ENEEG630 Part-3

Part 3. Spectrum Estimation
3.1 Classic Methods for Spectrum Estimation
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Loqgistics

e Last Lecture: lattice predictor
— correlation properties of error processes
— joint process estimator in lattice
— Inverse lattice filter structure

e Today:
— Spectrum estimation: background and classical methods

e Homework set
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Summary of Related Readings on Part-I|

2.1 Stochastic Processes and modeling
Haykin (4t Ed) 1.1-1.8, 1.12-1.14
Hayes 3.3-3.7 (3.5); 4.7

2.2 Wiener filtering
Haykin (4" Ed) Chapter 2
Hayes 7.1,7.2, 7.3.1

2.3-2.4 Linear prediction and Levinson-Durbin recursion
Haykin (4" Ed) 3.1-3.3
Hayes 7.2.2; 5.1; 5.21-5.22, 524-5.2.5

2.5 Lattice predictor
Haykin (41 Ed) 3.8-3.10
Hayes 6.2; 7.2.4; 6.4.1
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Summary of Related Readings on Part-Ill

Overview Haykins 1.16, 1.10

3.1 Non-parametric method
Hayes 8.1; 8.2 (8.2.3,8.2.5); 8.3

3.2 Parametric method
Hayes 8.5, 4.7, 8.4

3.3 Frequency estimation
Hayes 8.6

Review
— On DSP and Linear algebra: Hayes 2.2, 2.3
— On probability and parameter estimation: Hayes 3.1 — 3.2
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Spectrum Estimation: Background

e Spectral estimation: determine the power distribution in
frequency of a random process

— E.g “Does most of the power of a signal reside at low or high
frequencies?” “Are there resonances in the spectrum?”
e Applications:

— Needs of spectral knowledge in spectrum domain non-causal
Wiener filtering, signal detection and tracking, beamforming, etc.

— Wide use in diverse fields: radar, sonar, speech, biomedicine,
geophysics, economics, ...

e Estimating p.s.d. of a w.s.s. process is equivalent to
estimate autocorrelation at all lags
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Spectral Estimation: Challenges

e \When a limited amount of observation data are available
— Can’t get r(k) for all k and/or may have inaccurate estimate of r(k)
— Scenario-1: transient measurement (earthquake, volcano, ...)

— Scenario-2: constrained to short period to ensure (approx.)
stationarity in speech processing

1 S unun-k], k=04...M

o k n=k+1

r(k) =

e Observed data may have been corrupted by noise
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Spectral Estimation: Major Approaches

[
— No assumptions on the underlying model for the data
— Periodogram and its variations (averaging, smoothing, ...)
— Minimum variance method
[
— ARMA, AR, MA models
— Maximum entropy method
[
— For harmonic processes that consist of a sum of sinusoids or
complex-exponentials in noise
[
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Example of Speech Spectrogram
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Figure 3 of SPM May’98 Speech Survey
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“Sprouted grains and seeds are used in salads and dishes such as chop suey”

Frequency (kHz)

N
o
o
(@)

“Sprouted”

Frequency (kHz)

o sto lide %o vowel
fricative cor‘%onantg vowel go sonan?
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Section 3.1 Classical Nonparametric Methods

Recall: given a w.s.s. process {x[n]} with
E[x[n]]=m,

<

E[x"[n]x[n +k]]=r(k)

-

The power spectral density (p.s.d.) is defined as

Lol

2 2

(oro=24 :—r<w< )

As we can take DTFT on a specific realization of a random process,
What is the relation between the DTFT of a specific signal and the
p.s.d. of the random process?
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AT

Ensemble Average of Squared Fourier Magnitude

e p.s.d. can be related to the ensemble average of
the squared Fourier magnitude |X(w)|?

A 1 M _
Consider P, (f)= x[nle /2™
v () M 1 n;ﬂ [n]
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Ensemble Average of P,(f)

1 M M _
E[P, (f)]= r(n—m)e 2 (n-m
Py (D=5 3 3or(n-m)
1 2M _
- > (2M +1-[k]r(k)e 12
2M +1, 5\

e Now, what if M goes to infinity?
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P.S.D. and Ensemble Fourier Magnitude

If the autocorrelation function decays fast enough s.t.

i\k\r(k)@o (i.e.,r(k)— 0 rapidly for kT)

k=—00
o0

then lim E[P, (f)]= Y r(k)e*™ = P(f)

M —o0 ke
= p.s.d.

