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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Outline of Section 1

e Basic Properties and Characterization

@ 1st and 2nd moment function; ergodicity

@ correlation matrix; power-spectrum density

e The Rational Transfer Function Model
o ARMA, AR, MA processes
@ Wold Decomposition Theorem
o ARMA, AR, and MA models and properties
@ asymptotic stationarity of AR process

Readings for §1.1: Haykin 4th Ed. 1.1-1.3, 1.12, 1.14;
see also Hayes 3.3, 3.4, and background reviews 2.2, 2.3, 3.2
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Stochastic Processes

@ To describe the time evolution of a statistical phenomenon
according to probabilistic laws.

Example random processes: speech signals, image, noise,
temperature and other spatial /temporal measurements, etc.
@ Discrete-time Stochastic Process {u[n]}

e Focus on the stochastic process that is defined / observed at
discrete and uniformly spaced instants of time

e View it as an ordered sequence of random variables that are
related in some statistical way:
{...u[n—=M],...;uln,uln+1],...}

e A random process is not just a single function of time; it may
have an infinite number of different realizations
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Parametric Signal Modeling

@ A general way to completely characterize a random process is by
joint probability density functions for all possible subsets of the
r.v. in it

Probability of {u[n1], u[nz], ..., u[nk]}

@ Question: How to use only a few parameters to describe a
process?

Determine a model and then the model parameters

= This part of the course studies the signal modeling
(including models, applicable conditions, how to determine the
parameters, etc)
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1 Discrete-time Stochastic Processes q q s
Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

(1) Partial Characterization by 1st and 2nd moments

It is often difficult to determine and efficiently describe the
joint p.d.f. for a general random process.

As a compromise, we consider partial characterization of the
process by specifying its 1st and 2nd moments.

Consider a stochastic time series {u[n]}, where u[n], u[n —1],...

may be complex valued. We define the following functions:

e mean-value function: m[n]| =E[u[n]] , n€ Z
e autocorrelation function: r(n,n — k) = E [u[n]u*[n — K]]
@ autocovariance function:

c(n,n— k) = E[(uln] — m[n])(u[n — k] — m[n — K])"]

Without loss of generality, we often consider zero-men random process
E [u[n]] = 0 Vn, since we can always subtract the mean in preprocessing.

Now the autocorrelation and autocovariance functions become identical.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Wide-Sense Stationary (w.s.s.)

Wide-Sense Stationarity

If Yn, m[n] = m and r(n,n — k) = r(k) (or c(n,n— k) = c(k)),
then the sequence u[n] is said to be wide-sense stationary (w.s.s.),
or also called stationary to the second order.

@ The strict stationarity requires the entire statistical property
(characterized by joint probability density or mass function) to
be invariant to time shifts.

@ The partial characterization using 1st and 2nd moments offers
two important advantages:

@ reflect practical measurements;

@ well suited for linear operations of random processes
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

(2) Ensemble Average vs. Time Average

o Statistical expectation E(-) as an ensemble average: take
average across (different realizations of) the process

@ Time-average: take average along the process.

This is what we can rather easily measure from one realization
of the random process.

Question: Are these two average the same?

Answer: No in general. (Examples/discussions from ENEE620.)

Consider two special cases of correlations between signal samples:
Q uln,uln—-1],--- iid.

Q u[n]=u[n—1]=--- (i.e. all samples are exact copies)
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Mean Ergodicity

For a w.s.s. process, we may use the time average

N 1 V-1
m(N) - N Zn:O u[n]

to estimate the mean m.

e M(N) is an unbiased estimator of the mean of the process.

~E[m(N)] =m VN.

e Question: How much does M(N) from one observation deviate from
the true mean?

Mean Ergodic

A w.s.s. process {u[n]} is mean ergodic in the mean square error
sense if limy_,o0 E [|[m — m(N)[?] =0
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Mean Ergodicity

A w.s.s. process {u[n]} is mean ergodic in the mean square error
sense if limy_,o0 E [|[m — Mm(N)[?] =0

Question: under what condition will this be satisfied?

= (nece.& suff) limy o0 & SN2y (1— Mhe(e) =0

Mean ergodicity suggests that c(¢) is asymptotically decaying s.t.
{u[n]} is asymptotically uncorrelated.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Correlation Ergodicity

Similarly, let the autocorrelation estimator be

1 N-1
Pk N) = > uln]ut[n— K]
n=0

The w.s.s. process {u[n]} is said to be correlation ergodic in the
MSE sense if the mean squared difference between r(k) and
?(k, N) approaches zero as N — oc.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

(3) Correlation Matrix

Given an observation vector u[n] of a w.s.s. process, the
correlation matrix R is defined as R £ E [u[n]u"[n]]

where H denotes Hermitian transposition (i.e., conjugate transpose).

Z%Z]i 1 Each entry in R is
uln] = | , [Rij = Efuln—ilu*[n—j]] = r( =)
.u[n—/\/l—i—l] O0=ij=M-1)
r(0) r(l) - oo r(M=1)
r(—1) r(0) r(1) :
Thus R =
r(=M+2) r(0) (1)
r(—M+1) r(0)
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Properties of R

© R is Hermitian, i.e., R" =R

Proof

@ R is Toeplitz.

A matrix is said to be Toeplitz if all elements in the main diagonal are
identical, and the elements in any other diagonal parallel to the main
diagonal are identical.

R Toeplitz < the w.s.s. property.
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1 Discrete-time Stochastic Processes q q s
Appendix: Detailed Derivations 1.1 Basic Properties and Characterization

Properties of R

© R is non-negative definite , i.e., xHRx >0, Vx
Proof

e eigenvalues of a Hermitian matrix are real.

(similar relation in FT: real in one domain ~ conjugate symmetric in
the other)

e eigenvalues of a non-negative definite matrix are non-negative.
Proof
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Properties of R

uln— M+ 1]

Q uBn 2 : , i.e., reversely ordering u[n],
uln—1]
uln]

then the corresponding correlation matrix becomes

r(0) r(=1) - r(—M+1)
E [uB[n](uB[n])"] = r(:l) r(0) ) —RT
,(M-_ 1) e e ,(-0)
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Properties of R

@ Recursive relations: correlation matrix for (M + 1) x 1 u[n]:
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

(4) Example-1: Complex Sinusoidal Signal

x[n] = Aexp[j(2rfon + ¢)] where A and fy are real constant, ¢ ~
uniform distribution over [0, 27) (i.e., random phase)

Relx ]

=0
E [x[n]] =? ,E,

E [x[n]x*[n — k]] =?

Is x[n] is w.s.s.7
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Example-2: Complex Sinusoidal Signal with Noise

Let y[n] = x[n] + w[n] where w[n] is white Gaussian noise
uncorrelated to x[n] , w[n] ~ N(0, o)

o2 k=0

Note: for white noise, E [w[n]w*[n — k]] = {0

ry(k) = Ely[nly*[n — k]] =7
R, =7

Rank of Correlation Matrices Ry, R,,, R, =7
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

(5) Power Spectral Density (a.k.a. Power Spectrum)

Power spectral density (p.s.d.) of a w.s.s. process {x[n]}

Px(w) 2 DTFT[n(K)]= Y n(k)e "
k=—o0
r(k) £ DTFT’l[PX(w)]:%/W Px (w)e** dw

The p.s.d. provides frequency domain description of the 2nd-order
moment of the process (may also be defined as a function of f: w = 27f)

The power spectrum in terms of ZT:
Px(z) = ZT[n(k)] = 220 _ oo (k)"

Physical meaning of p.s.d.: describes how the signal power of a random
process is distributed as a function of frequency.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Properties of Power Spectral Density

@ r (k) is conjugate symmetric: r (k) = ri(—k)
& Px(w) is real valued: Px(w) = Px(w); Px(z) = Px(1/z*)

@ For real-valued random process: ry(k) is real-valued and even
symmetric

= Px(w) is real and even symmetric, i.e.,
Px(w) = Px(—w); Px(z) = Px(z")

@ For w.s.s. process, Px(w) > 0 (nonnegative)

@ The power of a zero-mean w.s.s. random process is proportional to
the area under the p.s.d. curve over one period 2,
. 2
e, E[|x[n]] = (0) = 5= [;" Px(w)dw

Proof: note r,(0) = IDTFT of Px(w) at k=0
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

(6) Filtering a Random Process
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Filtering a Random Process
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Filtering a Random Process

NS S xonj

PMQ&&& _— l ol \—=

$toble l;[‘l:ﬁt—t-e/

In terms of ZT:
Py(z) = Px(z)H(z)H*(1/z")
= Py(w) = Px(@)H(@)H" () = Px(w)| (@)

When h[n] is real, H*(z*) = H(z)
= Py(z) = Px(z)H(z)H(1/z)
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Interpretation of p.s.d.

If we choose H(z) to be an ideal bandpass filter with |ty l_>B -
very narrow bandwidth around any wg, and measure LL
the output power: 0 5 P

E [ly[nlP] = r,(0) = 5= [T Py(w)dw

T wo+B/2

= 2 [T Px(w) H(w)Pdw = 3 [ 52 Px(w) -1+ dw

= %Px(wO) . B Z 0

. Px(wo) = E [ly[n]?] - %, and Px(w) >0 Vw

i.e., p.s.d. is non-negative, and can be measured via power of {y[n]}.

% Px(w) can be viewed as a density function describing how the power
in x[n] varies with frequency. The above BPF operation also provides a
way to measure it by BPF.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Summary: Review of Discrete-Time Random Process

@ An “ensemble” of sequences, where each outcome of the sample
space corresponds to a discrete-time sequence

@ A general and complete way to characterize a random process:
through joint p.d.f.

© w.s.s process: can be characterized by 1st and 2nd moments
(mean, autocorrelation)

o These moments are ensemble averages; E [x[n]],
r(k) = E [x[n]x*[n — K]]
o Time average is easier to estimate (from just 1 observed sequence)

e Mean ergodicity and autocorrelation ergodicity:
correlation function should be asymptotically decay, i.e.,
uncorrelated between samples that are far apart.
= the time average over large number of samples converges to
the ensemble average in mean-square sense.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Characterization of w.s.s. Process through Correlation
Matrix and p.s.d.

