wide sense stationary random processes with power spectra $P_x(\omega)$ and $P_y(\omega)$, respectively. The cross power spectral density $P_{xy}(\omega)$ of the two processes x[n] and y[n] is defined as the DTFT of their cross-correlation function $r_{xy}(k)$, i.e.,

$$P_{xy}(\omega) = \sum_{k=-\infty}^{\infty} r_{xy}(k)e^{-j\omega k}.$$

A normalized cross spectrum $G_{xy}(\omega)$ is given by

$$G_{xy}(\omega) = \frac{P_{xy}(\omega)}{\sqrt{P_x(\omega)P_y(\omega)}}.$$

Show that $|G_{xy}(\omega)|^2$ is invariant under linear transform. That is, if $x_1[n] = h_1[n] * x[n]$ and $y_2[n] = h_2[n] * y[n]$, then $|G_{xy}(\omega)|^2 = |G_{x_1y_2}(\omega)|^2$.

3. Noise cancellation

Let g[n] be real-valued white noise with zero mean and variance σ_g^2 , and $v_1[n]$ be a real-valued zero-mean process generated by the difference equation

$$v_1[n] = av_1[n-1] + g[n], \quad -1 < a < 1.$$

Let $x[n] = d[n] + v_1[n]$, where d[n] is real valued, zero mean, wide sense stationary, and uncorrelated with g[n].

(a) Assume σ_g^2 , a, and the autocorrelation function $r_d(\cdot)$ of d[n] are all known. Design a p^{th} order causal FIR filter to be applied to x[n], such that the filter provides a minimum mean square error (MMSE) estimate for d[n].

¹ver. 201212

(b) Consider now another real-valued zero-mean process

$$v_2[n] = bv_2[n-1] + g[n], \quad -1 < b < 1.$$

Suppose that we observe N samples from the $\{x[n]\}$ process as well as N synchronized samples from the $\{v_2[n]\}$ process to study the statistical properties of the two random processes. Other than these, we <u>do not know</u> explicitly σ_g^2 , a, b, and the second order statistics of d[n] and $v_1[n]$. Design a practical MMSE estimate for d[n] using a linear combination of x[n], $v_2[n]$, $v_2[n-1]$, ... $v_2[n-p]$, where $n \gg p$, $N \gg p$.

Hint: see if estimating $v_1[n]$ may help.