ENEEG630 Part-3

Part 3. Spectrum Estimation
3.2 Parametric Methods for Spectral Estimation
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Summary of Related Readings on Part-Ill

Overview Haykins 1.16, 1.10

3.1 Non-parametric method
Hayes 8.1; 8.2 (8.2.3,8.2.5); 8.3

3.2 Parametric method
Hayes 8.5, 4.7, 8.4

3.3 Frequency estimation
Hayes 8.6

Review
— On DSP and Linear algebra: Hayes 2.2, 2.3
— On probability and parameter estimation: Hayes 3.1 — 3.2
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Motivation

e Implicit assumption by classical methods

— Classical methods use Fourier transform on either windowed data or
windowed autocorrelation function (ACF)

— Implicitly assume the unobserved data or ACF outside the window
are zero => not true in reality

— Consequence of windowing: smeared spectral estimate
(leading to low resolution)

e If prior knowledge about the process is available

— We can use prior knowledge and select a good model to
approximate the process

— Usually need to estimate fewer model parameters (than non-
parametric approaches) using the limited data points we have

— The model may allow us to better describe the process outside the
window (instead of assuming zeros)
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General Procedure of Parametric Methods

e Select a model (based on prior knowledge)
e Estimate the parameters of the assumed model

e Obtain the spectral estimate implied by the model (with
the estimated parameters)
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Spectral Estimation using AR, MA, ARMA Models

e Physical insight: the process is generated/approximated by
filtering white noise with an LTI filter of rational transfer func H(z)

e Use observed data to estimate a few lags of r(k)
— Larger lags of r(k) can be implicitly extrapolated by the model

e Relation between r(k) and filter parameters {a,} and {b,}

— PARAMETER EQUATIONS from Section 2.1.2(6)
— Solve the parameter equations to obtain filter parameters
— Use the p.s.d. implied by the model as our spectral estimate

e Deal with nonlinear parameter equations
— Try to convert/relate them to the AR models that have linear equations
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Review: Parameter Equations

Yule-Walker equations (for AR process)
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3.2.1 AR Spectral Estimation

(1) Review of AR process

— The time series {x[n], X[n-1], ..., X[n-m]} is a realization of
an AR process of order M if it satisfies the difference
equation

where {v[n]} is a white noise process with variance ¢ .

— Generating an AR process with parameters {a;}:

vind k A | xCn]
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3.2.1 AR Spectral Estimation

(1) Review of AR process

— The time series {x[n], X[n-1], ..., X[n-m]} is a realization of
an AR process of order M if it satisfies the difference equation
X[n] + a; X[n-1] + ... + ay, X[n-M] = v[n]
where {v[n]} is a white noise process with variance ¢2 .

— Generating an AR process with parameters {a;}:

H(2) = —5—
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P.S.D. of An AR Process

Recall: the p.s.d. of an AR process {x[n]} is given by

PAR(Z):
U z=gl”=¢l?

ISAR(f):
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P.S.D. of An AR Process

Recall: the p.s.d. of an AR process {x[n]} is given by

A 02
P (2) =
U z=gl”=¢l?
2
A O
PAR(f): 2

M
1+ ) ae ™™
k=1
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Procedure of AR Spectral Estimation

e Observe the available data points x[0], ..., x[N-1], and
Determine the AR process order p

e Estimate the autocorrelation functions (ACF) k=0,...p

e Solve { g } from the Yule-Walker equations or
the normal equation of forward linear prediction

— Recall for an AR process, the normal equation of FLP is
equivalent to the Yule-Walker equation

e Obtain power spectrum P, (f):
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Procedure of AR Spectral Estimation

e Observe the available data points x[0], ..., x[N-1], and
Determine the AR process order p

e Estimate the autocorrelation functions (ACF) k=0,...p

Biased (low variance) Unbiased (may not non-neg.definite)
N —1—k N —1—k
r(k) = L Z X[n+k]x*[n] r(k) = 1 X[n+Kk]x*[n]
N n=0 N T k n=0

e Solve { g } from the Yule-Walker equations or
the normal equation of forward linear prediction