@ Define a vector on signal samples (note the indexing order):
uln] = [u(n), u(n—1), o u(n— M+ 1)]7
© Take expectation on the outer product:

r(0) r() - - r(M—1)
R £ E [u[n]u"[n] = r(Tl) o r-(.l) . :
r(fM.Jrl) r(O)

© Correlation function of w.s.s. process is a one-variable
deterministic sequence = take DTFT(r[k]) to get p.s.d.
We can take DTFT on one sequence from the sample space of random
process; different outcomes of the process will give different DTFT
results; p.s.d. describes the statistical power distribution of the random
process in spectrum domain.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Properties of Correlation Matrix and p.s.d.

© Properties of correlation matrix:

o Toeplitz (by w.s.s.)

o Hermitian (by conjugate symmetry of r[k]);

@ non-negative definite
Note: if we reversely order the sample vector, the corresponding
correlation matrix will be transposed. This is the convention used in
Hayes book (i.e. the sample is ordered from n — M + 1 to n), while
Haykin's book uses ordering of n, n—1, ... ton— M+ 1.

© Properties of p.s.d.:

o real-valued (by conjugate symmetry of correlation function);
o non-negative (by non-negative definiteness of R matrix)
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Filtering a Random Process

@ Each specific realization of the random process is just a
discrete-time signal that can be filtered in the way we've studied
in undergrad DSP.

@ The ensemble of the filtering output is a random process.
What can we say about the properties of this random process
given the input process and the filter?

© The results will help us further study such an important class of
random processes that are generated by filtering a noise process
by discrete-time linear filter with rational transfer function. Many
discrete-time random processes encountered in practice can be
well approximated by such a rational transfer function model:
ARMA, AR, MA (see §l1.1.2)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Mean Ergodicity
A w.s.s. process {u[n]} is mean ergodic in the mean square error sense if
iMoo B [|[m — m(N)|?] =0
Question: under what condition will this be satisfied?
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Properties of R

R is Hermitian, i.e., R" =R
Proof r(k) & E[u[n]u*[n — K] = (E[uln — Klu*[n]])" = [r(=k)I*
Bring into the above R, we have R” =R

R is Toeplitz.

A matrix is said to be Toeplitz if all elements in the main diagonal
are identical, and the elements in any other diagonal parallel to the
main diagonal are identical.

R Toeplitz < the w.s.s. property.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Properties of R

R is non-negative definite , i.e., x"Rx >0, Vx

Proof
Recall R £ E [u[n]u"[n]]. Now given Vx (deterministic):

xHRx = E [xMu[n]ut[n]x] = E | (x" u[n])(x"uln])*| =

|x| scalar

E [|x"u[n]’] >0

@ eigenvalues of a Hermitian matrix are real.
(similar relation in FT analysis: real in one domain becomes
conjugate symmetric in another)

@ eigenvalues of a non-negative definite matrix are non-negative.

Proof choose x = R'’s eigenvector v s.t. Rv = Ay,
viRy = vy = APy = A\v)2P>0=)>0
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Properties of R

Recursive relations: correlation matrix for (M + 1) x 1 u[n]:

Rt =

b W= {_V\MC"] }: liv“m] J

) W n—m) WS
M| ey PO

N [rm o — [RM (rBy
" Rm (tB)T !‘(n),‘l

where g:[\r*m , 36=rr\m>

‘ «

M My
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

(4) Example: Complex Sinusoidal Signal

x[n] = Aexp [j(2mfon + ¢)] where A and f are real constant, ¢ ~
uniform distribution over [0, 27) (i.e., random phase)

Relx (]

=0
We have: E;'\""\\ s
E[x[n]] =0 Vn N

E [x[n]x*[n — K]]
= E[Aexp[j(2rfon + ¢)] - Aexp [—j(2rfon — 27 ok + )]
= A% - exp[j(2fok)]

. x[n] is zero-mean w.s.s. with r,(k) = A% exp(j2rfok).
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Example: Complex Sinusoidal Signal with Noise

Let y[n] = x[n] + w[n] where w[n] is white Gaussian noise
uncorrelated to x[n] , w[n] ~ N(0, o)

0?2 k=0

Note: for white noise, E [w[n]w*[n — k]| = {0

ry(k) = Ely[nly*[n — k]|
ZE[(x{r] + wlr)(x*[n — K] + w?[n — )]
= ry[k] + rwlk] (. E[x[]w[]] = 0 uncorrelated and w[-] zero mean)
= A2 exp[j2mfok] + o26[K]

1
o—i2h

—jarf
.Ry=R,+Ry, = A2eel + 52T, where e = e~ J4h

o—j2mh(M—1)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Rank of Correlation Matrix

Questions:

(. only one independent row/column, corresponding

The rank of R, =1

to only one frequency component fy in the signal)

The rank of R, = M

The rank of R, = M
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Filtering a Random Process
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Filtering a Random Process
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Filtering a Random Process
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Parametric Signal Modeling and
Linear Prediction Theory
1. Discrete-time Stochastic Processes (2)

Electrical & Computer Engineering
University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by

Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by
Prof. Min Wu and Mr. Wei-Hong Chuang.

Contact: minwu@umd.edu. Updated: October 25, 2011.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

(1) The Rational Transfer Function Model

1.2 The Rational Transfer Function Model

Many discrete-time random processes encountered in practice can
be well approximated by a rational function model (Yule 1927).

&MW% éuuq} Disveh—time F_{:CM} mgxéss
Uneas Bltear— [ oc
(“g\w@\sL Prec.) (luare Cowplex prac- )

Readings: Haykin 4th Ed. 1.5
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1 Dlscrete-tlme. Stoch_astlc Pr_oce_sses 1.2 The Rational Transfer Function Model
Appendix: Detailed Derivations

The Rational Transfer Function Model

. uing . soels fime
Inpuk g:%w%wé uLL S——— N £ {xonl & i painss
Lineas FHlter—

C\\S\\MPU"“ PMC) (WMQ/CDWPlQX Pm(")
Typically u[n] is a noise process, gives rise to randomness of x[n].
The input driving sequence u[n] and the output sequence x[n| are
related by a linear constant-coefficient difference equation

x[n] = = >2%_q alk]x[n — k] + 32 _ blk]uln — K]

This is called the autoregressive-moving average (ARMA) model:

@ autoregressive on previous outputs

@ moving average on current & previous inputs
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1 Dlscrete-tlme. Stochastlc Pr_oce_sses 1.2 The Rational Transfer Function Model
Appendix: Detailed Derivations

The Rational Transfer Function Model

&NVLK uin) _ ____,_
Sepwv— ! b[\] é’btr—] . iﬂlb[%]
FL—‘_’%/Q
é Xl
obs
> Sa%uﬁwu,@,

C__ ]
%ac\’l T %atz] %AL\]
The system transfer function

A X(z) _ Xioblklz™" & B(z)
H(z) = Uz) = Ezga[k]fk = A(z)

To ensure the system's stationarity, a[k] must be chosen s.t. all
poles are inside the unit circle.

ENEE630 Lecture Part-2 4/22



1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.2 The Rational Transfer Function Model

(2) Power Spectral Density of ARMA Processes

Recall the relation in autocorrelation function and p.s.d. after
filtering:

re[k] = h[k] = h*[—K] * ru[K]

P(2) = H(2)H*(1/2z")Py(2)

= Px(w) = [H(w)[*Py(w)

{u[n]} is often chosen as a white noise process with zero mean and
variance o2, then Parma(w) = Px(w) = ﬁ(g) 12,
i.e., the p.s.d. of x[n] is determined by |H( )%
We often pick a filter with a[0] = b[0] = 1 (normalized gain)

The random process produced as such is called an
ARMA(p, q) process, also often referred to as a pole-zero model.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

(3) MA and AR Processes

If in the ARMA model a[k] = 0 Vk > 0, then

x[n] = 324 _o blk]uln — ]
This is called an MA(q) process with Pya(w) = o?|B(w)|?. It is
also called an all-zero model.

1.2 The Rational Transfer Function Model

If b[k] = 0 Vk > 0, then
x[n] = = 32%_; alkIx[n — K] + ul]

o2

This is called an AR(p) process with Par(w) = AT It is also

called an all-pole model.
H(z) = L

(1—az H)(1-cz 1) (1—cz~1)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

(4) Power Spectral Density: AR Model

1.2 The Rational Transfer Function Model

ZT: Px(2) = 0?H(2)H*(1/2") = 0> B8 (1)

p.sd.. Px(w) = Px(2)|,—ei, = c?|Hw)> = ‘72|%|2

@ AR model: all poles H(z) 1

T U—az D-cz D—(1-cz 1)

The —freg. pesprmee has [orge
wgﬁt&kh gEmMLﬂu poles

Px() \1Z 05 poles gex
~ Pc(oALa(F
\ - N Wit cinde
AN/ AN AN
// ~ 7 \ 7 ~

4~ _— V\\
ngfsEr po(t’s :(‘re’l_ “PEAK
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.2 The Rational Transfer Function Model

Power Spectral Density: MA Model

ZT: Px(2) = 0*H(2)H*(1/2%) = 0> 58 (1)

p.s.d.. Px(w) = Px(2)|,—ei, = 0?|H(w)[?* = 02 %‘2

@ MA model: all zeros

w The g tesprmse has small
Wé:%m DE«\ML‘H»A Foros
— RL \U/ cloat o
W ~

a3 gere Wmt ISV
HE) =¥
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.2 The Rational Transfer Function Model

(5) Parameter Equations

Sumak ——>\/?_:‘ L3}

Motivation: KT kp1a2 PHoOC.

Want to determine the filter parameters that gives {x[n]} with
desired autocorrelation function?

Or observing {x[n]} and thus the estimated r(k), we want to figure
out what filters generate such a process? (i.e., ARMA modeling)

Readings: Hayes §3.6
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Parameter Equations: ARMA Model

1.2 The Rational Transfer Function Model

Recall that the power spectrum for ARMA model

Px(z) = H(z)H*(1/z*)c?

and H(z) has the form of H(z) = f\g)

—

= Px(Z)A(Z) = H*(l/z*)B(z)o'2
= P sallnlk — 0 = 0® 20, ble]h*[¢ — K], Vk.

(convolution sum)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Parameter Equations: ARMA Model

1.2 The Rational Transfer Function Model

For the filter H(z) (that generates the ARMA process) to be
causal, h[k] =0 for k < 0.
Thus the above equation array becomes

Yule-Walker Equations for ARMA process
rdkl = = SP_  all]rk — 0 + o> K h )bt + k], k=0,...,q
e[kl = =320 allrdk — 0,k > g+ 1.