Thus

UMD ENEEG630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation



3.1.1 Periodogram Spectral Estimator

(1) This estimator is based on (**)

Given an observed data set {x[0], x[1], ..., X[N-1]},
the periodogram is defined as

A 1 N-1 _
Peer () =—|> x[n]e "™
N n=0
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An Equivalent Expression of Periodogram

AN

The periodogram estimator can be given in terms of (k)

N-1 A

Prer ()= Y r(k)e 12

k=—(N-1)

where (k) =

— The quality of the estimates for the higher lags of r(k) may be
poorer since they involve fewer terms of lag products in the
averaging operation

Exercise: to show this from the periodogram definition in last page
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(2) Filter Bank Interpretation of Periodogram

For a particular frequency of f,

A LIRS otk
PPER(fO)ZW Ze“ " X[K]
K

ZO

-1

—| N[> h[n = k]x[K]

?\_
I
o

where

h[n]=

— Impulse response of the filter h[n]: a windowed version of a
complex exponential
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Frequency Response of h[n]

_sInNz(f - 1)
Nsinz(f-f1,)

—
sinc-like function centered at f,.

H(f) exp[i(N -1z (f — f,)]
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Periodogram: Filter Bank Perspective

e Can view the periodogram as an estimator of power
spetrum that has a built-in filterbank

— The filter bank ~ a set of bandpass filters

Z

-1

ﬁPER(fO): N - h[n k]X[k]

>\_
Il
o
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E.q. White Gaussian Process
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Periodogram of zero-mean white Gaussian noise
using N-point data record: N=128, 256, 512, 1024

Monparametric Spectral Estimaticon

OG-

| \

° The random fluctuatlon (measured by variance) of the
periodogram does not decrease with increasing N
=» periodogram is not a consistent estimator
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(3) How Good is Periodogram for Spectral Estimation?

If N —> oo, Will Prer —> p.s.d. P()?

e Estimation: Tradeoff between bias and variance
E(6) 206
e[ 18-E®N =7
e For white Gaussian process, we can show that at f, = k/N
= £ %pgg(fi‘-)} = PR, k=0t - NA

~ 2 = | .M~ >
ch—[ PPE-R-(TK‘)} = i P tﬁ‘*) p K— Y l o F (‘fK)
ZPl@K> . K= 0, ’tj_f_'
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Performance of Periodogram: Summary

e The periodogram for white Gaussian process is an
unbiased estimator but not consistent

— The variance does not decrease with increasing data length

— Its standard deviation is as large as the mean (equal to the quantity
to be estimated)

e Reasons for the poor estimation performance

— Given N real data points, the # of unknown parameters {P(f,), ...
P(fy2)} we try to estimate is N/2, i.e. proportional to N

e Similar conclusions can be drawn for processes with
arbitrary p.s.d. and arbitrary frequencies

— Asymptotically unbiased (as N goes to infinity) but inconsistent
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3.1.2 Averaged Periodogram

e As one solution to the variance problem of periodogram
— Average K periodograms computed from K sets of data records

A 1 K-1 A (M)
Paveer (f)=— > Ppeer(T)
K m=0
where A (M L-1 F
Prer () = % > X,[nle 2™
n=0

And the K sets of data records are

{%I[0], ..., X,JL-1]; x,[n], 0<n<L-1...
{Xc4[n-1], 0<n<L-1}
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Performance of Averaged Periodogram

— If K sets of data records are uncorrelated with each other,

we have: (f.=i/L)
%pagcz,m(fﬂ I.l.d. (m=0,1, ... L-1) for white Gaussian process
= Q 1 .,
= Vo[ Pppee $)] = o« PE(1)
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Practical Averaged Periodogram

e Usually we partition an available data sequence of length N
— Into K non-overlapping blocks, each block has length L (i.e. N=KL)

- x_[n] = x[n+mL], n=0,1.. L-1
m=0,1.. K-1

e Since the blocks are contiguous, the K sets of data records
may not be completely uncorrelated

— Thus the variance reduction factor is in general less than K

e Periodogram averaging is also known as the Bartlett’s
method
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Averaged Periodogram for Fixed Data Size

e Given a data record of fixed size N, will the result be better
If we segment the data into more and more subrecords?

