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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Outline of Section 1

• Basic Properties and Characterization

1st and 2nd moment function; ergodicity

correlation matrix; power-spectrum density

• The Rational Transfer Function Model

ARMA, AR, MA processes

Wold Decomposition Theorem

ARMA, AR, and MA models and properties

asymptotic stationarity of AR process

Readings for §1.1: Haykin 4th Ed. 1.1-1.3, 1.12, 1.14;

see also Hayes 3.3, 3.4, and background reviews 2.2, 2.3, 3.2
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Stochastic Processes

To describe the time evolution of a statistical phenomenon
according to probabilistic laws.

Example random processes: speech signals, image, noise,

temperature and other spatial/temporal measurements, etc.

Discrete-time Stochastic Process {u[n]}
Focus on the stochastic process that is defined / observed at
discrete and uniformly spaced instants of time

View it as an ordered sequence of random variables that are
related in some statistical way:
{. . . u[n −M], . . . , u[n], u[n + 1], . . .}

A random process is not just a single function of time; it may
have an infinite number of different realizations
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Parametric Signal Modeling

A general way to completely characterize a random process is by
joint probability density functions for all possible subsets of the
r.v. in it:

Probability of {u[n1], u[n2], . . . , u[nk ]}

Question: How to use only a few parameters to describe a
process?

Determine a model and then the model parameters

⇒ This part of the course studies the signal modeling
(including models, applicable conditions, how to determine the
parameters, etc)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

(1) Partial Characterization by 1st and 2nd moments

It is often difficult to determine and efficiently describe the
joint p.d.f. for a general random process.

As a compromise, we consider partial characterization of the
process by specifying its 1st and 2nd moments.

Consider a stochastic time series {u[n]}, where u[n], u[n − 1], . . .
may be complex valued. We define the following functions:

mean-value function: m[n] = E [u[n]] , n ∈ Z
autocorrelation function: r(n, n − k) = E [u[n]u∗[n − k]]

autocovariance function:
c(n, n − k) = E [(u[n]−m[n])(u[n − k]−m[n − k])∗]

Without loss of generality, we often consider zero-men random process
E [u[n]] = 0 ∀n, since we can always subtract the mean in preprocessing.

Now the autocorrelation and autocovariance functions become identical.

ENEE630 Lecture Part-2 6 / 40



1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Wide-Sense Stationary (w.s.s.)

Wide-Sense Stationarity

If ∀n, m[n] = m and r(n, n − k) = r(k) (or c(n, n − k) = c(k)),
then the sequence u[n] is said to be wide-sense stationary (w.s.s.),
or also called stationary to the second order.

The strict stationarity requires the entire statistical property
(characterized by joint probability density or mass function) to
be invariant to time shifts.

The partial characterization using 1st and 2nd moments offers
two important advantages:

1 reflect practical measurements;

2 well suited for linear operations of random processes
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

(2) Ensemble Average vs. Time Average

Statistical expectation E(·) as an ensemble average: take
average across (different realizations of) the process

Time-average: take average along the process.

This is what we can rather easily measure from one realization
of the random process.

Question: Are these two average the same?

Answer: No in general. (Examples/discussions from ENEE620.)

Consider two special cases of correlations between signal samples:

1 u[n], u[n − 1], · · · i.i.d.

2 u[n] = u[n − 1] = · · · (i.e. all samples are exact copies)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Mean Ergodicity

For a w.s.s. process, we may use the time average

m̂(N) = 1
N

∑N−1
n=0 u[n]

to estimate the mean m.

• m̂(N) is an unbiased estimator of the mean of the process.

∵ E [m̂(N)] = m ∀N.

• Question: How much does m̂(N) from one observation deviate from

the true mean?

Mean Ergodic

A w.s.s. process {u[n]} is mean ergodic in the mean square error
sense if limN→∞ E

[
|m − m̂(N)|2

]
= 0
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Mean Ergodicity

A w.s.s. process {u[n]} is mean ergodic in the mean square error

sense if limN→∞ E
[
|m − m̂(N)|2

]
= 0

Question: under what condition will this be satisfied?
(Details)

⇒ (nece.& suff.) limN→∞
1
N

∑N−1
`=−N+1(1− |`|N )c(`) = 0

Mean ergodicity suggests that c(`) is asymptotically decaying s.t.
{u[n]} is asymptotically uncorrelated.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Correlation Ergodicity

Similarly, let the autocorrelation estimator be

r̂(k,N) =
1

N

N−1∑
n=0

u[n]u∗[n − k]

The w.s.s. process {u[n]} is said to be correlation ergodic in the
MSE sense if the mean squared difference between r(k) and
r̂(k ,N) approaches zero as N →∞.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

(3) Correlation Matrix

Given an observation vector u[n] of a w.s.s. process, the
correlation matrix R is defined as R , E

[
u[n]uH [n]

]
where H denotes Hermitian transposition (i.e., conjugate transpose).

u[n] ,


u[n]
u[n − 1]
...
u[n −M + 1]

,

Each entry in R is

[R]i,j = E [u[n − i ]u∗[n − j ]] = r(j − i)

(0 ≤ i , j ≤ M − 1)

Thus R =


r(0) r(1) · · · · · · r(M − 1)

r(−1) r(0) r(1) · · ·
...

...
. . .

. . .
...

r(−M + 2) · · · · · · r(0) r(1)
r(−M + 1) · · · · · · · · · r(0)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Properties of R

1 R is Hermitian, i.e., RH = R

Proof (Details)

r(k) , E [u[n]u∗[n − k]] = (E [u[n − k]u∗[n]])∗ = [r(−k)]∗

Bring into the above R, we have RH = R

2 R is Toeplitz.

A matrix is said to be Toeplitz if all elements in the main diagonal are

identical, and the elements in any other diagonal parallel to the main

diagonal are identical.

R Toeplitz ⇔ the w.s.s. property.

ENEE630 Lecture Part-2 13 / 40



1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Properties of R

3 R is non-negative definite , i.e., xHRx ≥ 0, ∀x
Proof (Details)

Recall R , E
[
u[n]uH [n]

]
. Now given ∀x (deterministic):

xHRx = E
[
xHu[n]uH [n]x

]
= E

(xHu[n])︸ ︷︷ ︸
|x | scalar

(xHu[n])∗

 =

E
[
|xHu[n]|2

]
≥ 0

• eigenvalues of a Hermitian matrix are real.
(similar relation in FT: real in one domain ∼ conjugate symmetric in

the other)

• eigenvalues of a non-negative definite matrix are non-negative.

Proof (Details)

choose x = R’s eigenvector v s.t. Rv = λv ,
vHRv = vHλv = λvHv = λ|v |2 ≥ 0 ⇒ λ ≥ 0
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Properties of R

4 uB [n] ,


u[n −M + 1]
...
u[n − 1]
u[n]

, i.e., reversely ordering u[n],

then the corresponding correlation matrix becomes

E
[
uB [n](uB [n])H

]
=


r(0) r(−1) · · · r(−M + 1)

r(1) r(0)
...

...
. . .

...
r(M − 1) · · · · · · r(0)

 = RT
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Properties of R

5 Recursive relations: correlation matrix for (M + 1)× 1 u[n]:
(Details)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

(4) Example-1: Complex Sinusoidal Signal

x [n] = A exp [j(2πf0n + φ)] where A and f0 are real constant, φ ∼
uniform distribution over [0, 2π) (i.e., random phase)

E [x [n]] =?

E [x [n]x∗[n − k]] =?

Is x [n] is w.s.s.?
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Example-2: Complex Sinusoidal Signal with Noise

Let y [n] = x [n] + w [n] where w [n] is white Gaussian noise
uncorrelated to x [n] , w [n] ∼ N(0, σ2)

Note: for white noise, E [w [n]w∗[n − k]] =

{
σ2 k = 0

0 o.w .

ry (k) = E [y [n]y∗[n − k]] =?

Ry =?