The above equations are a set of nonlinear equations
(relate ry[k] to the parameters of the filter)
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.2 The Rational Transfer Function Model

Parameter Equations: AR Model

For AR model, b[¢] = §[¢]. The parameter equations become

relk] = — 25:1 a[l]re[k — €] + o?h*[—K]

Note:
@ r[—k] can be determined by r,[—k] = ri[k] (.- w.s.s.)
@ h*[—k] =0 for k > 0 by causality, and
(0] = [limy_se0 H(2)]" = (%) —1

Yule-Walker Equations for AR Process

= nlk={ S [0 + o> for k=0
: - 2521 a[l]r[k — /] for k>1

The parameter equations for AR are linear equations in {a[(]}
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1 Dlscrete-tlme. Stoch_astlc Pr_oce_sses 1.2 The Rational Transfer Function Model
Appendix: Detailed Derivations

Parameter Equations: AR Model

Yule-Walker Equations in matrix-vector form

ether
MY KED == = k] To) F10) putty
=2 N M) - -Gl o) | Pxe) | KsteeP
\ \\ | ' — \
Te4) - - = 1oy o Pe (P
ie RTa=—r e R: correlation matrix

e r: autocorrelation vector
If R is non-singular, we have a = —(RT)*lg.

We'll see better algorithm computing a in §2.3.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.2 The Rational Transfer Function Model

Parameter Equations: MA Model

For MA model, a[¢] = d[¢], and h[¢] = b[¢]. The parameter
equations become

rlk] = 02 3390 blAb*[¢ — K] = o2 397K | bt + K]b*[¢']

Ly

And by causality of h[n] (and b[n]), we have

rk] = 2 b bl + k] for k=0,1,...,q
0 for k> q+1

This is again a set of non-linear equations in {b[(]}.
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1 Discrete-time Stochastic Processes

Appendix: Detailed Derivations 1.2 The Rational Transfer Function Model

(6) Wold Decomposition Theorem

Recall the earlier example: y[n] = Aexp[j2nfon + ¢)] + w[n]
e ¢: (initial) random phase e w[n] white noise

Theorem

Any stationary w.s.s. discrete time stochastic process {x[n]} may
be expressed in the form of x[n] = u[n] + s[n], where

@ {u[n]} and {s[n]} are mutually uncorrelated processes, i.e.,
E [u[m]s*[n]] =0 Vm,n

@ {u[n]} is a general random process represented by MA model:
uln] = Y2020 blk]v[n — k], 320 [bk[? < o0, b =1

© {s[n]} is a predictable process (i.e., can be predicted from its
own pass with zero prediction variance):

sln] = = 224Z1 alkls[n — ]
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.2 The Rational Transfer Function Model

Corollary of Wold Decomposition Theorem

ARMA(p,q) can be a good general model for stochastic processes:
has a predictable part and a new random part ( “innovation
process” ).

Corollary (Kolmogorov 1941)

Any ARMA or MA process can be represented by an AR process
(of infinite order).

Similarly, any ARMA or AR process can be represented by an MA
process (of infinite order).
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Example: Represent ARMA(1,1) by AR(c0) or MA(o0)

1.2 The Rational Transfer Function Model

-1
E.g., for an ARMA(1, 1), Harma(2) = %

@ Use an AR(o0) to represent it:

@ Use an MA(c0) to represent it:
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.2 The Rational Transfer Function Model

(7) Asymptotic Stationarity of AR Process

Example: we initialize the generation of an AR process with
specific status of x[0], x[—1],...,x[—p + 1] (e.g., set to zero) and
then start the regression x[1], x[2],...,

p

x[n] = — Z a[l]x[n — €] + u[n]

=1
The initial zero states are deterministic and the overall random
process has changing statical behavior, i.e., non-stationary.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.2 The Rational Transfer Function Model

Asymptotic Stationarity of AR Process

If all poles of the filter in the AR model are inside the unit circle,
the temporary nonstationarity of the output process (e.g., due to
the initialization at a particular state) can be gradually forgotten
and the output process becomes asymptotically stationary.

.. I S - Ak
This is because H(z) = P ez F = 2ak=1T ezt

= h[n] = >°0_; Acpl + > F_; ckrfl cos(win + @)

p': # of real poles
p”: # of complex poles, p; = r;
= p=p’ + 2p” for real-valued {ay}.

eijw;

If all |pk| < 1, h[n] — 0 as n — oo.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.2 The Rational Transfer Function Model

Asymptotic Stationarity of AR Process

The above analysis suggests the effect of the input and past
outputs on future output is only short-term.

So even if the system’s output is initially zero to initialize the
process’s feedback loop, the system can gradually forget these
initial states and become asymptotically stationary as n — co.
(i.e., be more influenced by the “recent” w.s.s. samples of the
driving sequence)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Example: Represent ARMA(1,1) by AR(c0) or MA(o0)

E.g., for an ARMA(L, 1), Harua(2) = 112082

@ Use an AR(oc0) to represent it, i.e.,

_ 1
Har(2) = Ttclllz T+c2lz 2+

1+a[1]z7! _ _
= Let Ty = gl =14 izt + ez 72 +

inverse ZT . c[k] = Z~! [HA}lMA(Z)]

N {C[O] =1
c[k] = (a[1] — b[1])(—b[1])*"T for k > 1.

@ Use an MA(c0) to represent it, i.e.,
Hua(z) =1+ d[1)z7Y +d[2]z=2 + ...
o d[k] = Z7 [Harma(2)]
dlo]=1
d[k] = (b[1] — a[1])(—a[1])** for k > 1.
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Part-1l Parametric Signal Modeling and
Linear Prediction Theory
2. Discrete Wiener Filtering

Electrical & Computer Engineering
University of Maryland, College Park
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2.0 Preliminaries
2 Discrete Wiener Filter 2.1 Background
Appendix: Detailed Derivations 2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Preliminaries
[ Readings: Haykin's 4th Ed. Chapter 2, Hayes Chapter 7 ]
e Why prefer FIR filters over [IR?
= FIR is inherently stable.
e Why consider complex signals?

@ Baseband representation is complex valued for narrow-band
messages modulated at a carrier frequency.

@ Corresponding filters are also in complex form.

uln] = us[n] + jug[n] N

e uy[n]: in-phase component .
~ fr_ T

A
ug[n]: quadrature component
the two parts can be amplitude modulated by cos2nf.t and sin 2w f.t.
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2.0 Preliminaries

2 Discrete Wiener Filter 2.1 Background
Appendix: Detailed Derivations 2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

(1) General Problem

(Ref: Hayes §7.1)
bi%%t}dm
— | N@) |~——=

observed x a7y teny en]
3‘%““" esﬁm’reotsramk et ssanal

Want to process x[n] to minimize the difference between the estimate
and the desired signal in some sense:

A major class of estimation (for simplicity & analytic tractability) is to
use linear combinations of x[n] (i.e. via linear filter).

When x[n] and d[n] are from two w.s.s. random processes, we often
choose to minimize the mean-square error as the performance index.

min,, J 2 E [|e[n]|?] = E [Id[n] —d[n]P?
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2.0 Preliminaries

2 Discrete Wiener Filter 2.1 Background
Appendix: Detailed Derivations 2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

(2) Categories of Problems under the General Setup

Q Filtering
@ Smoothing
© Prediction

@ Deconvolution
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2.0 Preliminaries

2 Discrete Wiener Filter 2.1 Background
Appendix: Detailed Derivations 2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Wiener Problems: Filtering & Smoothing

o Filtering
e The classic problem considered by Wiener
e x[n] is a noisy version of d[n]: [n] = d[n] + v[n]
o The goal is to estimate the true d[n] using a causal filter
(i.e., from the current and post values of x[n])
e The causal requirement allows for filtering on the fly

@ Smoothing

e Similar to the filtering problem, except the filter is allowed to
be non-causal (i.e., all the x[n] data is available)
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2.0 Preliminaries

2 Discrete Wiener Filter 2.1 Background
Appendix: Detailed Derivations 2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Wiener Problems: Prediction & Deconvolution

@ Prediction

o The causal filtering problem with d[n] = x[n + 1],
i.e., the Wiener filter becomes a linear predictor to predict
x[n+ 1] in terms of the linear combination of the previous
value x[n], x[n —1],,...

@ Deconvolution

o To estimate d[n] from its filtered (and noisy) version
x[n] = d[n] x g[n] + v[n]

o If g[n] is also unknown = blind deconvolution.
We may iteratively solve for both unknowns
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2.0 Preliminaries

2 Discrete Wiener Filter 2.1 Background
Appendix: Detailed Derivations 2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

FIR Wiener Filter for w.s.s. processes

Design an FIR Wiener filter for jointly w.s.s. processes {x[n]} and {d[n]}:
W(z) = ZQLBI axkz~k (where a5 can be complex valued)
d[n] = 22/’:_01 axx[n — k] = a” x[n] (in vector form)
= e[n] = d[n] — d[n] = d[n] — S,"5" aux[n — A]
7
dln]=a"x[n]
J=elleva"] = E[ ern) e¥m)
= E[ldeal] - Efdm) :f:oatx*[w—mj - BT X aexten) +ELL§§ hed XX n4)

M=l M=t Mol AL = — e
= E[ [ dm\‘] — %af eldmx o) — > oc (:/U@emxgﬂ-q] 4 K;:BE,QKD\AE[XL»\-W [n-R]J
My (L&)
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2.0 Preliminaries

2 Discrete Wiener Filter 2.1 Background
Appendix: Detailed Derivations 2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

FIR Wiener Filter for w.s.s. processes
In matrix-vector form:

J=E[|d[n]]*] - a"p* — pTa+a"Ra

x[n] .
oy B0l o]
where x[n] = : . p= : ,
x[n—-l\/l—ﬁ—l E [x[n — M+ 1]d*[n]]
ao
) am—1

@ E [|d[n][’]: o for zero-mean random process

@ a"Ra: represent E [gTz[n]gH[n]g*] = a'Ra"
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2.0 Preliminaries

2 Discrete Wiener Filter 2.1 Background
Appendix: Detailed Derivations 2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Perfect Square

@ If R is positive definite, R™! exists and is positive definite.