We examine for a real-valued stationary process:

A i 1 K-1 , (m) R
E|:PAVPER(f):|=E EZPPER(f) =E[Pp(gé(f)]
- m=0 _

identical distribution for all m

Note 2(0) L-1 ~(0) _joAfl
P ()= Zr (I)e
|=—(L-1) —y an equivalent
1 L1l expression to
R definition in terms
where r(O) (I) — I Z X[n]x[n + “‘] of x[n]
n=0

UMD ENEEG630 Advanced Signal Processing (ver.1111) Nonparametric spectral estimation



Mean of Averaged Periodogram

NCK] = ﬂ | — Y Ao (k<L N

1t g wlou 308 bw.
0 O -t-'"
(Boﬁi{‘%tt) j\f\% /L
. L ~ u
= N(T):L(m) v indiowd N A~

L Sihfﬂ':f' 0 Jr_
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Mean of Averaged Periodogram (cont'd)

E[Pay rer ()= DTFTRWIK]r ()} ¢
1
— _ZEW ( f T 77) P(?])d 77 convolution in frequency

T2
= P(T)
e Biased estimate (both averaged and regular periodogram)

— The convolution with the window function w[k] lead to the mean of
the averaged periodogram being smeared from the true p.s.d
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Non-parametric Spectrum Estimation: Recap

e Periodogram
— Motivated by relation between p.s.d. and squared magnitude of DTFT
of a finite-size data record
— Variance: won’t vanish as data length N goes infinity ~ “inconsistent”

— Mean: asymptotically unbiased w.r.t. data length N in general

+ equivalent to apply triangular window to autocorrelation function
(windowing in time gives smearing/smoothing in freq domain)

+ unbiased for white Gaussian

e Averaged periodogram
— Reduce variance by averaging K sets of data record of length L each

— Small L increases smearing/smoothing in p.s.d. estimate thus higher
bias = equiv. to triangular windowing

e Windowed periodogram: generalize to other symmetric windows
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Case Study on Non-parametric Methods

e Test case: a process consists of narrowband components
(sinusoids) and a broadband component (AR)

— X[n] =2 cos(w, n) + 2 cos(w, n) + 2 cos(w; n) + z[n]

where z[n] = —a, z[n-1] + v[n], 8, =-0.85,6%2=0.1
®,/2n = 0.05, o,/21 = 0.40, w,/27 = 0.42

— N=32 data points are available 50.00 -

=» periodogram resolution f = 1/32
10.00 .

= 30. "l
(Fig.2.17 from Lim/Oppenheim book) 2% 5% oo oW om 08 =

Frsguency

8
3

Examine typical characteristics
of various non-parametric
spectral estimators

True power mpeciral denaity (dB)
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3.1.3 Periodogram with Windowing

e Review and Motivation

The periodogram estimator can be given in terms of F(k)
N—1 A

Poer (F) = Y r(k)e 12
k=—(N-1)
e TR = > X4k FR)=F (K

fork >0

— The higher lags of r(k), the poorer estimates since the estimates
iInvolve fewer terms of lag products in the averaging operation

e Solution: weigh the higher lags less
— Trade variance with bias
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Windowing
e Use a window function to weigh the higher lags less

\

~ _ A o~
" P = 5 s () eI
= - (N

phere NI B8 0 lag window ith propesties
® 0 WKIS W)= w(0)=1 preserves variance r(0)
B WK]=WIK]  Sywmdrc
@ Wkl=o o [K| S M where ML N-|
@ W) must be Chosenlo ensuro PN )20

e Effect: periodogram smoothing
— Windowing in time < Convolution/filtering the periodogram

— Also known as the Blackman-Tukey method
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Common Lag Windows

e Much of the art in non-parametric spectral estimation is in
choosing an appropriate window (both in type and length)

TABLE 2.1 COMMON LAG WINDOWS

Mame Delinition Fourier Transform
Hectangular wik) {_l:', il=M ] L]
_sinFEM + 1)
sim o) 2
| & :
il k| = M s
Sartlelt Wk = {] M Wil = Waiaw)
¥ k| =M i 1 {.Ein Mm_."zh}!
oM\ sinwf2 )
] E i
- 4 ;oo = k| =M TR o
Hunnming wikl=42 2 e M | W) = Ew.nell:r: — w/M)
il [k} =M i
b= Wl
3 LAY
I
= _Il’llf,l:\'.r.l LG 'ilT_u'l 1’{]
4
54 (46 ¢ ﬂ—q k=M ; ;
Hamming wikl = Diodrnaitane M L Wia) = 0.23 Walw — /M)
0, lk| = M = 0,54 Wi lwt
+ 0.23 Wela + w/M)
v ; 3 Ty .
21 By - (oY =z wie -2 (et Table 2.1 common lag window
.e.{ | M) . “M)C ML . MIN2 sinfw/2 . .
Wil = T it sn' b4 (from Lim-Oppenheim book)
! 2;__]_ — k=M e
; M 2 sin“e /2 |
|U. k| =M
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Discussion: Estimate r(k) via Time Average

e Normalizing the sum of (N-k) pairs
by a factor of 1/N ? v.s. by a factor of 1/(N-k) ?