Rank of Correlation Matrices Rx , Rw , Ry =?
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

(5) Power Spectral Density (a.k.a. Power Spectrum)

Power spectral density (p.s.d.) of a w.s.s. process {x [n]}

PX (ω) , DTFT[rx(k)] =
∞∑

k=−∞

rx(k)e−jωk

rx(k) , DTFT−1[PX (ω)] =
1

2π

∫ π

−π
PX (ω)e jωkdω

The p.s.d. provides frequency domain description of the 2nd-order
moment of the process (may also be defined as a function of f : ω = 2πf )

The power spectrum in terms of ZT:

PX (z) = ZT[rx(k)] =
∑∞

k=−∞ rx(k)z−k

Physical meaning of p.s.d.: describes how the signal power of a random
process is distributed as a function of frequency.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Properties of Power Spectral Density

rx(k) is conjugate symmetric: rx(k) = r∗x (−k)

⇔ PX (ω) is real valued: PX (ω) = P∗X (ω); PX (z) = P∗X (1/z∗)

For real-valued random process: rx(k) is real-valued and even
symmetric

⇒ PX (ω) is real and even symmetric, i.e.,

PX (ω) = PX (−ω); PX (z) = P∗X (z∗)

For w.s.s. process, PX (ω) ≥ 0 (nonnegative)

The power of a zero-mean w.s.s. random process is proportional to
the area under the p.s.d. curve over one period 2π,

i.e., E
[
|x [n]|2

]
= rx(0) = 1

2π

∫ 2π

0
PX (ω)dω

Proof: note rx(0) = IDTFT of PX (ω) at k = 0
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

(6) Filtering a Random Process

(Details)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Filtering a Random Process
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Filtering a Random Process

In terms of ZT:
PY (z) = PX (z)H(z)H∗(1/z∗)

⇒ PY (ω) = PX (ω)H(ω)H∗(ω) = PX (ω)|H(ω)|2

When h[n] is real, H∗(z∗) = H(z)

⇒ PY (z) = PX (z)H(z)H(1/z)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Interpretation of p.s.d.

If we choose H(z) to be an ideal bandpass filter with
very narrow bandwidth around any ω0, and measure
the output power:

E
[
|y [n]|2

]
= ry (0) = 1

2π

∫ +π
−π PY (ω)dω

= 1
2π

∫ +π
−π PX (ω)|H(ω)|2dω = 1

2π

∫ ω0+B/2
ω0−B/2 PX (ω) · 1 · dω

.
= 1

2πPX (ω0) · B ≥ 0

∴ PX (ω0)
.

= E
[
|y [n]|2

]
· 2πB , and PX (ω) ≥ 0 ∀ω

i.e., p.s.d. is non-negative, and can be measured via power of {y [n]}.

> PX (ω) can be viewed as a density function describing how the power

in x [n] varies with frequency. The above BPF operation also provides a

way to measure it by BPF.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Summary of §1.1
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Summary: Review of Discrete-Time Random Process

1 An “ensemble” of sequences, where each outcome of the sample
space corresponds to a discrete-time sequence

2 A general and complete way to characterize a random process:
through joint p.d.f.

3 w.s.s process: can be characterized by 1st and 2nd moments
(mean, autocorrelation)

These moments are ensemble averages; E [x [n]],
r(k) = E [x [n]x∗[n − k]]

Time average is easier to estimate (from just 1 observed sequence)

Mean ergodicity and autocorrelation ergodicity:
correlation function should be asymptotically decay, i.e.,
uncorrelated between samples that are far apart.
⇒ the time average over large number of samples converges to
the ensemble average in mean-square sense.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Characterization of w.s.s. Process through Correlation
Matrix and p.s.d.

1 Define a vector on signal samples (note the indexing order):
u[n] = [u(n), u(n − 1), ..., u(n −M + 1)]T

2 Take expectation on the outer product:

R , E
[
u[n]uH [n]

]
=


r(0) r(1) · · · · · · r(M − 1)

r(−1) r(0) r(1) · · ·
...

...
. . .

. . .
...

r(−M + 1) · · · · · · · · · r(0)


3 Correlation function of w.s.s. process is a one-variable

deterministic sequence ⇒ take DTFT(r [k]) to get p.s.d.
We can take DTFT on one sequence from the sample space of random

process; different outcomes of the process will give different DTFT

results; p.s.d. describes the statistical power distribution of the random

process in spectrum domain.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Properties of Correlation Matrix and p.s.d.

4 Properties of correlation matrix:

Toeplitz (by w.s.s.)
Hermitian (by conjugate symmetry of r [k]);
non-negative definite

Note: if we reversely order the sample vector, the corresponding

correlation matrix will be transposed. This is the convention used in

Hayes book (i.e. the sample is ordered from n −M + 1 to n), while

Haykin’s book uses ordering of n, n − 1, . . . to n −M + 1.

5 Properties of p.s.d.:

real-valued (by conjugate symmetry of correlation function);
non-negative (by non-negative definiteness of R matrix)

ENEE630 Lecture Part-2 28 / 40



1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Filtering a Random Process

1 Each specific realization of the random process is just a
discrete-time signal that can be filtered in the way we’ve studied
in undergrad DSP.

2 The ensemble of the filtering output is a random process.
What can we say about the properties of this random process
given the input process and the filter?

3 The results will help us further study such an important class of
random processes that are generated by filtering a noise process
by discrete-time linear filter with rational transfer function. Many
discrete-time random processes encountered in practice can be
well approximated by such a rational transfer function model:
ARMA, AR, MA (see §II.1.2)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Detailed Derivations
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Mean Ergodicity

A w.s.s. process {u[n]} is mean ergodic in the mean square error sense if

limN→∞ E
[
|m − m̂(N)|2

]
= 0

Question: under what condition will this be satisfied?
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Properties of R

R is Hermitian, i.e., RH = R

Proof r(k) , E [u[n]u∗[n − k]] = (E [u[n − k]u∗[n]])∗ = [r(−k)]∗

Bring into the above R, we have RH = R

R is Toeplitz.
A matrix is said to be Toeplitz if all elements in the main diagonal
are identical, and the elements in any other diagonal parallel to the
main diagonal are identical.
R Toeplitz ⇔ the w.s.s. property.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Properties of R

R is non-negative definite , i.e., xHRx ≥ 0, ∀x
Proof
Recall R , E

[
u[n]uH [n]

]
. Now given ∀x (deterministic):

xHRx = E
[
xHu[n]uH [n]x

]
= E

(xHu[n])︸ ︷︷ ︸
|x | scalar

(xHu[n])∗

 =

E
[
|xHu[n]|2

]
≥ 0

eigenvalues of a Hermitian matrix are real.
(similar relation in FT analysis: real in one domain becomes

conjugate symmetric in another)

eigenvalues of a non-negative definite matrix are non-negative.
Proof choose x = R’s eigenvector v s.t. Rv = λv ,
vHRv = vHλv = λvHv = λ|v |2 ≥ 0 ⇒ λ ≥ 0
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Properties of R

Recursive relations: correlation matrix for (M + 1)× 1 u[n]:
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

(4) Example: Complex Sinusoidal Signal

x [n] = A exp [j(2πf0n + φ)] where A and f0 are real constant, φ ∼
uniform distribution over [0, 2π) (i.e., random phase)

We have:
E [x [n]] = 0 ∀n

E [x [n]x∗[n − k]]
= E [A exp [j(2πf0n + φ)] · A exp [−j(2πf0n − 2πf0k + φ)]]
= A2 · exp[j(2πf0k)]

∴ x [n] is zero-mean w.s.s. with rx(k) = A2 exp(j2πf0k).
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Example: Complex Sinusoidal Signal with Noise

Let y [n] = x [n] + w [n] where w [n] is white Gaussian noise
uncorrelated to x [n] , w [n] ∼ N(0, σ2)

Note: for white noise, E [w [n]w∗[n − k]] =

{
σ2 k = 0

0 o.w .

ry (k) = E [y [n]y∗[n − k]]
= E [(x [n] + w [n])(x∗[n − k] + w∗[n − k])]
= rx [k] + rw [k] (∵ E [x [·]w [·]] = 0 uncorrelated and w [·] zero mean)

= A2 exp[j2πf0k] + σ2δ[k]

∴ Ry = Rx + Rw = A2eeH + σ2I, where e =


1

e−j2πf0

e−j4πf0
...

e−j2πf0(M−1)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Rank of Correlation Matrix

Questions:

The rank of Rx = 1
(∵ only one independent row/column, corresponding

to only one frequency component f0 in the signal)

The rank of Rw = M

The rank of Ry = M
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Filtering a Random Process
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Filtering a Random Process
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Filtering a Random Process
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Parametric Signal Modeling and
Linear Prediction Theory

1. Discrete-time Stochastic Processes (2)

Electrical & Computer Engineering
University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by
Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by
Prof. Min Wu and Mr. Wei-Hong Chuang.