@ (Ra" - p) R-l(Ra ~p)=(a TRH pH)(a* — R-1p) =
TRH * ,D a* TRHR™ 1 HR 1
=I

Thus we can write J(a) in the form of perfect square:

J@a)= E[d[]’]-p"R'p + (Ra*—p)"R7}(Ra* - p)

Not a function of a; Represent Jij,. >0 except being zero if Ra*—p=0
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2.0 Preliminaries

2 Discrete Wiener Filter 2.1 Background
Appendix: Detailed Derivations 2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Perfect Square

Tty

J(a) represents the error performance surface:

convex and has unique minimum at Ra* = p Qo

78 for s

Thus the necessary and sufficient condition for determining the
optimal linear estimator (linear filter) that minimizes MSE is

Ra*—p=0=Ra"=p

This equation is known as the Normal Equation.
A FIR filter with such coefficients is called a FIR Wiener filter.
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2.0 Preliminaries

2 Discrete Wiener Filter 2.1 Background
Appendix: Detailed Derivations 2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Perfect Square

Ra* =p ot = R*13 if R is not singular

(which often holds due to noise)

.ok
- 4o

When {x[n]} and {d[n]} are jointly w.s.s.
(i.e., crosscorrelation depends only on time difference)

T Ic©) P T 0% AER)
Rty Puld) N
\ AN . "
M 1) T o Pyl
}U o p¥

This is also known as the Wiener-Hopf equation (the discrete-time

counterpart of the continuous Wiener-Hopf integral equations)
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2.0 Preliminaries

2 Discrete Wiener Filter 2.1 Background
Appendix: Detailed Derivations 2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Principle of Orthogonality

Note: to minimize a real-valued func. f(z,z") that's analytic (differentiable
everywhere) in z and z*, set the derivative of f w.r.t. either z or z* to zero.
o Necessary condition for minimum J(a): (nece.&suff. for convex J)
pard =0for k=0,1....,M~1.

= 2 [e[n]e’ [n]]—E[e[n]da (d*In] = XJ5" aixln = J))]
= Ee[n] - (—x*[n— K])] = 0

Principal of Orthogonality
E [eopt[n]x*[n — k]] = 0 for k=0,...,M — 1.

The optimal error signal e[n] and each of the M samples of x[n]
that participated in the filtering are statistically uncorrelated

(i.e., orthogonal in a statistical sense)
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2.0 Preliminaries

2 Discrete Wiener Filter 2.1 Background
Appendix: Detailed Derivations 2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Principle of Orthogonality: Geometric View

Eren ety < Analogy:
‘\'(LX on
gerprototion oy r.v. = vector;
E(XY) = inner product of vectors

= The optimal d[n] is the projection
R inenr ComibndAisn of d[n] onto the hyperplane spanned
5 X[ ~- - YO by {x[n],...,x[n—M+1]} ina
TR nchadtas °P\_'W’\ d‘CM statistical sense.

The vector form: E [x[n]e}:[n]] = 0.

This is true for any linear combination of x[n], and for FIR & IIR:
E [aopt[n]eopt[n]} =0
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2.0 Preliminaries

2 Discrete Wiener Filter 2.1 Background
Appendix: Detailed Derivations 2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Minimum Mean Square Error

Recall the perfect square form of J:
J(a) = E[|d[n]’] — p"R7'p+ (Ra* — p)"R™}(Ra" - p)

. _ 2 2
-Jmin—Ud_QoB =04 —

Also recall d[n] = dopt[n] + €opt[n]. Since dopt[n] and eqpi[n] are
uncorrelated by the principle of orthogonality, the variance is

0% = Var(dopt[n]) + Jmin

. Var(dopt[n]) = p'R™1p

= g(l)—IB* = Bng = BTQO real and scalar
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2.0 Preliminaries

2 Discrete Wiener Filter 2.1 Background
Appendix: Detailed Derivations 2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Example and Exercise

des rodk

synak Uaon] wemy
AN dona dm X [n] 3 @
—
b.345% 0.9458 " e
VI WBB DL distmerion phs Ious G design 0
2ero-yean W e VST 2=top Nrenerfitter e

o = o v b wite
(Meak-vabuek) (s, real volued ) a et estTmale 5din),

> 2 Wea— | 5 Iepresenta
We kave. 07 = 0.27 , 0a=e0, Thyl V., Yl X (Wmm&ﬁm@sxs)

e What kind of process is {x[n]}?
e What is the correlation matrix of the channel output?
o What is the cross-correlation vector?

ows =7 wr =7 Jnin =7
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Another Perspective (in terms of the gradient)

Theorem: If f(z,z*) is a real-valued function of complex vectors z and z*,
then the vector pointing in the direction of the maximum rate of the change of

fis \vz+f(z,2"), which is a vector of the derivative of () w.r.t. each entry in
the vector z*.

Corollary: Stationary points of f(z,z*) are the solutions to \/+f(z,z") = 0.

| a"z | 2Ma | ZMAz
Complex gradient of a
complex function: Vz | & 0 | ATz = (Az)*
v 0 a Az

Using the above table, we have \/,-J = —p* + R7a.

For optimal solution: /,«J = da* J=0

= RTa=p*, or Ra* = p, the Normal Equation. .". ai:=R™ Ip
(Review on matrix & optimization: Hayes 2.3; Haykins(4th) Appendix A,B,C)
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Review: differentiating complex functions and vectors

< Drterenk sblod 4, Need 5 conden e
};weﬁﬁ =2 in ok durekTons
230 Ay o Ay >0

Recoll : (&) ts onalytic (e differetiolable awony where) on t0gionD 1§
13)= Wx gy + L) 1S conimens and- Sakisty Cam)\»\[ ~Rremonn
conditon 2w Vg S _oU

X T N N9y T ox -

Deg Hpy=3=(30= ey ) 4 teo

FH=3%=x-1Y
—=> DOES NOT go:)ﬁSj'\/ Cmu)r\-\f—— Rremoun .
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Review: differentiating complex functions and vectors

w»\»lu.
“M‘ﬂ (8 = (3 WMo 0 3= 0 bulC ML
;;ln‘::z —\fa,bla/TM/Dm{) lex. w%mldss (omy fune. ﬁ.\u—dwm 3¥Frs mt differenttable)

30*;, Ne can ither mmw).?.‘j(x,}) Wit XY mhore g = Xﬂ\/
e trauk & zwkfas m&p vaiahley wAILmMmzaj G 5) ot
Dotk 3 and ¥, %3;——..0 and. _3‘_

Miniwd2ing o reak-uamedotuncs o 3 wd 3™ ( ondotia fanc 5 A
Qs ot beth 3 and _3T) 15 sowemhok eqsier -
“a cP‘ﬁm ])cmxs O b-Q,j"V\U\A\_,b <Setiwgthe derkuntive

of $03.8%) Wrt extery ong™ el ts 3er ondsohve for 3

ed- $3.55)= 13- 3 3 suffcett b 2 SF=d4=0.
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Differentiating complex functions: More details

=x« iy Ty = W) + vy
N . K:t(}f}j) = ﬁ%‘%‘:%«-\l—:%
=3 (5-¥") %=%ﬂ§?

ﬁ%*ﬁ t[%+%%vlﬂ e Bom g S ot

ot 9 > ot -
3 2 e sf
reol—volued Wf)i‘nﬂ- T = ey, S ke csuplexs
DD of v GrediRuC - = 24
b O - (B, et vus[B] T3t o e

2. O ¢ Q)= §=xtiy ‘ .
i S:ai (&TJ—L%”%]: Ll+itd=o0 %ﬂt(%—cawzi(wm) =1

£2.0 f\=¥". . . o
g Lt A M f&M\—Tm o BN 38 e (o) 5 S
sy A%

g 8)= BXE0L Jmoﬁ—}——:;‘ = = A— &y % @g?miﬂ::ﬁ?:?s
R = = ~ —>D
T edonehl. g B ool DADEY ) Lol ey
o Dt daett pist exeyrt 4o g e
(o thos T diferentoney
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Example: solution

O Whar 6 {xtnd} 2
ding = —0:3483 din-J+ U] = Hld =" o a5
X(n) = 0968 x(n-1)t dln] = Ha(3)= ?lo’m—gﬁ

{
B = HB) thid) = Tooges ~ ofsddd

= = -——‘*__L
- 0i§"~0-83 adteas

M»%\Am} is g AR(2) process o
XOn) — ol XTn-1]) = 0.8 XTn-2) = Th(n)
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Example: solution

© The chavnek mxi'P\Af 1S Un]) = xCnl + Valn)
R= E[nmu'mi) = [t“” Fuo ] = R+ R

axa M) Tl
— [ | M‘J . 6l o _ v oS
o5t o ol o8 I\

mhere Dy (0) conbe phtaaned o AR meexwe%uﬁm
0s Samjwww erw«LPUL oKk tha ek nj [

2 —0\\
belo) = (82 Do MYl = g O = o8
¥ = M) COEX [, o
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Example: solution

© Obtointhe poss ovelaion vegks— D _ F_[&a)(

rCny
Mn-\]”
Eldranoy] = E[(XE*\]—— 0.9458 KN -D) (K] + V;m)]
= N0 - 0.948F () = | - o fesB <0
N = |~ 04720 = 0.527I
adlaly
sindlay ELA0 niw1)]) = ) - 0.9488 N(®) = — 6.4488
P = [ 08271
B [—O~4452J
@ OPﬁ\MAL (m?)akb ore
W,= P = [0-“6” J
- —0.7483
J ey = 09484 — [ofas i+ 087161 £ WiNa £ 1) (Wi W)
= Jow= 01879
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Preliminaries

@ In many communication and signal processing applications,
messages are modulated onto a carrier wave. The bandwidth
of message is usually much smaller than the carrier frequency
= i.e., the signal modulated is “narrow-band”.

@ It is convenient to analyze in the baseband form to remove
the effect of the carrier wave by translating signal down in
frequency yet fully preserve the information in the message.

@ The baseband signal so obtained is complex in general.
uln] = u[n] + jug[n]

@ Accordingly, the filters developed for the applications are also
in complex form to preserve the mathematical formulations

and elegant structures of the complex signal in the
applications.
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3 Linear Prediction
Appendix: Detailed Derivations

Part-1l Parametric Signal Modeling
and Linear Prediction Theory
3. Linear Prediction

Electrical & Computer Engineering
University of Maryland, College Park
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Review of Last Section: FIR Wiener Filtering

dln)

w @y = ELlerl™
]MC ern] m J(&)+ [letnd]™]

NE R,Ov = P\wsswﬁ‘
= ecker™

W)= lan x Mt Cot— - v
s Mty s xm/ Xt 5w
PE Eld Q
E{’T al et
T M@ P T 0o e

Ry Mle) (/S D

Py (M=ty T du.( Fayima)

R‘T [/ P—!—

Two perspectives leading to the optimal filter's condition (NE):
@ write J(a) to have a perfect square
Q 8%; = 0 = principle of orthogonality E [e[n]x*[n — k]] = 0,
k=0,..M—1.
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Recap: Principle of Orthogonality

E [e[n]x*[n — k]] = 0 for k =0,..M — 1.

