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 Last Lecture:  lattice predictor
correlation properties of error processes©
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– correlation properties of error processes
– joint process estimator in lattice
– inverse lattice filter structureat

ed
 b

y 
M

.W
u 

inverse lattice filter structure

 Today:  
S t ti ti b k d d l i l th d63

0 
S

lid
es

 (c
re

– Spectrum estimation:  background and classical methods

C
P 

EN
EE

62
4/

6

 Homework setU
M

C

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [2]



Summary of Related Readings on PartSummary of Related Readings on Part--IIII

2.1 Stochastic Processes and modeling
Haykin (4th Ed) 1.1-1.8, 1.12-1.14 
Hayes  3.3 – 3.7  (3.5);  4.7

2.2  Wiener filtering
Haykin (4th Ed) Chapter 2
Hayes  7.1, 7.2,  7.3.1

2 3 2 4 Li di ti d L i D bi i2.3-2.4  Linear prediction and Levinson-Durbin recursion
Haykin (4th Ed)   3.1 – 3.3
Hayes  7.2.2;   5.1;   5.2.1 – 5.2.2,  5.2.4– 5.2.5

2.5  Lattice predictor
Haykin (4th Ed)   3.8 – 3.10
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Hayes  6.2;   7.2.4;   6.4.1



Summary of Related Readings on PartSummary of Related Readings on Part--IIIIII

Overview    Haykins  1.16, 1.10

3 1 Non-parametric method3.1  Non-parametric method
Hayes  8.1;    8.2  (8.2.3, 8.2.5);    8.3

3 2 P t i th d3.2  Parametric method
Hayes  8.5,  4.7;    8.4

3.3  Frequency estimation
Hayes 8.6

Review 
– On DSP and Linear algebra:  Hayes 2.2, 2.3
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– On probability and parameter estimation:  Hayes 3.1 – 3.2



Spectrum Estimation: BackgroundSpectrum Estimation: Background

 Spectral estimation: determine the power distribution in 
frequency of a random process©

 2
00

3)

frequency of a random process
– E.g “Does most of the power of a signal reside at low or high 

frequencies?” “Are there resonances in the spectrum?”
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 Applications:
– Needs of spectral knowledge in spectrum domain non-causal 
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Wiener filtering, signal detection and tracking, beamforming, etc.
– Wide use in diverse fields: radar, sonar, speech, biomedicine, 

geophysics, economics, …
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 Estimating p.s.d. of a w.s.s. process is equivalent to 
estimate autocorrelation at all lags
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Spectral Estimation: ChallengesSpectral Estimation: Challenges

 When a limited amount of observation data are available
– Can’t get r(k) for all k and/or may have inaccurate estimate of r(k)©
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Can t get r(k) for all k and/or may have inaccurate estimate of r(k)
– Scenario-1: transient measurement (earthquake, volcano, …) 
– Scenario-2: constrained to short period to ensure (approx.) 
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stationarity in speech processing
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Spectral Estimation:  Major ApproachesSpectral Estimation:  Major Approaches

 Nonparametric methods
– No assumptions on the underlying model for the data
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– Periodogram and its variations (averaging, smoothing, …)
– Minimum variance method
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 Parametric methods
– ARMA, AR, MA models
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– Maximum entropy method

 Frequency estimation (noise subspace methods)
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– For harmonic processes that consist of a sum of sinusoids or 
complex-exponentials in noise

 High-order statistics
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Example of Speech SpectrogramExample of Speech Spectrogram
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Figure 3 of SPM May’98 Speech Survey



)

8000 

“Sprouted grains and seeds are used in salads and dishes such as chop suey”
W

ils
on

 ©
 2

00
4)

6000 

cy
 (k

H
z)

by
 C

ar
ol

 E
sp

y-
W

2000 

4000 

Fr
eq

ue
nc

F2

lid
es

 (c
re

at
ed

 b

1.0  2.0  3.0  4.0  0.0  

Time (sec)

E
N

E
E

40
8G

 S
l

6000

8000

(k
H

z)

“S t d”

U
M

C
P 

2000

4000

re
qu

en
cy

 (“Sprouted”

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [10]

0.1 0.3 0.5

Fr

fricative stopconsonant
glide vowel stopconsonantvowel



Section 3.1  Classical Nonparametric MethodsSection 3.1  Classical Nonparametric Methods
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What is the relation between the DTFT of a specific signal and the 
p.s.d. of the random process?



Ensemble Average of Squared Fourier MagnitudeEnsemble Average of Squared Fourier Magnitude

 p.s.d. can be related to the ensemble average of 
the squared Fourier magnitude |X()|2
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Ensemble Average of PEnsemble Average of PMM(f)(f)
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 Now, what if M goes to infinity?



