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Brief Note on Subband and Wavelet Coding

e The octave (“dyadic”) frequency partition can reflect
the logarithmatic characteristics in human perception

e \Wavelet coding and subband coding have many
similarities (e.g. from filter bank perspectives)

— Traditionally subband coding uses filters that have little
overlap to isolate different bands

— Wavelet transform imposes smoothness conditions on the
filters that usually represent a set of basis generated by
shifting and scaling (“dilation”) of a “mother wavelet” function

— Wavelet can be motivated from overcoming the poor time-
domain localization of short-time FT

Explore more in Proj#l. See PPV Book Chapter 11
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Review and Examples of Basis

e Standard basis vectors

e Standard basis images
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Time-Freq (or Space-Freq) Interpretations

— Inverse transf. represents a signal as a linear combination of basis vectors
— Forward transf. determines combination coeff. by projecting signal onto basis
E.g. Standard Basis (for data samples); Fourier Basis; Wavelet Basis

Frequency

Time Time Time
a b c

FIGURE 7.21 Time-frequency tilings for (a) sampled data. (b) FFT. and (¢) FW'T basis
functions.

Figures from Gonzalez/ Woods DIP 2/e book website.
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Recall:

Matrix/VVector Form of DFT

o {z(n) } < {Z(K) }
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From Ken Lam’s DCT talk 2001 (HK Polytech)

Example of 1-D DCT: N =38
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Haar Transform

e Haar basis functions: index by (p, q)
— Scaling captures info. at different freq.

— Translation captures info. at different
locations

— Transition at each scale p is localized
according to g

e Haar transform H ~ orthogonal

— Sample Haar function to obtain
transform matrix

— Filter bank representation
+ filtering and downsampling

— Relatively poor energy compaction

+ Equiv. filter response doesn’t have good
cutoff & stopband attenuation

e Basis images of 2-D Haar transform
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Compare Basis Images of DCT and Haar

Bx8 Haar basis images

gx5 DCT basis images
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See also: Jain’s Fig.5.2 pp136
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compressive Sensing

e Downsampling as a data compression tool
— For bandlimited signals. Considered uniform sampling so far

e More general case of “sparsity” in some domain

E.g. non-zero coeff. at a small # of frequencies but over a broad support
of frequency?

— How to leverage such sparsity to get reduced average sampling rate?
— Can we sample at non-equally spaced intervals?
— How to deal with real-world issues e.g. approx. but not exactly sparse?

Ref. IEEE Signal Processing Magazine: Lecture Notes on Compressive Sensing
(2007); Special Issue on Compressive Sensing (2008);
ENEEG698A Fall 2008 Graduate Seminar: http://terpconnect.umd.edu/~dikpal/enee698a.html
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L1 vs. L2 Optimization
for Sparse Signal

|; Recovery
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[FIGZ] (a) A sparse real valued signal and (b) its reconstruction
from 60 (complex valued) Fourier coefficients by ¢,
minimization. The reconstruction is exact. (c) The minimum
energy reconstruction obtained by substituting the ¢, norm
with the ¢z norm; ¢y and ¢: give wildly different answers. The
i3 solution does not provide a reasonable approximation to

the original signal.

( Fig. from Candes-Wakins SPM’08 article)
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Example: Tomoqgraphy problem

| Sampling in the frequency plane
gl Along 22 radial lines with 512
Logan-Shepp phantom ) samples on each

test image

Minimum energy

. Reconstruction by minimizing
reconstruction

total variation

Slide source: by Dikpal Reddy, ENEEG698A, http://terpconnect.umd.edu/~dikpal/enee698a.html
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A Close Look at Wavelet Transform

Haar Transform — unitary
Orthonormal Wavelet Filters

Biorthogonal Wavelet Filters
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Construction of Haar Functions

e Unique decomposition of integer k < (p, q)