= E[d[n]x*[n — K]] = 32075  ac - E [x[n — £]x*[n — K]]

= rae(k) = 2005  aerx(k — ) = Normal Equation p* = R"a
Jmin = Var(d[n]) — Var(d[n])

where Var(d[r]) = E |d[n]d*[n]| = E [a" x[n]x"[n]a"] = a7 R.a"
bring in N.E. for a = Var(d[n]) = a”p = p"R~1p

May also use the vector form to derive N.E.: set gradient /5+J =0

ENEE630 Lecture Part-2 3/31



. Rec 3.1 Forward Linear Prediction
3 Linear Prediction 32 Backward Li Predicti
Appendix: Detailed Derivations 2 EETSSETE (D (A L
3.3 Whitening Property of Linear Prediction

Forward Linear Prediction

Recall last section: FIR Wiener filter W(z) = ZQ/’:_O:[ axzk

Let ¢, = a) (i.e., cj represents the filter coefficients and helps us to
avoid many conjugates in the normal equation)

Given u[n —1],u[n —2],..., u[n — M], we are interested in
estimating u[n] with a linear predictor:

UL] MLV\—(] um—ﬂ M)

@Lg é;%

This structure is called “tapped delay line”: individual outputs of each delay
are tapped out and diverted into the multipliers of the filter/predictor.

uUL
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Forward Linear Prediction
ond (ALr(] Un-23 UCn-m]
—*E\T 5 .
&b &b

I

o [nlSn-1] = 32454 ciuln — K] = Muln 1]

Sp—1 denotes the M-dimensional space spanned by the samples
uln—1],...,u[n— M], and

Sni]

uUL

el uln —1]

o uln — 2] u[n — 1] is vector form for
c=| . | un-1]= : tap inputs and is x[n] from

. u[n — M] General Wiener
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Forward Prediction Error

@ The forward prediction error
fmln] = uln] — & [n|Sp-1]

e[n] d[n] <+ From general Wiener filter notation

@ The minimum mean-squared prediction error

Py = E [|fu[n][?]

Readings for LP: Haykin 4th Ed. 3.1-3.3
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. Rec 3.1 Forward Linear Prediction
3 Linear Prediction 32 Backward Li Predicti
Appendix: Detailed Derivations 2 EETSSETE (D (A L
3.3 Whitening Property of Linear Prediction

Optimal Weight Vector

To obtain optimal weight vector ¢, apply Wiener filtering theory:

@ Obtain the correlation matrix: .
uin
R=E [u[n— 1]u"[n - 1]] uln—1]
where u[n] =
=E [u[n]u"[n]] (by stationarity)

u[nf)\/IJrl]

@ Obtain the “cross correlation” vector between the tap inputs
and the desired output d[n] = u[n]:

E[uln = 1]u*[n]] =
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Optimal Weight Vector

© Thus the Normal Equation for FLP is
Rc=r
The prediction error is

Py = r(0) — rflc
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. Rec 3.1 Forward Linear Prediction
3 Linear Prediction 32 Backward Li Predicti
Appendix: Detailed Derivations 2 EETSSETE (D (A L
3.3 Whitening Property of Linear Prediction

Relation: N.E. for FLP vs. Yule-Walker eq. for AR

XW) =

A
hon_ -—E A UWAK] +V (n]
o RD Ly g o ilwq K
Vowad

NITTL W phec: K(n] = 2Cnl 4 WM

= e[nl+ § Ce \A[vﬁq

The Normal Equation for FLP is Rc = r

Yule- Mo r(—l} H—Pﬂ } (148} -~ WO

NNW L ; n \ [ : } - [ : :}

& X . No) 0P ~TtP)
Recalh thas O inARprESS Y] = —ﬁXU\'K]MKHVU\B

>R a=- ml)}<> RA0)= (M)}:F—()J

Vi
AR Me (M) Conjuqat

L .
MMy Fm
R euw—c )‘_’( D

no~

—

= N.E. is in the same form as the Yule-Walker equation for AR
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Relation: N.E. for FLP vs. Yule-Walker eq. for AR

If the forward linear prediction is applied to an AR process of
known model order M and optimized in MSE sense, its tap weights
in theory take on the same values as the corresponding parameter
of the AR process.

@ Not surprising: the equation defining the forward prediction and the
difference equation defining the AR process have the same
mathematical form.

@ When u[n] process is not AR, the predictor provides only an
approximation of the process.

= This provide a way to test if u[n] is an AR process (through
examining the whiteness of prediction error e[n]); and if so,
determine its order and AR parameters.

Question: Optimal predictor for {u[n]}=AR(p) when p < M?
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Forward-Prediction-Error Filter

fm[n] = u[n] — cMuln — 1]

am.,o

] f1 k=0 _ .
et ayk = e k=12 L l.e., ap =
k 3Ly am.m

= fuln] = Sy ajy uln — k] = ajy [ U[:[—H]M] }

win] Cn-(] un-23 M)

S

/] M N S o

C\H.o; {
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Augmented Normal Equation for FLP

From the above results:
Rc=r Normal Equation or Wiener-Hopf Equation

Pm = r(0) — rfc prediction error

Put together:

r(0) M 1 | Pu
r Ry —c| | 0
————
Ry+1
Augmented N.E. for FLP
P
RM+13M:[ éw]
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Summary of Forward Linear Prediction

General Wiener Forward LP  Backward LP

Tap input
Desired response
(conj) Weight vector
Estimated sig
Estimation error
Correlation matrix
Cross-corr vector
MMSE
Normal Equation
Augmented N.E.

ENEE630 Lecture Part-2 13/31



3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Backward Linear Prediction

Given u[n], u[n —1],...,u[n — M + 1], we are interested in
estimating u[n — M].

Backward prediction error by[n] = u[n — M] — i [n — M|S;]
e Sp: span {u[n],uln—1],...,uln—M+1]}

Minimize mean-square prediction error Py gLp = E [|bM[n]|2]

E ACh{] U273 Wn-M)

R LS
B

b——r - - Ao

Swt]
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Backward Linear Prediction

Let g denote the optimal weight vector (conjugate) of the BLP:
e, dfn—M =SV giuln+1— k]

To solve for g, we need

@ Correlation matrix R = E [u[n]u"[n]]
@ Crosscorrelation vector

E [ufn]u*n — M]] =

Normal Equation for BLP

REZLB*

The BLP prediction error: Py gp = r(0) — (rf)7g
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Relations between FLP and BLP

3 Linear Prediction
Appendix: Detailed Derivations

Recall the NE for FLP: Rc = r
Rearrange the NE for BLP backward: RTEB =r*

Conjugate = RHEB* =r= RgB* =r
P—?r; rbt [ Moy M T )
4 = NA) T~ . Vo=
« s e ‘

- : {
TN LIt L T
reversely order: =

. optimal predictors of FLP: ¢ = gB”, or equivalently g = c&

By reversing the order & complex conjugating ¢, we obtain g.
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Relations between FLP and BLP

3 Linear Prediction
Appendix: Detailed Derivations

Bx*

Puzp = r(0) — (r8)Tg = r(0) - (:)Tc® = r(0) — "]
~——

real, scalar

This relation is not surprising:

the process is w.s.s. (s.t. r(k) = r*(—k)), and the optimal
prediction error depends only on the process’s statistical property.
s Recall from Wiener filtering: Jyin = 0(2, — BHR*1
(FLP) r"R™'r

(BLP) LB*HR—ILB* — (LHRT**IK)B* — LHR_I

P

I~
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Backward-Prediction-Error Filter
buln] = uln — M] = 0L, gruln+1— K]
Using the a;; notation defined earlier and gy = _37//,/\//+17k:

buln] = 4o am m—kuln — k]

am,o

7]

= ay } where ay =

am,m

‘WT WEn-14J
B N

brulnd
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Augmented Normal Equation for BLP

Ry41
Augmented N.E. for BLP

o 0
RM—HQI% = [ P7\4 :|
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Summary of Backward Linear Prediction

General Wiener Forward LP  Backward LP

Tap input
Desired response
(conj) Weight vector
Estimated sig
Estimation error
Correlation matrix
Cross-corr vector
MMSE
Normal Equation
Augmented N.E.
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Whitening Property of Linear Prediction

(Ref: Haykin 4th Ed. §3.4 (5) Property)

Conceptually: The best predictor tries to explore the predictable
traces from a set of (past) given values onto the future value,
leaving only the unforeseeable parts as the prediction error.

Also recall the principle of orthogonality: the prediction error is
statistically uncorrelated with the samples used in the prediction.

As we increase the order of the prediction-error filter,
the correlation between its adjacent outputs is reduced.
If the order is high enough, the output errors become
approximately a white process (i.e., be "whitened").
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Analysis and Synthesis

From forward prediction results on the {u[n]} process:

uln] + ajyuln — 1] + ...+ ay yuln — M] = fy[n]  Analysis
o[n] = —apyyuln — 1] — ... — ay puln — M] + v[n]  Synthesis

Here v[n] may be quantized version of fu[n], or regenerated from white noise

If {u[n]} sequence have high correlation among adjacent samples,
then fy[n] will have a much smaller dynamic range than u[n].
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Compression tool #3: Predictive Coding

Recall two compression tools from Part-1:
(1) lossless: decimate a bandlimited signal; (2) lossy: quantization.

Tool #3: Linear Prediction. we can first figure out the best
predictor for a chunk of approximately stationary samples,
encode the first sample, then do prediction and encode the
prediction residues (as well as the prediction parameters).

The structures of analysis and synthesis of linear prediction form a
matched pair.