P.S.D. and Ensemble Fourier MagnitudeP.S.D. and Ensemble Fourier Magnitude
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3.1.1  Periodogram Spectral Estimator3.1.1  Periodogram Spectral Estimator
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Given an observed data set {x[0], x[1], …, x[N-1]},
the periodogram is defined as
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An Equivalent Expression of PeriodogramAn Equivalent Expression of Periodogram
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poorer since they involve fewer terms of lag products in the 
averaging operation

Exercise: to show this from the periodogram definition in last page
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Exercise:  to show this from the periodogram definition in last page



(2) Filter Bank Interpretation of Periodogram(2) Filter Bank Interpretation of Periodogram
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For a particular frequency of f0:
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complex exponential



Frequency Response of h[n]Frequency Response of h[n]
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Periodogram: Filter Bank PerspectivePeriodogram: Filter Bank Perspective

 Can view the periodogram as an estimator of power 
spetrum that has a built-in filterbank©
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– The estimated p.s.d. for each frequency f0 is the power of one 
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E.g. White Gaussian ProcessE.g. White Gaussian Process
[Lim/Oppenheim  Fig.2.4]  
Periodogram of zero-mean white Gaussian noise 
using N-point data record: N=128, 256, 512, 1024
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 The random fluctuation (measured by variance) of the 
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periodogram does not decrease with increasing N
 periodogram is not a consistent estimator



(3) How Good is Periodogram for Spectral Estimation?(3) How Good is Periodogram for Spectral Estimation?
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Performance of Periodogram: SummaryPerformance of Periodogram: Summary

 The periodogram for white Gaussian process is an 
unbiased estimator but not consistent
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– The variance does not decrease with increasing data length
– Its standard deviation is as large as the mean (equal to the quantity 
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 Reasons for the poor estimation performance
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 Similar conclusions can be drawn for processes with 
arbitrary p.s.d. and arbitrary frequencies
– Asymptotically unbiased (as N goes to infinity) but inconsistent
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3.1.2  Averaged Periodogram3.1.2  Averaged Periodogram

 As one solution to the variance problem of periodogram
– Average K periodograms computed from K sets of data records
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Performance of Averaged PeriodogramPerformance of Averaged Periodogram

– If K sets of data records are uncorrelated with each other,
we have:                                ( fi = i/L )
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 KK for  0Varand,Var  i.e.,  KK for  0Var and ,Var  i.e.,
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Practical Averaged PeriodogramPractical Averaged Periodogram

 Usually we partition an available data sequence of length N
into K non overlapping blocks each block has length L (i e N=KL)©

 2
00

3)

– into K non-overlapping blocks, each block has length L (i.e. N=KL)
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 Periodogram averaging is also known as the Bartlett’s 
method
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Averaged Periodogram for Fixed Data SizeAveraged Periodogram for Fixed Data Size

 Given a data record of fixed size N, will the result be better 
if we segment the data into more and more subrecords?
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Mean of Averaged PeriodogramMean of Averaged Periodogram
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Mean of Averaged Periodogram (cont’d)Mean of Averaged Periodogram (cont’d)
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– To avoid the smearing, the window length L must be large enough so 
that the narrowest peak in P(f) can be resolved

 This gives a tradeoff between bias and variance
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g
Small K => better resolution (smaller smearing/bias) but larger variance



NonNon--parametric Spectrum Estimation:  Recapparametric Spectrum Estimation:  Recap

 Periodogram 
– Motivated by relation between p.s.d. and squared magnitude of DTFT 

of a finite-size data record
– Variance: won’t vanish as data length N goes infinity ~  “inconsistent”
– Mean: asymptotically unbiased w r t data length N in generalMean:  asymptotically unbiased w.r.t. data length N in general

 equivalent to apply triangular window to autocorrelation function
(windowing in time gives smearing/smoothing in freq domain)

unbiased for white Gaussian unbiased for white Gaussian

 Averaged periodogram
– Reduce variance by averaging K sets of data record of length L eachReduce variance by averaging K sets of data record of length L each
– Small L increases smearing/smoothing in p.s.d. estimate thus higher 

bias     equiv. to triangular windowing 

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [41]

 Windowed periodogram:  generalize to other symmetric windows



Case Study on NonCase Study on Non--parametric Methodsparametric Methods
 Test case: a process consists of narrowband components 

(sinusoids) and a broadband component (AR)
– x[n] = 2 cos(1 n) + 2 cos(2 n) + 2 cos(3 n) + z[n]

where z[n] = a1 z[n-1] + v[n],  a1 =  0.85, 2 = 0.1
 /2 = 0 05  /2 = 0 40  /2 = 0 421/2 = 0.05, 2/2 = 0.40, 3/2 = 0.42

– N=32 data points are available  
 periodogram resolution f = 1/32

 Examine typical characteristics 
of various non-parametric p
spectral estimators

(Fig.2.17 from Lim/Oppenheim book)
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3.1.3  Periodogram with Windowing3.1.3  Periodogram with Windowing

 Review and Motivation
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
nN 0for k

g g ( ) p
involve fewer terms of lag products in the averaging operation

 Solution: weigh the higher lags less 
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– Trade variance with bias



WindowingWindowing
 Use a window function to weigh the higher lags less
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 Effect:  periodogram smoothing 
– Windowing in time  Convolution/filtering the periodogram
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g g p g
– Also known as the Blackman-Tukey method