Contact: minwu@umd.edu. Updated: October 25, 2011.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

(1) The Rational Transfer Function Model

Many discrete-time random processes encountered in practice can
be well approximated by a rational function model (Yule 1927).

Readings: Haykin 4th Ed. 1.5
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

The Rational Transfer Function Model

Typically u[n] is a noise process, gives rise to randomness of x [n].

The input driving sequence u[n] and the output sequence x [n] are
related by a linear constant-coefficient difference equation

x [n] = −
∑p

k=1 a[k]x [n − k] +
∑q

k=0 b[k]u[n − k]

This is called the autoregressive-moving average (ARMA) model:

autoregressive on previous outputs

moving average on current & previous inputs
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

The Rational Transfer Function Model

The system transfer function

H(z) , X (z)
U(z) =

∑q
k=0 b[k]z

−k∑p
k=0 a[k]z

−k , B(z)
A(z)

To ensure the system’s stationarity, a[k] must be chosen s.t. all
poles are inside the unit circle.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

(2) Power Spectral Density of ARMA Processes

Recall the relation in autocorrelation function and p.s.d. after
filtering:

rx [k] = h[k] ∗ h∗[−k] ∗ ru[k]

Px(z) = H(z)H∗(1/z∗)PU(z)

⇒ Px(ω) = |H(ω)|2PU(ω)

{u[n]} is often chosen as a white noise process with zero mean and

variance σ2, then PARMA(ω) , PX (ω) = σ2|B(ω)
A(ω) |

2,

i.e., the p.s.d. of x [n] is determined by |H(ω)|2.

We often pick a filter with a[0] = b[0] = 1 (normalized gain)

The random process produced as such is called an
ARMA(p, q) process, also often referred to as a pole-zero model.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

(3) MA and AR Processes

MA Process

If in the ARMA model a[k] = 0 ∀k > 0, then

x [n] =
∑q

k=0 b[k]u[n − k]

This is called an MA(q) process with PMA(ω) = σ2|B(ω)|2. It is
also called an all-zero model.

AR Process

If b[k] = 0 ∀k > 0, then

x [n] = −
∑p

k=1 a[k]x [n − k] + u[k]

This is called an AR(p) process with PAR(ω) = σ2

|A(ω)|2 . It is also

called an all-pole model.

H(z) = 1
(1−c1z−1)(1−c2z−1)···(1−cpz−1)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

(4) Power Spectral Density: AR Model

ZT: PX (z) = σ2H(z)H∗(1/z∗) = σ2B(z)B∗(1/z∗)
A(z)A∗(1/z∗)

p.s.d.: PX (ω) = PX (z)|z=e jω = σ2|H(ω)|2 = σ2|B(ω)
A(ω) |

2

AR model: all poles H(z) = 1
(1−c1z−1)(1−c2z−1)···(1−cpz−1)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

Power Spectral Density: MA Model

ZT: PX (z) = σ2H(z)H∗(1/z∗) = σ2B(z)B∗(1/z∗)
A(z)A∗(1/z∗)

p.s.d.: PX (ω) = PX (z)|z=e jω = σ2|H(ω)|2 = σ2|B(ω)
A(ω) |

2

MA model: all zeros
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

(5) Parameter Equations

Motivation:

Want to determine the filter parameters that gives {x [n]} with
desired autocorrelation function?

Or observing {x [n]} and thus the estimated r(k), we want to figure
out what filters generate such a process? (i.e., ARMA modeling)

Readings: Hayes §3.6
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

Parameter Equations: ARMA Model

Recall that the power spectrum for ARMA model

PX (z) = H(z)H∗(1/z∗)σ2

and H(z) has the form of H(z) = B(z)
A(z)

⇒ PX (z)A(z) = H∗(1/z∗)B(z)σ2

⇒
∑p

`=0 a[`]rx [k − `] = σ2
∑q

`=0 b[`]h∗[`− k], ∀k.
(convolution sum)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

Parameter Equations: ARMA Model

For the filter H(z) (that generates the ARMA process) to be
causal, h[k] = 0 for k < 0.
Thus the above equation array becomes

Yule-Walker Equations for ARMA process{
rx [k] = −

∑p
`=1 a[`]rx [k − `] + σ2

∑q−k
`=0 h∗[`]b[`+ k], k = 0, . . . , q

rx [k] = −
∑p

`=1 a[`]rx [k − `], k ≥ q + 1.

The above equations are a set of nonlinear equations
(relate rx [k] to the parameters of the filter)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

Parameter Equations: AR Model

For AR model, b[`] = δ[`]. The parameter equations become

rx [k] = −
∑p

`=1 a[`]rx [k − `] + σ2h∗[−k]

Note:

1 rx [−k] can be determined by rx [−k] = r∗x [k] (∵ w.s.s.)

2 h∗[−k] = 0 for k > 0 by causality, and

h∗[0] = [limz→∞H(z)]∗ =
(
b[0]
a[0]

)∗
= 1

Yule-Walker Equations for AR Process

⇒ rx [k] =

{
−
∑p

`=1 a[`]rx [−`] + σ2 for k = 0

−
∑p

`=1 a[`]rx [k − `] for k ≥ 1

The parameter equations for AR are linear equations in {a[`]}
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

Parameter Equations: AR Model

Yule-Walker Equations in matrix-vector form

i.e., RTa = −r • R: correlation matrix

• r : autocorrelation vector

If R is non-singular, we have a = −(RT )−1r .

We’ll see better algorithm computing a in §2.3.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

Parameter Equations: MA Model

For MA model, a[`] = δ[`], and h[`] = b[`]. The parameter
equations become

rx [k] = δ2
∑q

`=0 b[`]b∗[`− k︸ ︷︷ ︸
,`′

] = σ2
∑q−k

`′=−k b[`′ + k]b∗[`′]

And by causality of h[n] (and b[n]), we have

rx [k] =

{
σ2
∑q−k

`=0 b∗[`]b[`+ k] for k = 0, 1, . . . , q

0 for k ≥ q + 1

This is again a set of non-linear equations in {b[`]}.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

(6) Wold Decomposition Theorem

Recall the earlier example: y [n] = A exp[j2πf0n + φ)] + w [n]
• φ: (initial) random phase • w [n] white noise

Theorem

Any stationary w.s.s. discrete time stochastic process {x [n]} may
be expressed in the form of x [n] = u[n] + s[n], where

1 {u[n]} and {s[n]} are mutually uncorrelated processes, i.e.,
E [u[m]s∗[n]] = 0 ∀m, n

2 {u[n]} is a general random process represented by MA model:
u[n] =

∑∞
k=0 b[k]v [n − k],

∑∞
k=0 |bk |2 <∞, b0 = 1

3 {s[n]} is a predictable process (i.e., can be predicted from its
own pass with zero prediction variance):
s[n] = −

∑∞
k=1 a[k]s[n − k]
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

Corollary of Wold Decomposition Theorem

ARMA(p,q) can be a good general model for stochastic processes:
has a predictable part and a new random part (“innovation
process”).

Corollary (Kolmogorov 1941)

Any ARMA or MA process can be represented by an AR process
(of infinite order).

Similarly, any ARMA or AR process can be represented by an MA
process (of infinite order).
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

Example: Represent ARMA(1,1) by AR(∞) or MA(∞)

E.g., for an ARMA(1, 1), HARMA(z) = 1+b[1]z−1

1+a[1]z−1

1 Use an AR(∞) to represent it:

2 Use an MA(∞) to represent it:
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

(7) Asymptotic Stationarity of AR Process

Example: we initialize the generation of an AR process with
specific status of x [0], x [−1], . . . , x [−p + 1] (e.g., set to zero) and
then start the regression x [1], x [2], . . . ,

x [n] = −
p∑
`=1

a[`]x [n − `] + u[n]

The initial zero states are deterministic and the overall random
process has changing statical behavior, i.e., non-stationary.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

Asymptotic Stationarity of AR Process

If all poles of the filter in the AR model are inside the unit circle,
the temporary nonstationarity of the output process (e.g., due to
the initialization at a particular state) can be gradually forgotten
and the output process becomes asymptotically stationary.