- k=0,...,N-1withN=2"0<=p<=n-1 pOWH:Vm‘Z
— =0, 1 (for p=0); 1 <= q <= 2P (for p>0) k=2P+q-1
e.g., k=0 k=1 k=2 k=3 k=4 “remainder”
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More on Wavelets (1)

e Linear expansion of a
function via an expansion set

— Form basis functions if the
expansion is unique

e Orthogonal basis

e Non-orthogonal basis

— Coefficients are computed with
a set of dual-basis

e Discrete Wavelet Transform

— Wavelet expansion gives a set
of 2-parameter basis functions
and expansion coefficients:
scale and translation
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More on Wavelets (2)

e 1St generation wavelet systems:
— Scaling and translation of a generating wavelet (“mother wavelet”)

e Multiresolution conditions:

— Use a set of basic expansion signals with half width and translated
in half step size to represent a larger class of signals than
the original expansion set (the “scaling function™)

e Represent a signal by combining scaling functions and wavelets
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Orthonormal Filters

e Equiv. to projecting input signal to orthonormal basis

e Energy preservation property

— Convenient for quantizer design
+ MSE by transform domain quantizer is same as reconstruction MSE

in image domain
e Shortcomings: “coefficient expansion”

— Linear filtering with N-element input & M-element filter
= (N+M-1)-element output =» (N+M)/2 after downsample

— Length of output per stage grows ~ undesirable for compression

e Solutions to coefficient expansion

— Symmetrically extended input (circular convolution) &
Symmetric filter

"'mig&_ﬁ M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009



Solutions to Coefficient Expansion

e Circular convolution in place of linear convolution

— Periodic extension of input signal
— Problem: artifacts by large discontinuity at borders

e Symmetric extension of input

— Reduce border artifacts (note the signal length doubled with symmetry)
— Problem: output at each stage may not be symmetric

From Usevitch (IEEE
Sig.Proc. Mag. 9/01)
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Solutions to Coefficient Expansion (cont'd)

e Symmetric extension + symmetric filters

— No coefficient expansion and little artifacts

— Symmetric filter (or asymmetric filter) => “linear phase filters”
(no phase distortion except by delays)

Problem

— Only one set of linear phase filters for real FIR orthogonal wavelets
=» Haar filters: (1,1) & (1,-1)
do not give good energy compaction

Ref: review ENEE630 discussions on FIR perfect reconstruction
Qudrature Mirror Filters (QMF) for 2-channel filter banks.

"'*-';‘;E_.é*c M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009



Biorthogonal Wavelets

e “Biorthogonal”

— Basis in forward and inverse transf.
are not the same but give overall
perfect reconstruction (PR)

+ recall EE630 PR filterbank

— No strict orthogonality for transf.
filters so energy is not preserved

+ But could be close to orthogonal
filters’ performance

e Advantage

From Usevitch (IEEE Sig.Proc. Mag. 9/01)

Table 1. Two Sets of Linear Phase,
Biorthogonal Wavelet Filter Coefficients.

9/7 Filter
Coefficients

5/3 Filter
Coefficients Filter

Index

b, Hy b, Ha

0.852699 |0.788486 |1.060660 (0707107 |0

0.377402 | 0.418092 | 0.353553 |0.353553 (-L,1

—-0.110624 | -0.040689 | -0.176777 -2, 2
—-0.023849 | —0.064539 —3, 3
0.037828 -4, 4

The 9/7 coefficients have the nice properry thar, although
they are biorthogonal, they are very close to being
orthogonal as shown in Table 2.

— Covers a much broader class of filters
+ including symmetric filters that eliminate coefficient expansion

e Commonly used filters for compression

— 9/7 biorthogonal symmetric filter

— Efficient implementation: Lifting approach

R,

(ref: Swelden’s tutorial)
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Smoothness Conditions on Wavelet Filter

— Ensure the low band coefficients obtained by recursive filtering
can provide a smooth approximation of the original signal
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Figare 13: leration (28] for two smpls filters. (a) [1,3.3,1] which coav “'I-":' a continuous
fusction. (b) [-1.3.3,1] which converges Lo & discoctinesus fusction,

From M. Vetterli’s wavelet/filter-bank paper
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