Biased (Iow variance) Unbiased (may not non-neg. definite)

| e N ] N-—(-k %
Pro =4 X X1 Kn) 0 = s Xk Xen
N=o N=0D

EQF.CM) — E(F;UQ) —

e Hints on showing
the non-negative
definiteness: using ri(k)

to construct /
correlation matrix

+ For IA’z(k) . HW#8
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3.1.4 Minimum Variance Spectral Estimation (MVSE)

e Recall: filter bank perspective of periodogram

— The periodogram can be viewed as estimating the p.s.d. by
forming a bank of narrowband filters with sinc-like response

— The high sidelobe can lead to “leakage” problem:
+ large output power due to p.s.d outside the band of interest

e MVSE designs filters to minimize the leakage from out-of-
band spectral components

— Thus the shape of filter is dependent on the frequency of interest
and data adaptive

(unlike the identical filter shape for periodogram)

— MVSE is also referred to as the Capon spectral estimator
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Main Steps of MVSE Method

e Design a bank of bandpass filters Hi(f) with center
frequency f, so that

— Each filter rejects the maximum amount of out-of-band power
— And passes the component at frequency f; without distortion

e Filter the input process { x[n] } with each filter in the filter
bank and estimate the power of each output process

e Set the power spectrum estimate at frequency f; to be the
power estimated above divided by the filter bandwidth
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Formulation of MVSE

The MVSE designs a filter H(f) for each
frequency of interest f,

minimize the output power

(I.e., to pass the components at f, w/o distortion)
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Deriving MVSE Solutions
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Solution of MVSE (cont’'d)

The optimal filter: h= Q'EFEQ;%Q
It follows that o=h"R"Th=h"JR" (RT )_1§
_ihfe=A=—
EOE
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MVSE: Summary

If choosing the bandpass filters to be FIR of
length p, its 3dB-b.w. is approximately 1/p

Thus the MVSE is Ris pxp
A D correlation matrix
Pwv(f)= TV C 1]
9 (RT ) Q o exp(j2f)
(i.e. normalize by filter b.w.) exp(i2 (p-1)

e MVSE Is a data adaptive estimator and provides improved
resolution over periodogram

— Also referred to as “High-Resolution Spectral Estimator”
— Does not assume a particular underlying model for the data
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Recall: Case Study on Non-parametric Methods

e Test case: a process consists of narrowband components
(sinusoids) and a broadband component (AR)

— X[n] =2 cos(w, n) + 2 cos(w, n) + 2 cos(w; n) + z[n]

where z[n] = —a, z[n-1] + v[n], 8, =-0.85,6%2=0.1
®,/2n = 0.05, o,/21 = 0.40, w,/27 = 0.42

— N=32 data points are available 50.00 -

=» periodogram resolution f = 1/32
10.00 .

= 30. "l
(Fig.2.17 from Lim/Oppenheim book) 2% 5% oo oW om 08 =

Frsguency

8
3

Examine typical characteristics
of various non-parametric
spectral estimators

True power mpeciral denaity (dB)
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Deriving MVSE Solutions
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Output Power From H(f) filter

From the filter bank perspective of periodogram:

H(f) = Zolh[n]e‘jz”f”

n=—(N-1)
Thus .
51 Zh[k]e J2rK Zh [11e’*™ P (f)df
2 k=—(N-1) |I=—(N-1)

Equiv. to filter r(k)
with { h(k) ® h*(-k) }
and evaluate at
output time k=0
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Matrix-Vector Form of MVSE Formulation

Define Th00J 1 o P bﬁpit_k_

¥
R hC) c MOY M) ~ - 2] T Ro)
= T ity BRI RIS r
‘ B L 1 \‘u L
- l,‘M 1
2 = | o2 =>» The constraint can be written in
3 ¢ vector formas h"e =1
€ H(f,)
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def
Solution of MVSE  J = h"R"h+Rel24(1-h"e)]

e Use Lagrange multiplier approach
for solving the constrained optimization problem

— Define real-valued objective function s.t. the stationary condition
can be derived in a simple and elegant way based on the theorem

for complex derivative/gradient operators

1
minJ =nHRTn+/1(1—an)+[z(1—n“g)]‘ —h=AR")"e and h"e=1
i HpT H * H (i_ 1

=h"R"h+A(L-h"e) + £ (1—e"h) "SR
' _ Th_ je— =<,
either VB*J O0=R h-4e=0 . (RT)lg
or V,J =O:>(QHRT)T—ZQ*:O \ QH(RT)_lg

—([R")'h-1e=0=R"h-1e=0
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