This is because H(z) = 1∑p
k=0 akz

−k =
∑p

k=1
Ak

1−ρkz−1

⇒ h[n] =
∑p′

k=1 Akρ
n
k +

∑p′′

k=1 ck r
n
k cos(ωkn + φk)

p′: # of real poles
p′′: # of complex poles, ρi = rie

±jωi

⇒ p = p′ + 2p′′ for real-valued {ak}.

If all |ρk | < 1, h[n]→ 0 as n→∞.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

Asymptotic Stationarity of AR Process

The above analysis suggests the effect of the input and past
outputs on future output is only short-term.

So even if the system’s output is initially zero to initialize the
process’s feedback loop, the system can gradually forget these
initial states and become asymptotically stationary as n→∞.
(i.e., be more influenced by the “recent” w.s.s. samples of the
driving sequence)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Detailed Derivations
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Example: Represent ARMA(1,1) by AR(∞) or MA(∞)

E.g., for an ARMA(1, 1), HARMA(z) = 1+b[1]z−1

1+a[1]z−1

1 Use an AR(∞) to represent it, i.e.,
HAR(z) = 1

1+c[1]z−1+c[2]z−2+...

⇒ Let 1+a[1]z−1

1+b[1]z−1 = 1
HAR(z)

= 1 + c[1]z−1 + c[2]z−2 + . . .

inverse ZT ∴ c[k] = Z−1
[
H−1ARMA(z)

]
⇒

{
c[0] = 1

c[k] = (a[1]− b[1])(−b[1])k−1 for k ≥ 1.

2 Use an MA(∞) to represent it, i.e.,
HMA(z) = 1 + d [1]z−1 + d [2]z−2 + . . .
∴ d [k] = Z−1 [HARMA(z)]

⇒

{
d [0] = 1

d [k] = (b[1]− a[1])(−a[1])k−1 for k ≥ 1.
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Part-II Parametric Signal Modeling and
Linear Prediction Theory

2. Discrete Wiener Filtering

Electrical & Computer Engineering
University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by
Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by
Prof. Min Wu and Mr. Wei-Hong Chuang.

Contact: minwu@umd.edu. Updated: November 1, 2011.

ENEE630 Lecture Part-2 1 / 24



2 Discrete Wiener Filter
Appendix: Detailed Derivations

2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Preliminaries

[ Readings: Haykin’s 4th Ed. Chapter 2, Hayes Chapter 7 ]

• Why prefer FIR filters over IIR?

⇒ FIR is inherently stable.

• Why consider complex signals?

Baseband representation is complex valued for narrow-band
messages modulated at a carrier frequency.

Corresponding filters are also in complex form.

u[n] = uI [n] + juQ [n]

• uI [n]: in-phase component •
uQ [n]: quadrature component

the two parts can be amplitude modulated by cos 2πfct and sin 2πfct.
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

(1) General Problem

(Ref: Hayes §7.1)

Want to process x [n] to minimize the difference between the estimate
and the desired signal in some sense:

A major class of estimation (for simplicity & analytic tractability) is to
use linear combinations of x [n] (i.e. via linear filter).

When x [n] and d [n] are from two w.s.s. random processes, we often
choose to minimize the mean-square error as the performance index.

minw J , E
[
|e[n]|2

]
= E

[
|d [n]− d̂ [n]|2

]
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

(2) Categories of Problems under the General Setup

1 Filtering

2 Smoothing

3 Prediction

4 Deconvolution
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Wiener Problems: Filtering & Smoothing

Filtering

The classic problem considered by Wiener
x [n] is a noisy version of d [n]: [n] = d [n] + v [n]
The goal is to estimate the true d [n] using a causal filter
(i.e., from the current and post values of x [n])
The causal requirement allows for filtering on the fly

Smoothing

Similar to the filtering problem, except the filter is allowed to
be non-causal (i.e., all the x [n] data is available)
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Wiener Problems: Prediction & Deconvolution

Prediction

The causal filtering problem with d [n] = x [n + 1],
i.e., the Wiener filter becomes a linear predictor to predict
x [n + 1] in terms of the linear combination of the previous
value x [n], x [n − 1], , . . .

Deconvolution

To estimate d [n] from its filtered (and noisy) version
x [n] = d [n] ∗ g [n] + v [n]

If g [n] is also unknown ⇒ blind deconvolution.
We may iteratively solve for both unknowns
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

FIR Wiener Filter for w.s.s. processes

Design an FIR Wiener filter for jointly w.s.s. processes {x [n]} and {d [n]}:

W (z) =
∑M−1

k=0 akz
−k (where ak can be complex valued)

d̂ [n] =
∑M−1

k=0 akx [n − k] = aT x [n] (in vector form)

⇒ e[n] = d [n]− d̂ [n] = d [n]−
∑M−1

k=0 akx [n − k]︸ ︷︷ ︸
d̂ [n]=aT x[n]
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

FIR Wiener Filter for w.s.s. processes

In matrix-vector form:

J = E
[
|d [n]|2

]
− aHp∗ − pTa + aHRa

where x [n] =


x [n]

x [n − 1]
...

x [n −M + 1

, p =

 E [x [n]d∗[n]]
...

E [x [n −M + 1]d∗[n]]

,

a =

 a0
...

aM−1

.

E
[
|d [n]|2

]
: σ2 for zero-mean random process

aHRa: represent E
[
aT x [n]xH [n]a∗

]
= aTRa∗
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Perfect Square

1 If R is positive definite, R−1 exists and is positive definite.

2 (Ra∗ − p)HR−1(Ra∗ − p) = (aTRH − pH)(a∗ − R−1p) =

aTRHa∗ − pHa∗ − aT RHR−1︸ ︷︷ ︸
=I

p + pHR−1p

Thus we can write J(a) in the form of perfect square:

J(a) = E
[
|d [n]|2

]
− pHR−1p︸ ︷︷ ︸

Not a function of a; Represent Jmin.

+ (Ra∗ − p)HR−1(Ra∗ − p)︸ ︷︷ ︸
>0 except being zero if Ra∗−p=0
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Perfect Square

J(a) represents the error performance surface:

convex and has unique minimum at Ra∗ = p

Thus the necessary and sufficient condition for determining the
optimal linear estimator (linear filter) that minimizes MSE is

Ra∗ − p = 0⇒ Ra∗ = p

This equation is known as the Normal Equation.
A FIR filter with such coefficients is called a FIR Wiener filter.
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Perfect Square

Ra∗ = p ∴ a∗opt = R−1p if R is not singular
(which often holds due to noise)

When {x [n]} and {d [n]} are jointly w.s.s.
(i.e., crosscorrelation depends only on time difference)

This is also known as the Wiener-Hopf equation (the discrete-time

counterpart of the continuous Wiener-Hopf integral equations)
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Principle of Orthogonality

Note: to minimize a real-valued func. f (z , z∗) that’s analytic (differentiable

everywhere) in z and z∗, set the derivative of f w.r.t. either z or z∗ to zero.

• Necessary condition for minimum J(a): (nece.&suff. for convex J)

∂
∂a∗k

J = 0 for k = 0, 1, . . . ,M − 1.

⇒ ∂
∂a∗k

E [e[n]e∗[n]] = E
[
e[n] ∂

∂a∗k
(d∗[n]−

∑M−1
j=0 a∗j x

∗[n − j ])
]

= E [e[n] · (−x∗[n − k])] = 0

Principal of Orthogonality

E [eopt[n]x∗[n − k]] = 0 for k = 0, . . . ,M − 1.

The optimal error signal e[n] and each of the M samples of x [n]
that participated in the filtering are statistically uncorrelated
(i.e., orthogonal in a statistical sense)
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Principle of Orthogonality: Geometric View

Analogy:
r.v. ⇒ vector;
E(XY) ⇒ inner product of vectors

⇒ The optimal d̂ [n] is the projection

of d [n] onto the hyperplane spanned

by {x [n], . . . , x [n −M + 1]} in a

statistical sense.

The vector form: E
[
x [n]e∗opt[n]

]
= 0.

This is true for any linear combination of x [n], and for FIR & IIR:

E
[
d̂opt[n]eopt[n]

]
= 0
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Minimum Mean Square Error

Recall the perfect square form of J:

J(a) = E
[
|d [n]|2

]
− pHR−1p︸ ︷︷ ︸+ (Ra∗ − p)HR−1(Ra∗ − p)︸ ︷︷ ︸

∴ Jmin = σ2d − aHo p
∗ = σ2d − pHR−1p

Also recall d [n] = d̂opt[n] + eopt[n]. Since d̂opt[n] and eopt[n] are

uncorrelated by the principle of orthogonality, the variance is

σ2d = Var(d̂opt[n]) + Jmin

∴ Var(d̂opt[n]) = pHR−1p

= aH0 p
∗ = pHa∗o = pTao real and scalar
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

Example and Exercise

• What kind of process is {x [n]}?
• What is the correlation matrix of the channel output?
• What is the cross-correlation vector?

