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M-channel Maximally Decimated Filter Bank

M-ch. filter bank: To study more general conditions of alias-free & P.R.

As each filter has a passband of about 2π/M wide, the subband signal
output can be decimated up to M without substantial aliasing.

The filter bank is said to be “maximally decimated” if this maximal

decimation factor is used.

[Readings: Vaidynathan Book 5.4-5.5; Tutorial Sec.VIII]
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The Reconstructed Signal and Errors Created

Relations between X̂ (z) and X (z): (details)

X̂ (z) =
∑M−1

l=0 A`(z)X (W `z)

A`(z) , 1
M

∑M−1
k=0 Hk(W `z)Fk(z), 0 ≤ ` ≤ M − 1.

X (W `z)|z=e jω = X (ω − 2π`
M ), i.e., shifted version from X (ω).

X (W `z): `-th aliasing term, A`(z): gain for this aliasing term.
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Conditions for LPTV, LTI, and PR

• In general, the M-channel filter bank is a LPTV system with
period M.

• The aliasing term can be eliminated for every possible input x [n]
iff A`(z) = 0 for 1 ≤ ` ≤ M − 1. When aliasing is eliminated, the
filter bank becomes an LTI system:

X̂ (z) = T (z)X (z),

where T (z) , A0(z) = 1
M

∑M−1
`=0 Hk(z)Fk(z) is the overall transfer

function, or distortion function.

• If T (z) = cz−n0 , it is a perfect reconstruction system
(i.e., free from aliasing, amplitude distortion, and phase distortion).
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The Alias Component (AC) Matrix

From the definition of A`(z), we have in matrix-vector form:

H(z): M ×M matrix called the “Alias Component matrix”

The condition for alias cancellation is

H(z)f(z) = t(z), where t(z) =


MA0(z)

0
:
0


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The Alias Component (AC) Matrix

Now express the reconstructed signal as

X̂ (z) = AT (z)X (z) = 1
M f

T (z)HT (z)X (z),

where X (z) =


X (z)

X (zW )
:

X (zWM−1)

 .
Given a set of analysis filters {Hk(z)}, if detH(z) 6= 0, we can
choose synthesis filters as f(z) = H−1(z)t(z) to cancel aliasing
and obtain P.R. by requiring

t(z) =


cz−n0

0
:
0


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Difficulty with the Matrix Inversion Approach

H−1(z) =
Adj [H(z)]

det[H(z)]

Synthesis filters {Fk(z)} can be IIR even if {Hk(z)} are all
FIR.

Difficult to ensure {Fk(z)} stability (i.e. all poles inside the
unit circle)

{Fk(z)} may have high order even if the order of {Hk(z)} is
moderate

......

⇒ Take a different approach for P.R. design via polyphase
representation.
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Type-1 PD for Hk(z)

Using Type-1 PD for Hk(z):

Hk(z) =
∑M−1

`=0 z−`Ek`(z
M)

We have

E(zM): M ×M Type-1 polyphase component matrix for analysis bank
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Type-2 PD for Fk(z)

Similarly, using Type-2 PD for Fk(z):

Fk(z) =
∑M−1

`=0 z−(M−1−`)R`k(zM)

We have in matrix form:

e
T
B (z): reversely ordered version of e(z)

R(zM): Type-2 polyphase component matrix for synthesis bank
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Overall Polyphase Presentation

Combine polyphase matrices into one matrix: P(z) = R(z)E(z)︸ ︷︷ ︸
note the order!
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Simple FIR P.R. Systems

X̂ (z) = z−1X (z),

i.e., transfer function T (z) = z−1

Extend to M channels:

Hk(z) = z−k

Fk(z) = z−M+k+1, 0 ≤ k ≤ M−1

⇒ X̂(z) = z−(M−1)X(z)

i.e. demultiplex then multiplex

again
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General P.R. Systems

Recall the polyphase implementation of M-channel filter bank:

Combine polyphase matrices into one matrix: P(z) = R(z)E(z)

If P(z) = R(z)E(z) = I, then the system is equivalent to the
simple system ⇒ Hk(z) = z−k , Fk(z) = z−M+k+1

In practice, we can allow P(z) to have some constant delay, i.e.,
P(z) = cz−m0I, thus T (z) = cz−(Mm0+M−1).
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Dealing with Matrix Inversion

To satisfy P(z) = R(z)E(z) = I, it seems we have to do matrix inversion

for getting the synthesis filters R(z) = (E(z))−1.

Question: Does this get back to the same inversion problem we have
with the viewpoint of the AC matrix f(z) = H−1(z)t(z)?

Solution:

E(z) is a physical matrix that each entry can be controlled.
In contrast, for H(z), only 1st row can be controlled (thus hard to
ensure desired Hk(z) responses and f(z) stability)

We can choose FIR E(z) s.t. detE(z) = αz−k thus R(z) can be
FIR (and has determinant of similar form).

Summary: With polyphase representation, we can choose E(z) to
produce desired Hk(z) and lead to simple R(z) s.t. P(z) = cz−kI.
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Paraunitary

A more general way to address the need of matrix inversion:

Constrain E(z) to be paraunitary: Ẽ(z)E(z) = dI

Here Ẽ(z) = ET
∗ (z−1), i.e. taking conjugate of the transfer function

coeff., replace z with z−1 that corresponds to time reversely order the

filter coeff., and transpose.

For further exploration: PPV Book Chapter 6.
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Relation b/w Polyphase Matrix E(z) and AC Matrix H(z)

The relation between E(z) and H(z) can be shown as:

H(z) = [W∗]T D(z) ET (zM)

where W is the M ×M DFT matrix, and a diagonal delay matrix

D(z) =


1

z−1

. . .

z−(M−1)


(details) See also the homework.
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The Reconstructed Signal and Errors Created

A`(z) , 1
M

∑M−1
k=0 Hk(W `z)Fk(z), 0 ≤ ` ≤ M − 1.

X(W `z)|z=e jω = X(ω − 2π`
M ), i.e., shifted version from X(ω).

X(W `z): `-th aliasing term, A`(z): gain for this aliasing term.
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Review: Matrix Inversion

H−1(z) =
Adj [H(z)]

det[H(z)]

Adjugate or classical adjoint of a matrix:

{Adj [H(z)]}ij = (−1)i+jMji

where Mji is the (j , i) minor of H(z) defined as the determinant of
the matrix by deleting the j-th row and i-th column.

ENEE630 Lecture Part-1 18 / 21



7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

An Example of P.R. Systems

H0(z) = 2 + z−1, H1(z) = 3 + 2z−1,

E(z) =

[
2 1
3 2

]
, E−1(z) = Adj E(z)

detE(z) = 1×
[

2 −1
−3 2

]
.

Choose R(z) = E−1(z) s.t. P(z) = R(z)E(z) = I,

∴ R(z) =

[
2 −1
−3 2

]
[
F0(z) F1(z)

]
=
[
z−1 1

]
R(z2) =

[
2z−1 − 3, −z−1 + 2

]
⇒

{
F0(z) = −3 + 2z−1

F1(z) = 2− z−1
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