This is the basic principle behind Linear Prediction Coding (LPC)
for transmission and reconstruction of digital speech signals.
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3 Linear Prediction 3.1 Forward Linear Prediction
Appendix: Detailed Derivations 3.2 Backward Linear Prediction
PP : 3.3 Whitening Property of Linear Prediction

Linear Prediction: Analysis

uln] + a",;,,vlu[n —1]+... + aTVI,Mu[n — M] = fy[n]

Kio=t

If {fpm[n]} is white (i.e., the correlation among {u[n],u[n —1],...}
values have been completely explored), then the process {u[n]} can
be statistically characterized by a,, vector, plus the mean and
variance of fy[n].
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3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

Linear Prediction: Synthesis

o[n] = —aj, yuln — 1] — ... — ay, yuln — M] + v[n]

vin] ucny
R

If {v[n]} is a white noise process,

: X the synthesis output {u[n]} using

linear prediction is an AR process

: with parameters {a .
@é_/@ P {am .}

ENEE630 Lecture Part-2 25/31



3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

3 Linear Prediction
Appendix: Detailed Derivations

LPC Encoding of Speech Signals

@ Partition speech signal into frames s.t. within a frame it is
approximately stationary

@ Analyze a frame to obtain a compact representation of the
linear prediction parameters, and some parameters
characterizing the prediction residue fy[n]

(if more b.w. is available and higher quality is desirable, we may

also include some coarse representation of fy;[n] by quantization)

@ This gives much more compact representation than simple
digitization (PCM coding): e.g., 64kbps — 2.4k-4.8kbps

@ A decoder will use the synthesis structure to reconstruct to
speech signal, with a suitable driving sequence (periodic
impulse train for voiced sound; white noise for fricative sound)
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3 Linear Prediction
Appendix: Detailed Derivations

Review: Recursive Relation of Correlation Matrix

Moy (MO == - - f My .
Mtl = M-y — {LMFH J — [ RM (EB) }
-~ ¢ L R—M (EB)T ND)

v

M| Meuoy

where Mo {F\‘U) } = [F(") N N2 “{:F‘_W)J
) M) M
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3 Linear Prediction
Appendix: Detailed Derivations

Summary: General Wiener vs. FLP

General Wiener Forward LP Backward LP
Tap input x[n] u[n —1]
Desired response | d[n] u[n]
(conj) Weight vector ‘ c=a" c
Estimated sig ‘ d[n] d[n] = cMuln —1]
Estimation error ‘ e[n] fm[n]
Correlation matrix ‘ Ry Ry
Cross-corr vector | P r
MMSE \ Imin P
Normal Equation ‘ Rc=p Rc=r
Augmented N.E. Rvtiay, = { F:)M }
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3 Linear Prediction
Appendix: Detailed Derivations

Summary: General Wiener vs. FLP vs. BLP

General Forward Backward
Wiener LP LP
Tap input x[n] u[n—1] u[n]
Desired response |  d[n] uln] uln — M|
(conj) Weight vector ‘ c=a" c g
Estimated sig | d[n] d[n] = cMu[n—1] dln) = g"uln]
Estimation error | e[n] fm[n] b [n]
Correlation matrix ‘ Rum R Rum
Cross-corr vector ‘ P r e
MMSE | Jmin P Pu
Normal Equation ‘ Rc=p Rc=r Rg = LB*

Augmented N.E.
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3 Linear Prediction
Appendix: Detailed Derivations

Matrix Inversion Lemma for Homework

(h+BDY = A7 — AR DA RY DA
I+ UM AT

H
Pyt _ ,:DL
(I-‘_J—A-") -~ I l“'l_}H,lé

gpecal cosr.  (A+H ]{“ y = A
BT D
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4 Levinson-Durbin Recursion
Appendix: More Details

Parametric Signal Modeling and
Linear Prediction Theory
4. The Levinson-Durbin Recursion

Electrical & Computer Engineering
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Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by
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(4) Reflection Coefficients 'm; (5) Am
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4 Levinson-Durbin Recursion
Appendix: More Details

Complexity in Solving Linear Prediction

(Refs: Hayes §5.2; Haykin 4th Ed. §3.3)
Recall Augmented Normal Equation for linear prediction:

FLP Ru12y = [ F;M} BLP RMHaABj:[ g }

As Rp4+1 is usually non-singular, ap, may be obtained by inverting
Rp+1, or Gaussian elimination for solving equation array:

= Computational complexity O(M3).
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(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients 'm; (5) Am
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

4 Levinson-Durbin Recursion
Appendix: More Details

Motivation for More Efficient Structure

Complexity in solving a general linear equation array:
@ Method-1: invert the matrix, e.g. compute determinant of Rp;41
matrix and the adjacency matrices
= matrix inversion has O(M3) complexity

@ Method-2: use Gaussian elimination
= approximately M3/3 multiplication and division

By exploring the structure in the matrix and vectors in LP,
Levison-Durbin recursion can reduce complexity to O(M?)

@ M steps of order recursion, each step has a linear complexity w.r.t.
intermediate order

@ Memory use: Gaussian elimination O(M?) for the matrix, vs.
Levinson-Durbin O(M) for the autocorrelation vector and model
parameter vector.
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(4) Reflection Coefficients 'm; (5) Am
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

4 Levinson-Durbin Recursion
Appendix: More Details

Levinson-Durbin recursion

The Levinson-Durbin recursion is an order-recursion to efficiently
solve the Augmented N.E.

M steps of order recursion, each step has a linear complexity
w.r.t. intermediate order

The recursion can be stated in two ways:

© Forward prediction point of view

@ Backward prediction point of view
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(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients [m; (5) A
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

4 Levinson-Durbin Recursion
Appendix: More Details

Two Points of View of LD Recursion

Denote a,, € Cm+DX1 35 the tap weight vector of a forward-prediction-error
filter of order m =0, ..., M.

am-10=1, am-1.m 20, amm =m (a constant “reflection coefficient”)

Forward prediction point of view

am,k — amfl,k + rma:;—l,m—k' k = 07 ]., ceey m

In vector form: a,, = [ 2"6_1 ] +Tm [ Bq* ] (€23

m-1

Backward prediction point of view

|

* % * % _

mm—k — am—l,m—k + rmam—lyk’ k=01,....m

In vector form: a5 = [ B* ] + rm|: 0 }
Im—1

(can be obtained by reordering and conjugating (sx))
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(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients [m; (5) A
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

4 Levinson-Durbin Recursion
Appendix: More Details

Recall: Forward and Backward Prediction Errors

(FLP)Y (BLP)
Ugn3 T- T T
WCn-1) Y:\ fre Jj 2 ﬂ—_\ e U balr)
Win2) 1 ] bstnd
M[V\'ﬂ | *
b 0, = K‘&t‘\t\
o fmln] = uln] — @[n] = a7 uln]
~~
(m+1)x1

o by[n] = u[n— m] — &[n— m] = a5 " u[n]

ENEE630 Lecture Part-2 6/20



4 Levinson-Durbin Recursion (1) Motivation; (2) The Recursion; (3) Rationale
Al Mo Dees (4) Reflection Coefficients [m; (5) A
: (6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

(3) Rationale of the Recursion

Left multiply both sides of (x%) by Rp,41:

LHS: Rypy1a, = [ OP'" } (by augmented N.E.)

. am_1 _ R LE,* Am—1
oo ][5
Pm
m Zm-—1 Amfl
) 0 [ r) H 0
ws @ Roa | 2 |= [P R, [, ]
|: LHagil :| %TT)*I
B Rmé,‘?,*,l o /3::11
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4 Levinson-Durbin Recursion
Appendix: More Details

Computing [,

Put together LHS and RHS: for the order update recursion (kx) to

hold, we should have

P Pm-1 Tnfl
|: Om :| = mel + rm mel
-m Amfl mel
N Pmn=Pm_1+TmnlA}_,
0= Am—1 + rum—l
=
amm = [m= _,%:::11

Pm = Pm-1 (1 - ’rm‘z)

Caution: not to confuse P,, and I',;,!
ENEE630 Lecture Part-2
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(4) Reflection Coefficients [m; (5) Am
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

4 Levinson-Durbin Recursion
Appendix: More Details

(4) Reflection Coefficients I,

To ensure the prediction MSE P, > 0 and P, non-increasing
when we increase the order of the predictor (i.e., 0 < Py, < Pp—1),
we require |I'm]2 <1 for Vm > 0.

Let Py = r(0) as the initial estimation error has power equal to the
signal power (i.e., no regression is applied), we have

Pu=Po-TIp_1(1—m?)

Question: Under what situation I',,, = 07
i.e., increasing order won't reduce error.

Consider a process with Markovian-like property in 2nd order statistic
sense (e.g. AR process) s.t. info of further past is contained in k recent
samples
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(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients [m; (5) Am
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

4 Levinson-Durbin Recursion
Appendix: More Details

(5) About A,

Cross-correlation of BLP error and FLP error : can be shown as
Ap1 =E [bpn1[n—1]f_[n]]

(Derive from the definition Am_1 £ rB73

11

and use definitions of

bm—1[n — 1], f5_1[n] and orthogonality principle.)
Thus the reflection coefficient can be written as

P Ap _ E [bm—1[n — 1]£%_4[n]]
" P E [[fm-1[n]?]

Note: for the Oth order predictor, use mean value (zero) as estimate, s.t.
foln] = u[n] = bo[n],

- Bo = E [boln — 1]f; []] = E [ufn — 1u*[n]] = r(~1) = r(1)
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4 Levinson-Durbin Recursion g
Appendix: More Details (6

Preview: Relations of w.s.s and LP Parameters

For w.s.s. process {u[n]}:

WOY m2) oo u(M]
T st
Ao comrelodion uj— have otk vatwes £ ()
JuAAT o) P} == - S

&) b1y
(6 1) x Linear prediction
fef lectiom.

‘ (b
Loeff dreon T, (LY — %au,f}
(

ENEE630 Lecture Part-2
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) Motivation; (2) The Recursion; (3) Rationale

. 3 q 1
4 Levinson-Durbin Recursion ( ; -

- - (4) Reflection Coefficients 'm; (5) Am
Reremebs Mee DEEls (6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

(6) Computing a,, and Py by Forward Recursion

Case-1 : If we know the autocorrelation function r(+):
Po=reed

O Ad.=1r(D
( nder reoursitn)

I M=ty - M
Pa= — o=t
wm— PM'— -
PERNY . FWWPWT’*M”—M

[ Omke= Om-, g+ p &M_( m—K

(y\skere, Q- 06=1; Qwt,m=10)
Aw = rwﬂ Am,
Pan= Pu (1= [Pl

o # of iterations = an‘le m= w comp. complexity is O(M?)

o r(k) can be estimated from time average of one realization of {u[n]}
PKk) = g SN, ulnlut[n— k], k=0,1,...,M
(recall correlation ergodicity)
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(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients ['m; (5) Am
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

4 Levinson-Durbin Recursion
Appendix: More Details

(6) Computing a,, and Py by Forward Recursion

Case-2 : If we know 1, I'a, ..., Ty and Py = r(0),
we can carry out the recursion for m=1,2,... M:

am,k = am—]_’,l( + rma;_17m_k, k - 1, )
P = Pm-1 (1~ |Tmf?)