• w1 =? w2 =? Jmin =?
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Detailed Derivations
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Another Perspective (in terms of the gradient)

Theorem: If f (z , z∗) is a real-valued function of complex vectors z and z∗,
then the vector pointing in the direction of the maximum rate of the change of
f is 5z∗ f (z , z∗), which is a vector of the derivative of f () w.r.t. each entry in
the vector z∗.

Corollary: Stationary points of f (z , z∗) are the solutions to 5z∗ f (z , z∗) = 0.

Complex gradient of a

complex function:

aHz zHa zHAz

5z a∗ 0 AT z∗ = (Az)∗

5z∗ 0 a Az

Using the above table, we have 5a∗J = −p∗ + RTa.

For optimal solution: 5a∗J = ∂
∂a∗ J = 0

⇒ RTa = p∗, or Ra∗ = p, the Normal Equation. ∴ a∗opt = R−1p

(Review on matrix & optimization: Hayes 2.3; Haykins(4th) Appendix A,B,C)
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Review: differentiating complex functions and vectors
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Review: differentiating complex functions and vectors
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Differentiating complex functions: More details
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Example: solution
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Example: solution
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Example: solution
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2 Discrete Wiener Filter
Appendix: Detailed Derivations

Preliminaries

In many communication and signal processing applications,
messages are modulated onto a carrier wave. The bandwidth
of message is usually much smaller than the carrier frequency
⇒ i.e., the signal modulated is “narrow-band”.

It is convenient to analyze in the baseband form to remove
the effect of the carrier wave by translating signal down in
frequency yet fully preserve the information in the message.

The baseband signal so obtained is complex in general.
u[n] = uI [n] + juQ [n]

Accordingly, the filters developed for the applications are also
in complex form to preserve the mathematical formulations
and elegant structures of the complex signal in the
applications.
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3 Linear Prediction
Appendix: Detailed Derivations

Part-II Parametric Signal Modeling
and Linear Prediction Theory

3. Linear Prediction

Electrical & Computer Engineering
University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by
Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by
Prof. Min Wu and Mr. Wei-Hong Chuang.

Contact: minwu@umd.edu. Updated: November 3, 2011.
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Review of Last Section: FIR Wiener Filtering

Two perspectives leading to the optimal filter’s condition (NE):
1 write J(a) to have a perfect square
2 ∂

∂a∗k
= 0 ⇒ principle of orthogonality E [e[n]x∗[n − k]] = 0,

k = 0, ...M − 1.
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Recap: Principle of Orthogonality

E [e[n]x∗[n − k]] = 0 for k = 0, ...M − 1.

⇒ E [d [n]x∗[n − k]] =
∑M−1

`=0 a` · E [x [n − `]x∗[n − k]]

⇒ rdx(k) =
∑M−1

`=0 a`rx(k − `) ⇒ Normal Equation p∗ = RTa

Jmin = Var(d [n])− Var(d̂ [n])

where Var(d̂ [n]) = E
[
d̂ [n]d̂∗[n]

]
= E

[
aT x [n]xH [n]a∗

]
= aTRxa

∗

bring in N.E. for a ⇒ Var(d̂ [n]) = aTp = pHR−1p

May also use the vector form to derive N.E.: set gradient 5a∗J = 0

ENEE630 Lecture Part-2 3 / 31



3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Forward Linear Prediction

Recall last section: FIR Wiener filter W (z) =
∑M−1

k=0 akz
−k

Let ck , a∗k (i.e., c∗k represents the filter coefficients and helps us to

avoid many conjugates in the normal equation)

Given u[n − 1], u[n − 2], . . . , u[n −M], we are interested in
estimating u[n] with a linear predictor:

This structure is called “tapped delay line”: individual outputs of each delay

are tapped out and diverted into the multipliers of the filter/predictor.
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Forward Linear Prediction

û [n|Sn−1] =
∑M

k=1 c
∗
ku[n − k] = cHu[n − 1]

Sn−1 denotes the M-dimensional space spanned by the samples
u[n − 1], . . . , u[n −M], and

c =


c1
c2
...
cM

, u[n − 1] =


u[n − 1]
u[n − 2]

...
u[n −M]


u[n − 1] is vector form for

tap inputs and is x [n] from

General Wiener

ENEE630 Lecture Part-2 5 / 31



3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Forward Prediction Error

The forward prediction error

fM [n] = u[n]− û [n|Sn−1]

e[n] d [n] ← From general Wiener filter notation

The minimum mean-squared prediction error

PM = E
[
|fM [n]|2

]

Readings for LP: Haykin 4th Ed. 3.1-3.3
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Optimal Weight Vector

To obtain optimal weight vector c, apply Wiener filtering theory:

1 Obtain the correlation matrix:

R = E
[
u[n − 1]uH [n − 1]

]
= E

[
u[n]uH [n]

]
(by stationarity)

where u[n] =


u[n]

u[n − 1]
...

u[n −M + 1]


2 Obtain the “cross correlation” vector between the tap inputs

and the desired output d [n] = u[n]:

E [u[n − 1]u∗[n]] =


r(−1)
r(−2)

...
r(−M)

 , r
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Optimal Weight Vector

3 Thus the Normal Equation for FLP is

Rc = r

The prediction error is

PM = r(0)− rHc
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Relation: N.E. for FLP vs. Yule-Walker eq. for AR

The Normal Equation for FLP is Rc = r

⇒ N.E. is in the same form as the Yule-Walker equation for AR
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Relation: N.E. for FLP vs. Yule-Walker eq. for AR

If the forward linear prediction is applied to an AR process of
known model order M and optimized in MSE sense, its tap weights
in theory take on the same values as the corresponding parameter
of the AR process.

Not surprising: the equation defining the forward prediction and the
difference equation defining the AR process have the same
mathematical form.

When u[n] process is not AR, the predictor provides only an
approximation of the process.

⇒ This provide a way to test if u[n] is an AR process (through
examining the whiteness of prediction error e[n]); and if so,
determine its order and AR parameters.

Question: Optimal predictor for {u[n]}=AR(p) when p < M?
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Forward-Prediction-Error Filter

fM [n] = u[n]− cHu[n − 1]

Let aM,k =

{
1 k = 0

−ck k = 1, 2, . . . ,M
, i.e., aM ,

 aM,0
...

aM,M


⇒ fM [n] =

∑M
k=0 a

∗
M,ku[n − k] = aHM

[
u[n]

u[n −M]

]
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Augmented Normal Equation for FLP

From the above results:{
Rc = r Normal Equation or Wiener-Hopf Equation

PM = r(0)− rHc prediction error

Put together: [
r(0) rH

r RM

]
︸ ︷︷ ︸

RM+1

[
1
−c

]
=

[
PM

0

]

Augmented N.E. for FLP

RM+1aM =

[
PM

0

]
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Summary of Forward Linear Prediction

General Wiener Forward LP Backward LP
Tap input

Desired response
(conj) Weight vector

Estimated sig
Estimation error

Correlation matrix
Cross-corr vector

MMSE
Normal Equation
Augmented N.E.

(detail)
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Backward Linear Prediction

Given u[n], u[n − 1], . . . , u[n −M + 1], we are interested in
estimating u[n −M].

Backward prediction error bM [n] = u[n −M]− û [n −M|Sn]

Sn: span {u[n], u[n − 1], . . . , u[n −M + 1]}

Minimize mean-square prediction error PM,BLP = E
[
|bM [n]|2

]
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Backward Linear Prediction

Let g denote the optimal weight vector (conjugate) of the BLP:
i.e., û[n −M] =

∑M
k=1 g

∗
k u[n + 1− k].