— Recall for an AR process, the normal equation of FLP is

equivalent to the Yule-Walker equation

2
O

M s
‘1+ Zkzlake 2K

2

e Obtain power spectrum P, (f): P (f)=
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3.2.2 Maximum Entropy Spectral Estimation (MESE)

e \iew point: Extrapolations of ACF

— {r[0], r[1], ..., r[p]} Is known; there are generally an infinite
number of possible extrapolations for r(k) at larger lags

— Aslong as { r[p+1], r[p+2], ... } guarantee that the correlation
matrix is non-negative definite, they all form valid ACFs for w.s.s.

e Maximum entropy principle

— Perform extrapolation s.t. the time series characterized by the
extrapolated ACF has maximum entropy
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3.2.2 Maximum Entropy Spectral Estimation (MESE)

e Extrapolations of ACF

— {r[0], r[1], ..., r[p]} is known; there are generally an infinite
number of possible extrapolations for r(k) at larger lags

— Aslong as { r[p+1], r[p+2], ... } guarantee that the correlation
matrix is non-negative definite, they all form valid ACFs for w.s.s.

e Maximum entropy principle

— Perform extrapolation s.t. the time series characterized by the
extrapolated ACF has maximum entropy

— 1.e. the time series will be the least constrained thus most random
one among all series having the same first (p+1) ACF values

=> Maximizing entropy leads to estimated p.s.d. be the
smoothest one

— Recall white noise process has flat p.s.d.
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MESE for Gaussian Process: Formulation

For a Gaussian random process, the entropy per sample

IS proportional to
1

Eln P(f)df

2
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MESE for Gaussian Process: Formulation

For a Gaussian random process, the entropy per sample
IS proportional to
1
J‘_len P(f)df

2

Thus the max entropy spectral estimation is
1
max jzl In P(f)df
2

subject to
1

B P(f)e'*™df =r(k), fork=01..,p

2
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MESE for Gaussian Process: Solution

Using the Lagrangian multiplier technique, the solution
can be found as

ISME(f):

2
O

) 2
‘1+ Zle a, e 12
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MESE for Gaussian Process: Solution

Using the Lagrangian multiplier technique, the solution
can be found as

ISME(f):

2
O

) 2
‘1+ Zszl a, e 12

where {a,} are found by solving the Yule-Walker
equations given the ACF values r(0), ..., r(p)

e For Gaussian processes, the MESE is equivalent to AR
spectral estimator and the Pc(f) is an all-pole spectrum

— Different assumptions on the process: Gaussian vs AR processes
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3.2.3 MA Spectral Estimation

An MA(g) model
q q
x[n]=>» byv[n-k] = B(z)=)> bz™
=0 =0

can be used to define an MA spectral estimator

2

~ 9 _
P,A(f)= 021+Zbke—12”fk
k=1

Recall important results on MA process:

(1) The problem of solving for b, given {r(k)} is to solve a set of
nonlinear equations;

(2) An MA process can be approximated by an AR process of
sufficiently high order.
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Basic Idea to Avoid Solving Nonlinear Equations

Consider two processes:

e Process#1:. we observed N samples, and need to perform
spectral estimate

— We first model it as a high-order AR process, generated by 1/A(z) filter

X Cw N
e TR & : A
SS , §§
B L

<
(am
2
(-

—

e Process#2: an MA-process generated by A(z) filter

— Since we know A(z), we can know process#2’s autocorrelation function;
— We model process#2 as an AR(q) process => the filter would be 1/B(z)
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Use AR Model to Help Finding MA Parameters

— For simplicity, we consider the real coefficients for the MA model.

Note Pu(2)=07B(2)B(z7)
To approximate it with an AR(L) model, i.e.,

L
where A(2) =1+ Z az"
L>>q **
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Use AR Model to Help Finding MA Parameters

— For simplicity, we consider the real coefficients for the MA model.