ENEE630 Lecture Part-2 13/20



. " A (1) Motivation; (2) The Recursion; (3) Rationale
& Le\/AInSO:;g:rb’{;IIOEE%JEYtS;?IZ (4) Reflection Coefficients 'm; (5) Am
PP : (6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

(7) Inverse Form of Levinson-Durbin Recursion

Given the tap-weights ay,, find the reflection coefficients 1,5, ..., [m:
FP) amkx = am—1.k + ma® k=0,....,m
Reca”: ( ) ’:,k m ];k m m—l*,m:k7 ’ ’
( P) am,m—k = am—l,m—k + rmam—l,k’ dm,m = rm
Multiply (BP) by I, and subtract from (FP):
am,k*rma*’ s am,kfam,ma*’ K
amfl,k = 1_“—mr|y12m - 1_|am mTQm ; k= 0, ..., M
=Tm=amm m-1=am-1,m-1,-- - i.e., Fromay =a, =In

iterate with m=M -1, M -2, ... to lower order

ford 17 = = = 4w ety T T T fuen
- « N | T T H
] *=
o) Lt - i3 !
. bl (L _ bhm Bt o bautnd
see §5 Lattice structure: e I
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(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients 'm; (5) Am
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

4 Levinson-Durbin Recursion
Appendix: More Details

(8) Autocorrelation Function & Reflection Coefficients

The 2nd-order statistics of a stationary time series can be
represented in terms of autocorrelation function r(k), or
equivalently the power spectral density by taking DTFT.

Another way is to use r(0),I1,12,...,[p.

To find the relation between them, recall:
M-1 A
DAmo12rBTa, =3 " ap_1kr(—m+k)and [, = — P

= [ Pm1 = ZT:_ol am—1kr(k — m), where a,_10=1.
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) Motivation; (2) The Recursion; (3) Rationale
) Reflection Coefficients I'm; (5) Ap

) forward recursion; (7) inverse recursion; (8) 2nd-order stat

4 Levinson-Durbin Recursion gi
Appendix: More Details (6

(8) Autocorrelation Function & Reflection Coefficients

Q r(m)=r"(-m)=-T}P — >k 1am 1k (m—k)
Given r(0),l1,T2,...,Ty, can get a,, using Levinson-Durbin
recursion s.t. r(1),...,r(M) can be generated recursively.

@ Recall if r(0),...,r(M) are given, we can get a,,
So I'1,...,m can be obtained recursively: Iy, = am.m

@ These facts imply that the reflection coefficients {I'x} can
uniquely represent the 2nd-order statistics of a w.s.s. process.
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q " A (1) Motivation; (2) The Recursion; (3) Rationale
& Le\gnso:r;g)i:rb’:;l]oieg;;?lz (4) Reflection Coefficients ['m; (5) Am
PP : (6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

Summary

Statistical representation of w.s.s. process

Auto conrelodlon lj’ hawealkvalwas g (-
JuAAT $h ) o} == = p.s-dh.

feflectm // \\* o Mmm

eoeff- v, (LT ——— %eu. l}

(FLP)Y (BLP)
ugn T- T
won-1) Yj 3o jhm fj e ] baT)
Wn-2] 1 b3tn]
W Ch-3)

ENEE630 Lecture Part-2 17 /20






4 Levinson-Durbin Recursion
Appendix: More Details

Example of Forward Recursion Case-2

e.g .

(eae2). Eiver P P, T3 and PG ,j%krk_{)\;(mo\ Ps Q'j.
o Pwﬁﬁm—wﬁ\wﬂ‘w 3.

@ P = (D
O w=t: Mo=1; Qu=[: (rJszior 12( :DPDP(L:[PIM
W= 2 . =1 0oy =0+ L, = [+ a1

© ot e e
Pr= P lI- IR e ey

@ m=3 Qs,o=1; R3n= {L,wﬂ&&fﬂn‘&ﬁtpg-pf
Oye= Kozl 0, = Par 3P+ PR
3,3 = 17
Ps= Pall=1R:[)
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4 Levinson-Durbin Recursion
Appendix: More Details

Proof for A,,_1 Property

Pl InHnug -
A= B By = [P, o Fen o Orpe[ 5 |

, )
= E[UWDMULIY] Buey
ELwte] uB,0n1) Gm ) Or) = E[aH V1)

= £ (U (wln105) ] = (ELwn @ Tma))”
= EU,C"LWJ Buas [’,hv\]J ® K] = [:E:i]]
= PRSI et
€ w " j @ buw [n] = Sy;oam»\,u—\-ml’(['hvkk‘]
e = = B )
S0l = & ol v ® huat] L
= w«]+$‘; By KT U0 kDT §
Roykiws 4% Ed. (Pis2)
2+ Portial comelattore (PARCORS) Coeff betmoesf iy, [+ wndbuc [r-1]. Re cod
w2 Elbu IS 4] JImes w1 el )= ELbwel "] =Po
(ELbun U0l EL I 0 1) Puit
(see HW#T7)
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5 Lattice Predictor
Appendix: Detailed Derivations

Parametric Signal Modeling and
Linear Prediction Theory
5. Lattice Predictor

Electrical & Computer Engineering
University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by
Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by
Prof. Min Wu and Mr. Wei-Hong Chuang.

Contact: minwu@umd.edu. Updated: November 15, 2011.
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5.1 Basic Lattice Structure
5 Lattice Predictor 5.2 Correlation Properties
Appendix: Detailed Derivations 5.3 Joint Process Estimator
5.4 Inverse Filtering

Introduction

Recall: a forward or backward prediction-error filter can each be
realized using a separate tapped-delay-line structure.

Lattice structure discussed in this section provides a powerful way
to combine the FLP and BLP operations into a single structure.
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5.1 Basic Lattice Structure
5 Lattice Predictor 5.2 Correlation Properties
Appendix: Detailed Derivations 5.3 Joint Process Estimator
5.4 Inverse Filtering

Order Update for Prediction Errors

(Readings: Haykin §3.8)

Review:

© signal vector u,,,[n] = [ Up[n] ] _ [ u[m] ]

un—m] | = | upn—1]

@ Levinson-Durbin recursion:

a, = [ Q"Z)_l ] + T [ BQ ] (forward)

m-1

B * Im-1
= { £ } + I [ 0 } (backward)
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5.1 Basic Lattice Structure
5 Lattice Predictor 5.2 Correlation Properties
Appendix: Detailed Derivations 5.3 Joint Process Estimator
5.4 Inverse Filtering

Recursive Relations for f,,[n] and b,,[n]
fmln] = aftm 1 [n]; bmln] = 5T 4[]

o FLP:
b= [atio] [ gy |+ [0t ] [ a7y |

fm[n] = fm—1[n] + T bm—1[n — 1]

Q@ BLP:
ot = [0:87] [, 2 ] [snai0] [ 2l |

bm[n] = bm—1[n — 1] + T mfm—1[n]
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5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

5 Lattice Predictor
Appendix: Detailed Derivations

Basic Lattice Structure

[ 15’:7[[71]] ] - [ rl,,, rfn ] [ bmf:[},[z]l] }, m=1,2,...,M
Signal Flow Graph (SFG)

Fwa (1) :

buas T _:__,D P’“

-——— uo——

‘.——-——
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5.1 Basic Lattice Structure
5 Lattice Predictor 5.2 Correlation Properties
Appendix: Detailed Derivations 5.3 Joint Process Estimator
5.4 Inverse Filtering

Modular Structure

Recall fy[n] = bo[n] = u[n], thus

Fory 1= = = = S j;;in 1 T
T, ¢
| * {
N5 —_"TB T = H
boTn) S by Bt U:-] -:‘ bralnd

fo— = = = =

To increase the order, we simply add more stages and reuse the
earlier computations.

Using a tapped delay line implementation, we need M separate
filters to generate by[n], ba[n], ..., bm[n].

In contrast, a single lattice structure can generate by[n], ..., by[n]
as well as fi[n], ..., fy[n] at the same time.
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5.1 Basic Lattice Structure
5 Lattice Predictor 5.2 Correlation Properties
Appendix: Detailed Derivations 5.3 Joint Process Estimator
5.4 Inverse Filtering

Correlation Properties

Given Predict
(FLP) {u[n=1],...,uln— M]} = uln]
(BLP) {u[n],uln—1],...,uln—M+1]} = uln — M|

1. Principle of Orthogonality
i.e., conceptually

E[fuln]u*[n—k]] =0 (1< k <m) fmln] L u,[n—1]
E [bm[n]u*[n—k]]=0(0< k< m—1) bm[n] L u,,[n]

2. E[fm[n]u*[n]] = E [bm[n]u*[n — m]] = Pn,

Proof :
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5.1 Basic Lattice Structure
5 Lattice Predictor 5.2 Correlation Properties
Appendix: Detailed Derivations 5.3 Joint Process Estimator
5.4 Inverse Filtering

Correlation Properties

3. Correlations of error signals across orders:

Pn i=m

(BLP) E [bm[n]b;[n]] = {0 i<m ie., bm[n] L bin]

(FLP) E [fm[n]f*[n]] = Pm for i < m
Proof :

Remark : The generation of {bo[n], b1[n],...,} is like a
Gram-Schmidt orthogonalization process on {u[n],u[n—1],..., }.

As a result, {bj[n]}i=0,1,... is a new, uncorrelated representation of
{u[n]} containing exactly the same information.

ENEE630 Lecture Part-2
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5.1 Basic Lattice Structure
5 Lattice Predictor 5.2 Correlation Properties
Appendix: Detailed Derivations 5.3 Joint Process Estimator
5.4 Inverse Filtering

Correlation Properties

4. Correlations of error signals across orders and time:
E [fm[n]f*[n—]] = E[fn[n+ 0 [n]] =0 (1 <l <m—i,i<m)
E [bm[n]bf[n — €] = E[bm[n +{]bi[n]] =0(0<{<m—i—1,i<m)
Proof :
5. Correlations of error signals across orders and time:
. P i=m
E [fmn + mlf[n +i]] = { "
0 I <
E[bm[n+ m]bf[n+i]]=Pn i<m

Proof :
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6. Cross-correlations of FLP and BLP error signals:

Pm i<m
0 i>m

E [fon[n] b7 [n]] = {

Proof : @EEiiD)



5.1 Basic Lattice Structure
5 Lattice Predictor 5.2 Correlation Properties
Appendix: Detailed Derivations 5.3 Joint Process Estimator
5.4 Inverse Filtering

Joint Process Estimator: Motivation

(Readings: Haykin §3.10; Hayes §7.2.4, §9.2.8)

In (general) Wiener filtering theory, we use {x[n]} process to
estimate a desired response {d[n]}.