To solve for g , we need

1 Correlation matrix R = E
[
u[n]uH [n]

]
2 Crosscorrelation vector

E [u[n]u∗[n −M]] =


r(M)

r(M − 1)
...

r(1)

 , rB
∗

Normal Equation for BLP

Rg = rB∗

The BLP prediction error: PM,BLP = r(0)− (rB)Tg

ENEE630 Lecture Part-2 15 / 31



3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Relations between FLP and BLP

Recall the NE for FLP: Rc = r

Rearrange the NE for BLP backward: RTgB = r∗

Conjugate ⇒ RHgB∗
= r ⇒ RgB∗

= r

reversely order:

∴ optimal predictors of FLP: c = gB∗
, or equivalently g = cB

∗

By reversing the order & complex conjugating c , we obtain g .
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Relations between FLP and BLP

PM,BLP = r(0)− (rB)Tg = r(0)− (rB)T cB
∗

= r(0)−
B∗[
rHc

]
︸ ︷︷ ︸

real, scalar

= r(0)− rHc = PM,FLP

This relation is not surprising:
the process is w.s.s. (s.t. r(k) = r∗(−k)), and the optimal
prediction error depends only on the process’s statistical property.

> Recall from Wiener filtering: Jmin = σ2d − pHR−1p

(FLP) rHR−1r

(BLP) rB
∗H
R−1rB

∗
= (rHRT∗−1

r)B
∗

= rHR−1r
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Backward-Prediction-Error Filter

bM [n] = u[n −M]−
∑M

k=1 g
∗
k u[n + 1− k]

Using the ai ,j notation defined earlier and gk = −a∗M,M+1−k :

bM [n] =
∑M

k=0 aM,M−ku[n − k]

= aBTM

[
u[n]

u[n −M]

]
, where aM =

 aM,0
...

aM,M
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Augmented Normal Equation for BLP

Bring together

{
Rg = rB

∗

PM = r(0)− (rB)Tg

⇒
[

R rB
∗

(rB)T r(0)

]
︸ ︷︷ ︸

RM+1

[
−g
1

]
=

[
0
PM

]

Augmented N.E. for BLP

RM+1a
B∗
M =

[
0
PM

]
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Summary of Backward Linear Prediction

General Wiener Forward LP Backward LP
Tap input

Desired response
(conj) Weight vector

Estimated sig
Estimation error

Correlation matrix
Cross-corr vector

MMSE
Normal Equation
Augmented N.E.

(detail)
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Whitening Property of Linear Prediction

(Ref: Haykin 4th Ed. §3.4 (5) Property)

Conceptually: The best predictor tries to explore the predictable
traces from a set of (past) given values onto the future value,
leaving only the unforeseeable parts as the prediction error.

Also recall the principle of orthogonality: the prediction error is
statistically uncorrelated with the samples used in the prediction.

As we increase the order of the prediction-error filter,
the correlation between its adjacent outputs is reduced.
If the order is high enough, the output errors become
approximately a white process (i.e., be “whitened”).
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Analysis and Synthesis

From forward prediction results on the {u[n]} process:u[n] + a∗M,1u[n − 1] + . . .+ a∗M,Mu[n −M] = fM [n] Analysis

û[n] = −a∗M,1u[n − 1]− . . .− a∗M,Mu[n −M] + v [n] Synthesis

Here v [n] may be quantized version of fM [n], or regenerated from white noise

If {u[n]} sequence have high correlation among adjacent samples,
then fM [n] will have a much smaller dynamic range than u[n].
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Compression tool #3: Predictive Coding

Recall two compression tools from Part-1:

(1) lossless: decimate a bandlimited signal; (2) lossy: quantization.

Tool #3: Linear Prediction. we can first figure out the best
predictor for a chunk of approximately stationary samples,
encode the first sample, then do prediction and encode the
prediction residues (as well as the prediction parameters).

The structures of analysis and synthesis of linear prediction form a
matched pair.

This is the basic principle behind Linear Prediction Coding (LPC)
for transmission and reconstruction of digital speech signals.
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Linear Prediction: Analysis

u[n] + a∗M,1u[n − 1] + . . .+ a∗M,Mu[n −M] = fM [n]

If {fM [n]} is white (i.e., the correlation among {u[n], u[n − 1], . . .}
values have been completely explored), then the process {u[n]} can
be statistically characterized by aM vector, plus the mean and
variance of fM [n].
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

Linear Prediction: Synthesis

û[n] = −a∗M,1u[n − 1]− . . .− a∗M,Mu[n −M] + v [n]

If {v [n]} is a white noise process,

the synthesis output {u[n]} using

linear prediction is an AR process

with parameters {aM,k}.
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3 Linear Prediction
Appendix: Detailed Derivations

3.1 Forward Linear Prediction
3.2 Backward Linear Prediction
3.3 Whitening Property of Linear Prediction

LPC Encoding of Speech Signals

Partition speech signal into frames s.t. within a frame it is
approximately stationary

Analyze a frame to obtain a compact representation of the
linear prediction parameters, and some parameters
characterizing the prediction residue fM [n]

(if more b.w. is available and higher quality is desirable, we may

also include some coarse representation of fM [n] by quantization)

This gives much more compact representation than simple
digitization (PCM coding): e.g., 64kbps → 2.4k-4.8kbps

A decoder will use the synthesis structure to reconstruct to
speech signal, with a suitable driving sequence (periodic

impulse train for voiced sound; white noise for fricative sound)

ENEE630 Lecture Part-2 26 / 31



3 Linear Prediction
Appendix: Detailed Derivations

Detailed Derivations
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3 Linear Prediction
Appendix: Detailed Derivations

Review: Recursive Relation of Correlation Matrix
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3 Linear Prediction
Appendix: Detailed Derivations

Summary: General Wiener vs. FLP

General Wiener Forward LP Backward LP

Tap input x [n] u[n − 1]

Desired response d [n] u[n]

(conj) Weight vector c = a∗ c

Estimated sig d̂ [n] d̂ [n] = cHu[n − 1]

Estimation error e[n] fM [n]

Correlation matrix RM RM

Cross-corr vector p r

MMSE Jmin PM

Normal Equation Rc = p Rc = r

Augmented N.E. RM+1aM =

[
PM

0

]
(return)
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3 Linear Prediction
Appendix: Detailed Derivations

Summary: General Wiener vs. FLP vs. BLP

General Forward Backward
Wiener LP LP

Tap input x [n] u[n − 1] u[n]

Desired response d [n] u[n] u[n −M]

(conj) Weight vector c = a∗ c g

Estimated sig d̂ [n] d̂ [n] = cHu[n − 1] d̂ [n] = gHu[n]

Estimation error e[n] fM [n] bM [n]

Correlation matrix RM RM RM

Cross-corr vector p r rB
∗

MMSE Jmin PM PM

Normal Equation Rc = p Rc = r Rg = rB
∗

Augmented N.E. RM+1aM =

[
PM

0

]
RM+1a

B∗

M =

[
0
PM

]
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3 Linear Prediction
Appendix: Detailed Derivations

Matrix Inversion Lemma for Homework
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4 Levinson-Durbin Recursion
Appendix: More Details

Parametric Signal Modeling and
Linear Prediction Theory

4. The Levinson-Durbin Recursion

Electrical & Computer Engineering
University of Maryland, College Park
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Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by
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4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

Complexity in Solving Linear Prediction

(Refs: Hayes §5.2; Haykin 4th Ed. §3.3)

Recall Augmented Normal Equation for linear prediction:

FLP RM+1aM =

[
PM

0

]
BLP RM+1a

B∗
M =

[
0
PM

]
As RM+1 is usually non-singular, aM may be obtained by inverting
RM+1, or Gaussian elimination for solving equation array:

⇒ Computational complexity O(M3).

ENEE630 Lecture Part-2 2 / 20



4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

Motivation for More Efficient Structure

Complexity in solving a general linear equation array:

Method-1: invert the matrix, e.g. compute determinant of RM+1

matrix and the adjacency matrices

⇒ matrix inversion has O(M3) complexity

Method-2: use Gaussian elimination

⇒ approximately M3/3 multiplication and division

By exploring the structure in the matrix and vectors in LP,
Levison-Durbin recursion can reduce complexity to O(M2)

M steps of order recursion, each step has a linear complexity w.r.t.
intermediate order

Memory use: Gaussian elimination O(M2) for the matrix, vs.
Levinson-Durbin O(M) for the autocorrelation vector and model
parameter vector.
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4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

Levinson-Durbin recursion

The Levinson-Durbin recursion is an order-recursion to efficiently
solve the Augmented N.E.