Common Lag WindowsCommon Lag Windows
 Much of the art in non-parametric spectral estimation is in 

choosing an appropriate window (both in type and length)
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Table 2.1 common lag window  
(from Lim-Oppenheim book)



Discussion:  Estimate r(k) via Time AverageDiscussion:  Estimate r(k) via Time Average
 Normalizing the sum of (N-k) pairs 

by a factor of 1/N ?   v.s.  by a factor of 1/(N-k) ?
Biased (low variance) Unbiased (may not non-neg. definite)

• Hints on showing 
the non-negative 
definiteness: using )(kr



definiteness: using       
to construct 
correlation matrix

)(1 kr


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HW#8)(For  2 kr



3.1.43.1.4 Minimum Variance Spectral Estimation Minimum Variance Spectral Estimation (MVSE)(MVSE)

 Recall:  filter bank perspective of periodogram
– The periodogram can be viewed as estimating the p s d byThe periodogram can be viewed as estimating the p.s.d. by 

forming a bank of narrowband filters with sinc-like response
– The high sidelobe can lead to “leakage” problem: 

 large output power due to p.s.d outside the band of interest

 MVSE designs filters to minimize the leakage from out-of-MVSE designs filters to minimize the leakage from out of
band spectral components
– Thus the shape of filter is dependent on the frequency of interest

d d t d tiand data adaptive
(unlike the identical filter shape for periodogram)

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [49]

– MVSE is also referred to as the Capon spectral estimator



Main Steps of MVSE MethodMain Steps of MVSE Method

 Design a bank of bandpass filters Hi(f) with center 
frequency fi so thati  

– Each filter rejects the maximum amount of out-of-band power
– And passes the component at frequency fi without distortion

 Filter the input process { x[n] } with each filter in the filter 
bank and estimate the power of each output processbank and estimate the power of each output process

 Set the power spectrum estimate at frequency fi to be the 
power estimated above divided by the filter bandwidth

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [50]



Formulation of MVSEFormulation of MVSE

The MVSE designs a filter H(f) for each 
f f i t t ffrequency of interest f0

minimize the output power

dffPfH )()( 22
1 

1




minimize the output power

dffPfH )()(
2
1 

subject to 1)( 0 fH

(i.e., to pass the components at f0 w/o distortion)

UMD ENEE630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation [51]



Deriving MVSE SolutionsDeriving MVSE Solutions
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Solution of MVSE (cont’d)Solution of MVSE (cont’d)

The optimal filter:   eRh
T 1

The optimal filter: 

f

  eRe
h

TH 1

 TTHTH 1It follows that   eRRhhRh TTHTH 1
 

ehH 1
    eRe

eh
TH 1 
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MVSE: SummaryMVSE: Summary

If choosing the bandpass filters to be FIR of 
length p, its 3dB-b.w. is approximately 1/pg p, pp y p

Thus the MVSE is
matrixncorrelatio

 is ˆ ppR 

  eRe

pfP
TH 1MV

ˆ
)( 




matrix ncorrelatio










)2exp(

1
fj

e


(i.e. normalize by filter b.w.)

  eRe









 



))1(2exp( pfj

e




 MVSE is a data adaptive estimator and provides improved 
resolution over periodogram
– Also referred to as “High-Resolution Spectral Estimator”
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Also referred to as High Resolution Spectral Estimator
– Does not assume a particular underlying model for the data



Recall:  Case Recall:  Case Study on NonStudy on Non--parametric parametric Methods Methods 
 Test case: a process consists of narrowband components 

(sinusoids) and a broadband component (AR)
– x[n] = 2 cos(1 n) + 2 cos(2 n) + 2 cos(3 n) + z[n]

where z[n] = a1 z[n-1] + v[n],  a1 =  0.85, 2 = 0.1
 /2 = 0 05  /2 = 0 40  /2 = 0 421/2 = 0.05, 2/2 = 0.40, 3/2 = 0.42

– N=32 data points are available  
 periodogram resolution f = 1/32

 Examine typical characteristics 
of various non-parametric p
spectral estimators

(Fig.2.17 from Lim/Oppenheim book)
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Deriving MVSE SolutionsDeriving MVSE Solutions
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Output Power From H(f) filterOutput Power From H(f) filter

From the filter bank perspective of periodogram:
0
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Equiv. to filter r(k) 
with { h(k)  h*(-k) } 
and evaluate at 

 
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and evaluate at 
output time k=0



MatrixMatrix--Vector Form of MVSE FormulationVector Form of MVSE Formulation

Define

 The constraint can be written in 
vector form as  1ehH

)( 0fH

Thus the problem becomes

hRh THmin subject to 1ehH

h
j
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Solution of MVSESolution of MVSE  )1(2Re ehhRhJ HTH
def

 

 Use Lagrange multiplier approach 
for solving the constrained optimization problem

 

– Define real-valued objective function s.t. the stationary condition 
can be derived in a simple and elegant way based on the theorem 
for complex derivative/gradient operatorsp g p
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