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Dynamic Range of Original Dynamic Range of Original 
andand SubbandSubband SignalsSignalsand and SubbandSubband SignalsSignals

– Can assign more bits to 
represent coarse info

– Allocate remaining bits, 
if available, to finer details 
(via  proper quantization)

M. Wu: ENEE630 Advanced Signal Processing [8]

Figures from Gonzalez/ Woods 
DIP 3/e book website.



Brief Note on Brief Note on SubbandSubband and Wavelet Codingand Wavelet Coding

 The octave (“dyadic”) frequency partition can reflect 
the logarithmatic characteristics in human perceptiong p p

 Wavelet coding and subband coding have many 
similarities (e.g. from filter bank perspectives)( g p p )
– Traditionally subband coding uses filters that have little 

overlap to isolate different bands

– Wavelet transform imposes smoothness conditions on the 
filters that usually represent a set of basis generated by 
shifting and scaling (“dilation”) of a “mother wavelet” functionshifting and scaling ( dilation ) of a mother wavelet  function

– Wavelet can be motivated from overcoming the poor time-
domain localization of short-time FT

Explore more in Proj#1. See PPV Book Chapter 11

M. Wu: ENEE630 Advanced Signal Processing [9]



Review and Examples of BasisReview and Examples of Basis

 Standard basis vectors
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 Standard basis images
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 Example: representing a vector with different basis
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M. Wu: ENEE631 Digital Image Processing (Spring 2010) Lec10 – Unitary Transform  [10]
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TimeTime--Freq (or SpaceFreq (or Space--Freq) InterpretationsFreq) Interpretations
– Inverse transf. represents a signal as a linear combination of basis vectors
– Forward transf. determines combination coeff. by projecting signal onto basis
E.g.  Standard Basis (for data samples);  Fourier Basis;  Wavelet Basis

M. Wu: ENEE630 Advanced Signal Processing [11]

Figures from Gonzalez/ Woods DIP 2/e book website.



Recall: Matrix/Vector Form of DFT Recall: Matrix/Vector Form of DFT 
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n, k = 0, 1, …, N-1,   WN = exp{ - j2 / N } 
~  complex conjugate of primitive Nth root of unity
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M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009 [13]
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Example of 1Example of 1--D DCT:    N = 8D DCT:    N = 8
From Ken Lam’s DCT talk 2001 (HK Polytech)
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M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009 [14]

Basis vectors Reconstructions



Haar TransformHaar Transform 1
x

(0,0)

(0,1)

 Haar basis functions: index by (p, q)
– Scaling captures info. at different freq.

T l i i f diff
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(1,1)

– Translation captures info. at different 
locations

– Transition at each scale p is localized 
died

 b
y 

M
.W

u 
©

 

(1,2)

(2,1)
according to q

 Haar transform H ~ orthogonal

– Sample Haar function to obtain1 
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– Sample Haar function to obtain 
transform matrix

– Filter bank representation
 filtering and downsamplingM
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 filtering and downsampling

– Relatively poor energy compaction
 Equiv. filter response doesn’t have good 

cutoff & stopband attenuation

U

M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009 [15]

ff p

=> Basis images of 2-D Haar transform



Compare Basis Images of DCT and HaarCompare Basis Images of DCT and Haar

M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009 [16]

See also: Jain’s Fig.5.2 pp136
UMCP ENEE631 Slides (created by M.Wu © 2001)



M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009 [19]



Compressive SensingCompressive Sensing

 Downsampling as a data compression tool
– For bandlimited signals. Considered uniform sampling so farFor bandlimited signals.  Considered uniform sampling so far

 More general case of “sparsity” in some domain
E.g. non-zero coeff. at a small # of frequencies but over a broad support 

of frequency?

H l h i d d li ?– How to leverage such sparsity to get reduced average sampling rate?
– Can we sample at non-equally spaced intervals?
– How to deal with real-world issues e.g. approx. but not exactly sparse?g pp y p

Ref:  IEEE Signal Processing Magazine:  Lecture Notes on Compressive Sensing Ref:  IEEE Signal Processing Magazine:  Lecture Notes on Compressive Sensing 
(2007);  Special Issue on Compressive Sensing (2008);(2007);  Special Issue on Compressive Sensing (2008);

UMD ENEE630 Advanced Signal Processing (F'10) Discussions   [20]

ENEE698A Fall 2008 Graduate Seminar: ENEE698A Fall 2008 Graduate Seminar: http://terpconnect.umd.edu/~dikpal/enee698a.htmlhttp://terpconnect.umd.edu/~dikpal/enee698a.html



L1 vs. L2 OptimizationL1 vs. L2 Optimization
for Sparse Signalfor Sparse Signalfor Sparse Signalfor Sparse Signal

UMD ENEE630 Advanced Signal Processing (F'10) Discussions   [21]

( Fig. from Candes-Wakins SPM’08 article)



Example:  Tomography problemExample:  Tomography problem

Logan-Shepp phantom
test image

Sampling in the frequency plane
Along 22 radial lines with 512

samples on each

Minimum energy 
reconstruction

Reconstruction by minimizing
total variation

UMD ENEE630 Advanced Signal Processing (F'10) Discussions   [22]