M steps of order recursion, each step has a linear complexity
w.r.t. intermediate order

The recursion can be stated in two ways:

1 Forward prediction point of view

2 Backward prediction point of view
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4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

Two Points of View of LD Recursion

Denote am ∈ C(m+1)×1 as the tap weight vector of a forward-prediction-error
filter of order m = 0, ...,M.

am−1,0 = 1, am−1,m , 0, am,m = Γm (a constant “reflection coefficient”)

Forward prediction point of view

am,k = am−1,k + Γma
∗
m−1,m−k , k = 0, 1, . . . ,m

In vector form: am =

[
am−1

0

]
+ Γm

[
0

aB
∗

m−1

]
(∗∗)

Backward prediction point of view

a∗m,m−k = a∗m−1,m−k + Γ∗ma
∗
m−1,k , k = 0, 1, . . . ,m

In vector form: aB
∗

m =

[
0

aB
∗

m−1

]
+ Γ∗m

[
am−1

0

]
(can be obtained by reordering and conjugating (∗∗))
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4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

Recall: Forward and Backward Prediction Errors

• fm[n] = u[n]− û[n] = aHm u[n]︸︷︷︸
(m+1)×1

• bm[n] = u[n −m]− û[n −m] = aB,T
m u[n]
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4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

(3) Rationale of the Recursion

Left multiply both sides of (∗∗) by Rm+1:

LHS: Rm+1am =

[
Pm

0m

]
(by augmented N.E.)

RHS (1): Rm+1

[
am−1

0

]
=

[
Rm rB

∗

m

rBTm r(0)

] [
am−1

0

]
=

[
Rmam−1

rBTm am−1

]
=

 Pm

0m−1

∆m−1

 where ∆m−1 , rBTm am−1

RHS (2): Rm+1

[
0

aB∗
m−1

]
=

[
r(0) rH

r Rm

] [
0

aB∗
m−1

]
=

[
rHaB∗

m−1

Rma
B∗
m−1

]
=

 ∆∗
m−1

0m−1

Pm−1


ENEE630 Lecture Part-2 7 / 20



4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

Computing Γm

Put together LHS and RHS: for the order update recursion (∗∗) to
hold, we should have[
Pm

0m

]
=

 Pm−1

0m−1

∆m−1

+ Γm

 ∆∗m−1

0m−1

Pm−1


⇒

{
Pm = Pm−1 + Γm∆∗m−1

0 = ∆m−1 + ΓmPm−1

⇒

am,m = Γm = −∆m−1

Pm−1

Pm = Pm−1

(
1− |Γm|2

)
Caution: not to confuse Pm and Γm!
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4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

(4) Reflection Coefficients Γm

To ensure the prediction MSE Pm ≥ 0 and Pm non-increasing
when we increase the order of the predictor (i.e., 0 ≤ Pm ≤ Pm−1),
we require |Γm|2 ≤ 1 for ∀m > 0.

Let P0 = r(0) as the initial estimation error has power equal to the
signal power (i.e., no regression is applied), we have

PM = P0 ·
∏M

m=1(1− |Γm|2)

Question: Under what situation Γm = 0?
i.e., increasing order won’t reduce error.

Consider a process with Markovian-like property in 2nd order statistic

sense (e.g. AR process) s.t. info of further past is contained in k recent

samples
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4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

(5) About ∆m

Cross-correlation of BLP error and FLP error : can be shown as

∆m−1 = E
[
bm−1[n − 1]f ∗m−1[n]

]
(Derive from the definition ∆m−1 , rBTm am−1, and use definitions of

bm−1[n − 1], f ∗m−1[n] and orthogonality principle.)

Thus the reflection coefficient can be written as

Γm = −∆m−1

Pm−1
= −

E
[
bm−1[n − 1]f ∗m−1[n]

]
E [|fm−1[n]|2]

Note: for the 0th order predictor, use mean value (zero) as estimate, s.t.
f0[n] = u[n] = b0[n],

∴ ∆0 = E [b0[n − 1]f ∗0 [n]] = E [u[n − 1]u∗[n]] = r(−1) = r∗(1)
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4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

Preview: Relations of w.s.s and LP Parameters

For w.s.s. process {u[n]}:
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4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

(6) Computing aM and PM by Forward Recursion

Case-1 : If we know the autocorrelation function r(·):

• # of iterations =
∑M

m=1 m = M(M+1)
2 , comp. complexity is O(M2)

• r(k) can be estimated from time average of one realization of {u[n]}:
r̂(k) = 1

N−k

∑N
n=k+1 u[n]u∗[n − k], k = 0, 1, . . . ,M

(recall correlation ergodicity)
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4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

(6) Computing aM and PM by Forward Recursion

Case-2 : If we know Γ1, Γ2, . . . , ΓM and P0 = r(0),
we can carry out the recursion for m = 1, 2, . . . ,M:{
am,k = am−1,k + Γma

∗
m−1,m−k , k = 1, . . . ,m

Pm = Pm−1

(
1− |Γm|2

)
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4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

(7) Inverse Form of Levinson-Durbin Recursion

Given the tap-weights aM , find the reflection coefficients Γ1, Γ2, . . . , ΓM :

Recall:

{
(FP) am,k = am−1,k + Γma

∗
m−1,m−k , k = 0, . . . ,m

(BP) a∗m,m−k = a∗m−1,m−k + Γ∗
ma

∗
m−1,k , am,m = Γm

Multiply (BP) by Γm and subtract from (FP):

am−1,k =
am,k−Γma∗m,m−k

1−|Γm|2 =
am,k−am,ma∗m,m−k

1−|am,m|2 , k = 0, . . . ,m

⇒ Γm = am,m, Γm−1 = am−1,m−1, . . .,

iterate with m = M − 1,M − 2, . . .

i.e., From aM ⇒ am ⇒ Γm

to lower order

see §5 Lattice structure:
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4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

(8) Autocorrelation Function & Reflection Coefficients

The 2nd-order statistics of a stationary time series can be
represented in terms of autocorrelation function r(k), or
equivalently the power spectral density by taking DTFT.

Another way is to use r(0), Γ1, Γ2, . . . , ΓM .

To find the relation between them, recall:

∆m−1 , rBTm am−1 =
∑M−1

k=0 am−1,k r(−m + k) and Γm = −∆m−1

Pm−1

⇒ −ΓmPm−1 =
∑m−1

k=0 am−1,k r(k −m), where am−1,0 = 1.
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4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

(8) Autocorrelation Function & Reflection Coefficients

1 r(m) = r∗(−m) = −Γ∗mPm−1 −
∑m−1

k=1 a∗m−1,k r(m − k)

Given r(0), Γ1, Γ2, . . . , ΓM , can get am using Levinson-Durbin
recursion s.t. r(1), . . . , r(M) can be generated recursively.

2 Recall if r(0), . . . , r(M) are given, we can get am.
So Γ1, . . . , ΓM can be obtained recursively: Γm = am,m

3 These facts imply that the reflection coefficients {Γk} can
uniquely represent the 2nd-order statistics of a w.s.s. process.
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4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

Summary

Statistical representation of w.s.s. process
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4 Levinson-Durbin Recursion
Appendix: More Details

Detailed Derivations/Examples
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4 Levinson-Durbin Recursion
Appendix: More Details

Example of Forward Recursion Case-2
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4 Levinson-Durbin Recursion
Appendix: More Details

Proof for ∆m−1 Property

(see HW#7)
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5 Lattice Predictor
Appendix: Detailed Derivations
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Introduction

Recall: a forward or backward prediction-error filter can each be
realized using a separate tapped-delay-line structure.

Lattice structure discussed in this section provides a powerful way
to combine the FLP and BLP operations into a single structure.
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Order Update for Prediction Errors

(Readings: Haykin §3.8)

Review:

1 signal vector um+1[n] =

[
um[n]

u[n −m]

]
=

[
u[m]

um[n − 1]

]
2 Levinson-Durbin recursion:

am =

[
am−1

0

]
+ Γm

[
0

aB
∗

m−1

]
(forward)

aB
∗

m =

[
0

aB
∗

m−1

]
+ Γ∗

m

[
am−1

0

]
(backward)
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Recursive Relations for fm[n] and bm[n]

fm[n] = aHmum+1[n]; bm[n] = aBTm um+1[n]

1 FLP:

fm[n] =
[
aHm−1 0

] [ um[n]
u[n −m]

]
+ Γ∗

m

[
0 aBTm−1

] [ u[n]
um[n − 1]

]
(Details)

fm[n] = fm−1[n] + Γ∗
mbm−1[n − 1]

2 BLP:

bm[n] =
[

0 aBTm−1

] [ u[n]
um[n − 1]

]
+ Γm

[
a∗m−1 0

] [ um[n]
u[n −m]

]
(Details)

bm[n] = bm−1[n − 1] + Γmfm−1[n]
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Basic Lattice Structure

[
fm[n]
bm[n]

]
=

[
1 Γ∗

m

Γm 1

] [
fm−1[n]

bm−1[n − 1]

]
, m = 1, 2, . . . ,M

Signal Flow Graph (SFG)
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Modular Structure

Recall f0[n] = b0[n] = u[n], thus

To increase the order, we simply add more stages and reuse the
earlier computations.