Solving the normal equation may require inverting the correlation
matrix Ry.

We now use the lattice structure to obtain a backward prediction
error process {b;[n]} as an equivalent, uncorrelated representation
of {u[n]} that contains exactly the same information.

We then apply an optimal filter on {b;[n]} to estimate {d[n]}.
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5.1 Basic Lattice Structure
5 Lattice Predictor 5.2 Correlation Properties
Appendix: Detailed Derivations 5.3 Joint Process Estimator
5.4 Inverse Filtering

Joint Process Estimator: Structure

Fun)

by

d [n[Sn] = k"'byy1[n], where k = [ko, ki, ..., kp]"
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5.1 Basic Lattice Structure
5 Lattice Predictor 5.2 Correlation Properties
Appendix: Detailed Derivations 5.3 Joint Process Estimator
5.4 Inverse Filtering

Joint Process Estimator: Result

To determine the optimal weight to minimize MSE of estimation:
@ Denote D as the (M + 1) x (M + 1) correlation matrix of b[n]

D = E [b[n]b"[n]] = diag(Po, P1,. .., Pm)

{bi[n]} ¥, are uncorrelated

@ Let s be the crosscorrelation vector

s2[so,....sm...]" =E[b[n]d*[n]]

© The normal equation for the optimal weight vector is:

ie, k=P ls, i=0,....,M
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5.1 Basic Lattice Structure
5 Lattice Predictor 5.2 Correlation Properties
Appendix: Detailed Derivations 5.3 Joint Process Estimator
5.4 Inverse Filtering

Joint Process Estimator: Summary

The name “joint process estimation” refers to the system’s
structure that performs two optimal estimation jointly:

@ One is a lattice predictor (characterized by I'1,..., )
transforming a sequence of correlated samples u[n],
uln—1],...,u[n — M] into a sequence of uncorrelated

samples bo[n], bi[n], ..., bm[n].

@ The other is called a multiple regression filter (characterized
by k), which uses bo[n], ..., bm[n] to produce an estimate of
d[n].
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5.1 Basic Lattice Structure
5 Lattice Predictor 5.2 Correlation Properties
Appendix: Detailed Derivations 5.3 Joint Process Estimator
5.4 Inverse Filtering

Inverse Filtering

The lattice predictor discussed just now can be viewed as an
analyzer, i.e., to represent an (approximately) AR process {u[n]}

using {I'm}.
With some reconfiguration, we can obtain an inverse filter or a

synthesizer, i.e., we can reproduce an AR process by applying
white noise {v[n]} as the input to the filter.
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5.1 Basic Lattice Structure
5 Lattice Predictor 5.2 Correlation Properties
Appendix: Detailed Derivations 5.3 Joint Process Estimator
5.4 Inverse Filtering

A 2-stage Inverse Filtering

Ll ¢ uln
NNV v ®
Wold—~
Baind

uln] = v[n] = Tju[n — 1] = [5(T1u[n — 1] 4+ u[n — 2])
=v[n] = (M +T1M3)uln—1]— T5 uln—2]
5%/_/ ;/
- uln] + 23 yuln — 1] + 33 puln — 2] = v[n]
= {u[n]} is an AR(2) process.
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5.1 Basic Lattice Structure
5 Lattice Predictor 5.2 Correlation Properties
Appendix: Detailed Derivations 5.3 Joint Process Estimator
5.4 Inverse Filtering

Basic Building Block for All-pole Filtering
Y] Kl

o T Xm—1[n] = Xm[n] — T mym—1[n — 1]
j_>§ n, Yl = T 1[0] + ym-1ln — 1]
—— s = Cosinln] + (1 = [ l?)ymaln — 1]

\{\»«EWJ YV«-\ ]

Ym[n] = Tmxm-1[n] + ym-1[n — 1]

L =L T

{Xm[n] = st [] + Tipm-1ln — 1]
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5.1 Basic Lattice Structure
5 Lattice Predictor 5.2 Correlation Properties
Appendix: Detailed Derivations 5.3 Joint Process Estimator
5.4 Inverse Filtering

All-pole Filter via Inverse Filtering

[ Xm|[n] } B [ 1 T ] [ Xm—1[n] }
ymln] | [ Tm 1 Ym-1[n —1]
This gives basically the same relation as the forward lattice module:

P

X m- () (( m, -3 ll— X mCn) :TMD'A
' |}

*
\/ wet L) “%—7@ L —-l‘ y mn) = buanlind

= uln] = —3’2‘71 uln—1] — azzu[n — 2] + v[n] v[n] : white noise
Vﬁ"‘l AT & ihrf"‘l uead
e
Wotas—
batnd ¥ b W] : bl
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5 Lattice Predictor
Appendix: Detailed Derivations

Basic Lattice Structure
fm[n] = @it 1 [0]; bm[n] = BTy 4[n]
Q FLP:
folr] = [ o] [ gty o foreer] [, 100 ]
all qu[n] 4+ Thall ju,[n—1]
fmln] = fm—1[n] + T bm—1[n — 1]
@ BLP:
buln] = | 01287, [umfﬂ 1] } T 2110 { uﬁm_[n}n] }
=gl uy[n — 1]+ Tmaf_yu,[n]

bm[n] = bm_l[n = ]_] aF mem_l[n]
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5 Lattice Predictor
Appendix: Detailed Derivations

Proof of Correlation Property 2

> ElFemI W] = E[bnlx Win-m] = P

Buosf A ————— petalh, RS Oenste T Space. of alk PusstbL
Lo w = j—wU\] + ME“\ SV\—-\,W\J [ near Combinationesf™ UTn-1) | -- - Win-mJ

ondh frln) 1 ’aw Sy im]d
Bt W) = E[fuln) Jm (8] = Py,

The case of buln] e be ghawn s;mmln/ . WCpwm)= bMCw]wLﬁ[vx—lM[ SH,M]
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5 Lattice Predictor
Appendix: Detailed Derivations

Proof of Correlation Property 3

5 (BLP) ELmeﬁLM]:{% t=m
o lewe 1@ buln) L hiTw)

(FLp) E[TMU’Q]LTC’Q]: P o towm

Peb O B o BiEn] deponcts ondy oo
bitw) = z O, ik WK EMLM??"' uen-ta}

L ¥ ¥
E[ bminl b T — )i_ 0 1 E[bulrd Uint]]

For (<m by propecty-1, E(bul*) \@Hﬁ]]:o Nkt = g
s, Elbwtrlbd )] =10
Fom i=m, E(bmom bk (V] = Pw.

The comelafion 1M canbe obtained ba/ Cﬂ&“ﬂﬂ’“\”‘
Hism > E[bula bia) = [ ELH b1 ]* = o
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5 Lattice Predictor
Appendix: Detailed Derivations

Proof of Correlation Property 3 (cont'd)

O FLP emwe . |
C x>
Fim = > Qe WK

+ L >
ECfurfi ) = ECfwl K] -+ 2 B[l )]

e
=P by Prapasty-2 oMU =o for fem
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5 Lattice Predictor
Appendix: Detailed Derivations

Proof of Correlation Property 4

Pt fuindi e $im= 3 o uoee
{ *
= > e Elwed winp)
K=o ————
e £0+) tewis 2o if | < ltksm
oK=L ‘l‘j ¢ M-i, we have § ¢ m-K
& WWNNMMKTSDI PR [SQ‘{'K FE%WF?—S IS,Q,
o M-C 2| = mM>L
Thms E:I_j\mf_m]j f‘*LV\—L—Jj -0 j«r (\<L$ m-{ .

—The c_mjuv bwin) com be shown sikaMly .
bitsd = 3= O, i UInK]
K=o { ¥ x
E [ braln) bL*U\»U] = %a;,pp E[bwDA]\AU\—(QﬂQ}]
= -
=0 if o< Lekg e
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5 Lattice Predictor
Appendix: Detailed Derivations

Proof of Correlation Property 5

Pt B[ Fwlmmdf T D] = B [ fulnend £ m- () ]
j‘»«w\. PM?U“+\{_4' s =0 1 {ewm

ELbwnemd b X t) ] = £ [ Dualmeskd by (em—(m-1)) ]
Ne can't d;recjrlsf opply propety- 4 os ?tisj‘m‘ Lem-i-l

Ler W=nt, f=wm-(>0

E-Lbnin) b 163 — 3 O ELbRIUDIU00]]

3 e EL bW W (060]] + ELbw I WTH-w0]

—0 - —_— <
K= o 05 heore ,__PM—IWW\PHP?F\"{‘Z
_ ‘PM o < Jtke M
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5 Lattice Predictor
Appendix: Detailed Derivations

Proof of Correlation Property 6

E—%‘; 2 R bitw) = Sz Ot U vk
(R N “e
: C

Elfmon b0 ]) = E[fmin) 3 A 1]
= oui E{fue el Ki 0 B en]
A - e
* =o {sme
= Pm I
fmm—waﬁjqz.
G S~ >m. Jitm = 3:“__ e W]
E[jMLM ‘)Q,*CM} = E[ %M;T, &::,IUACV\‘K] b{*[M]
x
= 3 o Eunt1bFM) = o
=0 for {>m i
by prrUplL s O1bhg onalivy
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5 Lattice Predictor
Appendix: Detailed Derivations

Lattice Filter Structure: All-pass

The loghice—fister shuctwe - <\{zq— \/Mo\jv\ogmmgmk_, >
343

G =1
—The cascaded_ [atkite shuckhure-
/jm\ ok~ Po,ss—ﬁﬁ%s
B A N
Ler Gw) = SIES) = 3 Gm &)= (= Ko ol 5
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5 Lattice Predictor
Appendix: Detailed Derivations

Lattice Filter Structure: All-pass (cont'd)

s T GmlE) s o W order tansak, stable-, oIk pass o

]‘wMJh
Tt oo be tuplemesded Y \adktee  nhere | Kul < | ande
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5 Lattice Predictor
Appendix: Detailed Derivations

Lattice Filter Structure: All-pass (cont'd)
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