Slide source:  by Dikpal Reddy, ENEE698A, http://terpconnect.umd.edu/~dikpal/enee698a.html
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A Close Look at Wavelet TransformA Close Look at Wavelet Transform
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Orthonormal Wavelet FiltersOrthonormal Wavelet Filters
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Biorthogonal Wavelet FiltersBiorthogonal Wavelet FiltersU

M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009 [33]



Construction of Haar FunctionsConstruction of Haar Functions
 Unique decomposition of integer  k (p, q)

– k = 0, …, N-1 with N = 2n, 0 <= p <= n-1
q = 0 1 (for p=0); 1 <= q <= 2p (for p>0) k = 2p + q 1

power of 2

01
/2

00
4)

– q = 0, 1 (for p=0); 1 <= q <= 2p (for p>0)

e.g.,   k=0        k=1        k=2          k=3        k=4     …
(0,0)      (0,1)       (1,1)        (1,2)       (2,1)    …

k = 2p + q – 1
“remainder”
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M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009 [34]


  ]1,0[other for                0 x
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More on Wavelets (1)More on Wavelets (1)
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 Linear expansion of a 
function via an expansion set
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– Form basis functions if the 
expansion is unique

 Orthogonal basis
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 Non-orthogonal basis 
– Coefficients are computed with 
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 Discrete Wavelet Transform
Wavelet expansion gives a setU – Wavelet expansion gives a set 
of 2-parameter basis functions 
and expansion coefficients:
scale and translation

M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009 [17]

scale and translation



More on Wavelets (2)More on Wavelets (2)
20

04
)

 1st generation wavelet systems:
– Scaling and translation of a generating wavelet (“mother wavelet”)

 Multiresolution conditions:
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  Multiresolution conditions:

– Use a set of basic expansion signals with half width and translated 
in half step size to represent a larger class of signals than 
the original expansion set (the “scaling function”)

f
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 Represent a signal by combining scaling functions and wavelets
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M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009 [18]



Orthonormal FiltersOrthonormal Filters
 Equiv. to projecting input signal to orthonormal basis

 Energy preservation property20
01

)

Energy preservation property
– Convenient for quantizer design

 MSE by transform domain quantizer is same as reconstruction MSE 
in image domained
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 Shortcomings:  “coefficient expansion”
– Linear filtering with N-element input & M-element filter1 
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g p
 (N+M-1)-element output   (N+M)/2 after downsample

– Length of output per stage grows ~ undesirable for compression
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 Solutions to coefficient expansion
– Symmetrically extended input (circular convolution) &

S i fil

U

M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009 [36]

Symmetric filter



Solutions to Coefficient ExpansionSolutions to Coefficient Expansion
 Circular convolution in place of linear con ol tion Circular convolution in place of linear convolution

– Periodic extension of input signal
– Problem:  artifacts by large discontinuity at borders
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 Symmetric extension of input
– Reduce border artifacts  (note the signal length doubled with symmetry)
– Problem: output at each stage may not be symmetric F U it h (IEEEed
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Problem:  output at each stage may not be symmetric From Usevitch (IEEE 
Sig.Proc. Mag. 9/01)
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M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009 [37]



Solutions to Coefficient Expansion (cont’d)Solutions to Coefficient Expansion (cont’d)

 Symmetric extension + symmetric filters
– No coefficient expansion and little artifacts20

01
)

No coefficient expansion and little artifacts
– Symmetric filter (or asymmetric filter) => “linear phase filters” 

(no phase distortion except by delays)
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 Problem
– Only one set of linear phase filters for real FIR orthogonal wavelets1 
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Only one set of linear phase filters for real FIR orthogonal wavelets
 Haar filters:  (1, 1) & (1,-1)

do not give good energy compaction
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Ref:  review ENEE630 discussions on FIR perfect reconstruction 
Qudrature Mirror Filters (QMF) for 2-channel filter banks.
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M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009 [38]



Biorthogonal WaveletsBiorthogonal Wavelets
From Usevitch (IEEE Sig.Proc. Mag. 9/01)

 “Biorthogonal”
– Basis in forward and inverse transf.

t th b t i ll20
01

)

are not the same but give overall 
perfect reconstruction (PR)
 recall EE630 PR filterbank
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– No strict orthogonality for transf. 
filters so energy is not preserved
 But could be close to orthogonal 

filters’ performance1 
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 Advantage
– Covers a much broader class of filters
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 including symmetric filters that eliminate coefficient expansion

 Commonly used filters for compression
– 9/7 biorthogonal symmetric filter

U

M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009 [39]

g y
– Efficient implementation:  Lifting approach (ref: Swelden’s tutorial)



Smoothness Conditions on Wavelet FilterSmoothness Conditions on Wavelet Filter
20

04
)

– Ensure the low band coefficients obtained by recursive filtering 
can provide a smooth approximation of the original signal
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M. Wu: ENEE630 Advanced Signal Processing (Fall'09) 10/14/2009 [40]

From M. Vetterli’s wavelet/filter-bank paper