Note Pu(2)=07B(2)B(z7)

To approximate it with an AR(L) model, i.e.,
L
P..(2) ~ o’ where A(z) =1+ ) a,z™"
A(Z)A(z™) L>>q kI
= A(2)A(zY) =
( )wr—~( ) B(z)B(z™)

\._.--'—'a—_
order L order q

s The RHS represents power spectrum of an AR(q) process
s The unverse ZT of LHS is the ACF of the AR(q) process

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation



pAY
Use AR Model to Find MA Parameters: Solutions

— For simplicity, we consider the real coefficients for the MA model.
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Recall: ACF of Output Process After LTI Filtering

W.s.s. XA — g
process —"[ L] w
stable LTI filter
Iy (6) ~y (&)
= —
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Recall: ACF of Output Process After LTI Filtering

—| AL \-——j -

stable LTI filter
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Use AR to Help Finding MA Parameters (cont’d)

A random process with power spectrum A(z)A(z ') can
be viewed as filtering a white process by a filter A(z),
and has autocorrelation
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Use AR to Help Finding MA Parameters (cont’d)

A random process with power spectrum A(z)A(z ') can
be viewed as filtering a white process by a filter A(z),
and has autocorrelation

Lk
proportional to Z aa., for lag k
n=0

=» Knowing such autocorrelation function,

we can use Levinson-Durbin recursion to find the optimal
linear prediction parameters for the process

(or equivalently its AR approximation parameters)

1
B(z)B(z™)
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T ] B(Y) | x ]

Durbin’s Method 3

[

1. Use Levinson-Durbin recursion and solve for

(e P -0 [& ] [Fw)
Ry ey ey (|8 (= -
, N 1 * N
N h O AL N , H\L)_J
D — — 7 o) P OeL
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Mlutl B 3) | x w3

Durbin’s Method 3

— [ e

1. Use Levinson-Durbin recursion and solve for

RS Ry — - —T:LL—I) 1 O | Q)
O S I N R i
, . 1 * N
N S oA N L QO
U = = Ry J Lo
AL -l“K.
where 1 (K) — KN X )

l\l

— We first approximate the observed data sequence {x[0], ..., X[N]}
with an AR model of high order (often pick L > 4q)

— We use biased ACF estimate here to ensure nonnegative definiteness
and smaller variance than unbiased estimate (dividing by N-k)
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Durbin Method (cont’d)

2. Fit the data sequence{l,a,,a,,..., 4, } to an AR(q) model:
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— Note we add 1/(L+1) factor to allow the interpretation of r (k) as an
autocorrelation function estimator
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W"“‘_t’ ’PH:LE'.‘:‘:- #2
Durbin Method (cont’'d) ss

— ——

B)

2. Fit the data sequence{l,4,,4,,...,4, } to an AR(g) model:

A N N A ~ N
[ T (o) Tl ——- M%) b —\ (0]
i~ M ~ 3 —_—
Cal) Toolo) M) = i
: N : ~ nl(‘iﬂ
~ I I~
“ (@) - - I‘oJ*” bff J -

where F&(F—‘)— T4 i——&n&mk

— The result {b;} is the estimated MA parameters for original {x[n]}

— Note we add 1/(L+1) factor to allow the interpretation of r (k) as an
autocorrelation function estimator
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3.2.4 ARMA Spectral Estimation

Recall the ARMA(p,q) model

We define an ARMA(p,q) spectral estimator
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3.2.4 ARMA Spectral Estimation

Recall the ARMA(p,q) model
p q
x[n]=-> ax[n-k]+> bv[n-k]
k=1 k=0

We define an ARMA(p,q) spectral estimator

2
9 - .
1+ ) bel*™

3 ~2 k=1
PARMA(f) =0 2

P .
1+ 4,70
k=1
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Modified Yule-Walker Equations

Recall the Yule-Walker Eq. for ARMA(p,q) process

5 92
i ) — #mancpuwﬁ 1070 [0k
= =0 k’_':_orll-_r%.,
] = - SO UAD s
= :
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Modified Yule-Walker Equations

Recall the Yule-Walker Eq. for ARMA(p,q) process

5 92
i ) — #mmcm]wﬁ 1070 [0k
= =0 k’_':_orll-_r%..,
] = - SO AT s

We can use the equations for k=g+1 to solve for {a}

() M) - Tl Tl THED
MEn) M 1 0> == |

! 0q> . —r(%*PU

_—

.
. .