Using a tapped delay line implementation, we need M separate
filters to generate b1[n], b2[n], . . . , bM [n].

In contrast, a single lattice structure can generate b1[n], . . . , bM [n]
as well as f1[n], . . . , fM [n] at the same time.
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Correlation Properties

Given Predict

(FLP) {u[n − 1], . . . , u[n −M]} ⇒ u[n]

(BLP) {u[n], u[n− 1], . . . , u[n−M + 1]} ⇒ u[n −M]

1. Principle of Orthogonality
i.e., conceptually

E [fm[n]u∗[n − k]] = 0 (1 ≤ k ≤ m) fm[n] ⊥ um[n − 1]

E [bm[n]u∗[n − k]] = 0 (0 ≤ k ≤ m− 1) bm[n] ⊥ um[n]

2. E [fm[n]u∗[n]] = E [bm[n]u∗[n −m]] = Pm

Proof : (Details)
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Correlation Properties

3. Correlations of error signals across orders:

(BLP) E [bm[n]b∗i [n]] =

{
Pm i = m

0 i < m i.e., bm[n] ⊥ bi [n]

(FLP) E [fm[n]f ∗i [n]] = Pm for i ≤ m

Proof : (Details)

Remark : The generation of {b0[n], b1[n], . . . , } is like a
Gram-Schmidt orthogonalization process on {u[n], u[n− 1], . . . , }.

As a result, {bi [n]}i=0,1,... is a new, uncorrelated representation of
{u[n]} containing exactly the same information.
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Correlation Properties

4. Correlations of error signals across orders and time:

E [fm[n]f ∗i [n − `]] = E [fm[n + `]f ∗i [n]] = 0 (1 ≤ ` ≤ m − i , i < m)

E [bm[n]b∗i [n − `]] = E [bm[n + `]b∗i [n]] = 0 (0 ≤ ` ≤ m − i − 1, i < m)

Proof : (Details)

5. Correlations of error signals across orders and time:

E [fm[n + m]f ∗i [n + i ]] =

{
Pm i = m

0 i < m

E [bm[n + m]b∗i [n + i ]] = Pm i ≤ m

Proof : (Details)
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Correlation Properties

6. Cross-correlations of FLP and BLP error signals:

E [fm[n]b∗i [n]] =

{
Γ∗
i Pm i ≤ m

0 i > m

Proof : (Details)
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Joint Process Estimator: Motivation

(Readings: Haykin §3.10; Hayes §7.2.4, §9.2.8)

In (general) Wiener filtering theory, we use {x [n]} process to
estimate a desired response {d [n]}.

Solving the normal equation may require inverting the correlation
matrix Rx .

We now use the lattice structure to obtain a backward prediction
error process {bi [n]} as an equivalent, uncorrelated representation
of {u[n]} that contains exactly the same information.

We then apply an optimal filter on {bi [n]} to estimate {d [n]}.
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Joint Process Estimator: Structure

d̂ [n|Sn] = kHbM+1[n], where k = [k0, k1, . . . , kM ]T
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Joint Process Estimator: Result

To determine the optimal weight to minimize MSE of estimation:

1 Denote D as the (M + 1)× (M + 1) correlation matrix of b[n]

D = E
[
b[n]bH [n]

]
= diag

:::
(P0,P1, . . . ,PM)

∵ {bk [n]}Mk=0 are uncorrelated

2 Let s be the crosscorrelation vector

s , [s0, . . . , sM . . .]T = E [b[n]d∗[n]]

3 The normal equation for the optimal weight vector is:

Dkopt = s

⇒ kopt = D−1s = diag(P−1
0 ,P−1

1 , . . . ,P−1
M )s

i.e., ki = P−1
i si , i = 0, . . . ,M
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Joint Process Estimator: Summary

The name “joint process estimation” refers to the system’s
structure that performs two optimal estimation jointly:

One is a lattice predictor (characterized by Γ1, . . . , ΓM)
transforming a sequence of correlated samples u[n],
u[n − 1], . . . , u[n −M] into a sequence of uncorrelated
samples b0[n], b1[n], . . . , bM [n].

The other is called a multiple regression filter (characterized
by k), which uses b0[n], . . . , bM [n] to produce an estimate of
d [n].
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Inverse Filtering

The lattice predictor discussed just now can be viewed as an
analyzer, i.e., to represent an (approximately) AR process {u[n]}
using {Γm}.

With some reconfiguration, we can obtain an inverse filter or a
synthesizer, i.e., we can reproduce an AR process by applying
white noise {v [n]} as the input to the filter.
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

A 2-stage Inverse Filtering

u[n] = v [n]− Γ∗
1u[n − 1]− Γ∗

2(Γ1u[n − 1] + u[n − 2])

= v [n]− (Γ∗
1 + Γ1Γ∗

2)︸ ︷︷ ︸
a∗2,1

u[n − 1]− Γ∗
2︸︷︷︸

a∗2,2

u[n − 2]

∴ u[n] + a∗2,1u[n − 1] + a∗2,2u[n − 2] = v [n]

⇒ {u[n]} is an AR(2) process.
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Basic Building Block for All-pole Filtering


xm−1[n] = xm[n]− Γ∗

mym−1[n − 1]

ym[n] = Γmxm−1[n] + ym−1[n − 1]

= Γmxm[n] + (1− |Γm|2)ym−1[n − 1]

⇒

{
xm[n] = xm−1[n] + Γ∗

mym−1[n − 1]

ym[n] = Γmxm−1[n] + ym−1[n − 1]

∴

[
xm[n]
ym[n]

]
=

[
1 Γ∗

m

Γm 1

] [
xm−1[n]

ym−1[n − 1]

]
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5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

All-pole Filter via Inverse Filtering[
xm[n]
ym[n]

]
=

[
1 Γ∗

m

Γm 1

] [
xm−1[n]

ym−1[n − 1]

]
This gives basically the same relation as the forward lattice module:

⇒ u[n] = −a∗2,1u[n − 1]− a∗2,2u[n − 2] + v [n] v [n] : white noise
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Detailed Derivations
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5 Lattice Predictor
Appendix: Detailed Derivations

Basic Lattice Structure

fm[n] = aHmum+1[n]; bm[n] = aBTm um+1[n]

1 FLP:

fm[n] =
[
aHm−1 0

] [ um[n]
u[n −m]

]
+ Γ∗

m

[
0 aBTm−1

] [ u[n]
um[n − 1]

]
= aHm−1um[n] + Γ∗

ma
BT
m−1um[n − 1]

fm[n] = fm−1[n] + Γ∗
mbm−1[n − 1]

2 BLP:

bm[n] =
[

0 aBTm−1

] [ u[n]
um[n − 1]

]
+ Γm

[
a∗m−1 0

] [ um[n]
u[n −m]

]
= aBTm−1um[n − 1] + Γma

H
m−1um[n]

bm[n] = bm−1[n − 1] + Γmfm−1[n]
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5 Lattice Predictor
Appendix: Detailed Derivations

Proof of Correlation Property 2
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Proof of Correlation Property 3
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5 Lattice Predictor
Appendix: Detailed Derivations

Proof of Correlation Property 3 (cont’d)
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Proof of Correlation Property 4
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Proof of Correlation Property 5
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Proof of Correlation Property 6

ENEE630 Lecture Part-2 26 / 29



5 Lattice Predictor
Appendix: Detailed Derivations

Lattice Filter Structure: All-pass
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5 Lattice Predictor
Appendix: Detailed Derivations

Lattice Filter Structure: All-pass (cont’d)
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Lattice Filter Structure: All-pass (cont’d)
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