_,\*({,-fP—l) A 2

—> S @:‘E “Modified Yule-Walker Equations”
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Estimating ARMA Parameters

1. By solving the modified Yule-Walker eq., we get

-~ P
A(z)=1+) 4.z
k=1

2. To estimate {b,},
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Estimating ARMA Parameters

1. By solving the modified Yule-Walker eq., we get

- P
A(z)=1+) 4z
k=1

2. To estimate {b,},

We first filter {x[n]} with A(Z) and model the output
with an MA(g) model using Durbin’s method.
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Extension: LSMYWE Estimator

e Performance by solving p modified Yule-Walker equations
followed by Durbin’s method

— May yield highly variable spectral estimates (esp. when the matrix
iInvolving ACF is nearly singular due to poor ACF estimates)

e Improvement: use more than p equations to solve {a, ..a } in
a least square sense

— Use Yule-Walker equations for k = (g+1), ... M: min|[t—Sa ||
— Least square solution: a = (SHS) —1SHt
— Then obtain {b;} by Durbin’s method

= “Least-square modified Yule-Walker equation” (LSMYWE)

Ref: review in Hayes’ book Sec.2.3.6 on least square solution
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Comparison of Different Methods: Revisit

Test case: a process consists of narrowband components
(sinusoids) and a broadband component (AR)
— X[n] =2 cos(w, n) + 2 cos(w, n) + 2 cos(w; n) + z[n]
where z[n] = —a, z[n-1] + v[n], 8, =-0.85,6%2=0.1
®,/21n = 0.05, o,/21 = 0.40, w,/2n = 0.42
— N=32 data points are available _ sooop
=> periodogram resolution f = 1/32 £ |
E 30,00 -
Examine typical characteristics g ool |
of various non-parametric and £ ool | ::
parametric spectral estimators g - L

=30.00 s
-050 =030 =010 000 0.30 0.50 2v
Freguency

(Fig.2.17 from Lim/Oppenheim book)
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3.2.5 Model Order Selection

e The best way to determine the model order is to base it on
the physics of the data generation process

e Example: speech processing

— Studies show the vocal tract can be modeled as an all-pole filter
having 4 resonances in a 4kHz band, thus at least 4 pairs of
complex conjugate poles are necessary

=>» Typically 10-12 poles are used in an AR modeling for speech

e \When no such knowledge is available, we can use some
statistical test to estimate the order

Ref. for in-depth exploration: “Model-order selection,” by P. Stoica and Y. Selen,
IEEE Signal Processing Magazine, July 2004.
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Considerations for Order Selection

e Modeling error

— Modeling error measures the (statistical) difference between the true
data value and the approximation by the model

¢ €.g. estimating linear prediction MSE in AR modeling

— Usually for a given type of model (e.g. AR, ARMA), the modeling
error decreases as we increase the model order

e Balance between the modeling error and the amount of
model parameters to be estimated

— The number of parameters that need to be estimated and represented
Increases as we use higher model order =» Cost of overmodeling

— Can balance modeling error and the cost of going to higher model by
Imposing a penalty term that increases with the model order
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A Few Commonly Used Criteria

e Akaike Information Criterion (AIC)

— A general estimate of the Kullback-Leibler divergence between
assumed and true p.d.f., with an order penalty term increasing linearly

— Choose the model order that minimize AIC

e Minimum Description Length (MDL) Criterion
— Impose a bigger penalty term to overcome AIC’s overestimation

— Estimated order converges to the true order as N goes to infinity
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A Few Commonly Used Criteria

e Akaike Information Criterion (AIC)

— A general estimate of the Kullback-Leibler divergence between
assumed and true p.d.f., with an order penalty term increasing linearly

— Choose the model order that minimize AIC

AIC(H)=NIng, + 2i
size Offl‘ AN ? model order:

: model error =p for AR(p)
available data i=p+q for ARMA(p,q)

e Minimum Description Length (MDL) Criterion
— Impose a bigger penalty term to overcome AIC’s overestimation

— Estimated order converges to the true order as N goes to infinity
MDL(1)=NlIng, + (logN)i
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