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Summary of Related Readings on PartSummary of Related Readings on Part--IIIIII

Overview    Haykins  1.16, 1.10

3 1 Non-parametric method3.1  Non-parametric method
Hayes  8.1;    8.2  (8.2.3, 8.2.5);    8.3

3 2 P t i th d3.2  Parametric method
Hayes  8.5,  4.7;    8.4

3.3  Frequency estimation
Hayes 8.6

Review 
– On DSP and Linear algebra:  Hayes 2.2, 2.3
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– On probability and parameter estimation:  Hayes 3.1 – 3.2



MotivationMotivation
 Implicit assumption by classical methods 

– Classical methods use Fourier transform on either windowed data or 
i d d l i f i (AC )windowed autocorrelation function (ACF)

– Implicitly assume the unobserved data or ACF outside the window 
are zero => not true in reality

– Consequence of windowing:   smeared spectral estimate 
(leading to low resolution)

If prior knowledge about the process is available If prior knowledge about the process is available
– We can use prior knowledge and select a good model to 

approximate the process
– Usually need to estimate fewer model parameters (than non-

parametric approaches) using the limited data points we have
– The model may allow us to better describe the process outside the
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The model may allow us to better describe the process outside the 
window (instead of assuming zeros)



General Procedure of Parametric MethodsGeneral Procedure of Parametric Methods

 Select a model (based on prior knowledge)

 Estimate the parameters of the assumed model

 Obtain the spectral estimate implied by the model (with 
the estimated parameters)
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Spectral Estimation using AR, MA, ARMA ModelsSpectral Estimation using AR, MA, ARMA Models

 Physical insight:  the process is generated/approximated by 
filtering white noise with an LTI filter of rational transfer func H(z)

 Use observed data to estimate a few lags of r(k)
– Larger lags of r(k) can be implicitly extrapolated by the model

 Relation between r(k) and filter parameters {ak} and {bk}
PARAMETER EQUATIONS f S ti 2 1 2(6)– PARAMETER EQUATIONS from Section 2.1.2(6)

– Solve the parameter equations to obtain filter parameters
– Use the p.s.d. implied by the model as our spectral estimatep p y p

 Deal with nonlinear parameter equations
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– Try to convert/relate them to the AR models that have linear equations 



Review:  Parameter EquationsReview:  Parameter Equations

Yule-Walker equations (for AR process)

ARMA model MA model
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3.2.1  AR Spectral Estimation3.2.1  AR Spectral Estimation
(1) Review of AR process

– The time series {x[n], x[n-1], …, x[n-m]} is a realization of 
an AR process of order M if it satisfies the difference 
equation

[ ] + [ 1] + + [ M] [ ]x[n] + a1 x[n-1] + … + aM x[n-M] = v[n]
where {v[n]} is a white noise process with variance 2 .

– Generating an AR process with parameters {ai}:
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P.S.D. of An AR ProcessP.S.D. of An AR Process

Recall: the p.s.d. of an AR process {x[n]} is given by 
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Procedure of AR Spectral EstimationProcedure of AR Spectral Estimation
 Observe the available data points x[0], …, x[N-1], and

Determine the AR process order p

 Estimate the autocorrelation functions (ACF) k=0,…p

Biased (low variance) Unbiased (may not non neg.definite)







kN

n

nxknx
N

kr
1

0

][][1)(ˆ 








kN

n

nxknx
kN

kr
1

0

][][1)(ˆ

Biased (low variance) Unbiased (may not non neg.definite)

 Solve { ai } from the Yule-Walker equations or 
the normal equation of forward linear prediction

2

)(ˆ fP 

– Recall for an AR process, the normal equation of FLP is 
equivalent to the Yule-Walker equation
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 Obtain power spectrum PAR (f):
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 Solve { ai } from the Yule-Walker equations or 
the normal equation of forward linear prediction
– Recall for an AR process, the normal equation of FLP is 

equivalent to the Yule-Walker equation
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 Obtain power spectrum PAR (f): 2
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3.2.2 Maximum Entropy Spectral Estimation 3.2.2 Maximum Entropy Spectral Estimation (MESE)(MESE)
 View point:  Extrapolations of ACF

– {r[0], r[1], …, r[p]} is known;  there are generally an infinite 
b f ibl l i f (k) l lnumber of possible extrapolations for r(k) at larger lags

– As long as { r[p+1], r[p+2], … } guarantee that the correlation 
matrix is non-negative definite, they all form valid ACFs for w.s.s.

 Maximum entropy principle
– Perform extrapolation s.t. the time series characterized by the 

extrapolated ACF has maximum entropy
– i.e. the time series will be the least constrained thus most random 

one among all series having the same first (p+1) ACF valuesg g (p )

 Maximizing entropy leads to estimated p.s.d. be the 
smoothest one
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– Recall white noise process has flat p.s.d.
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 Maximum entropy principle
– Perform extrapolation s.t. the time series characterized by the 

extrapolated ACF has maximum entropy
– i.e. the time series will be the least constrained thus most random 

one among all series having the same first (p+1) ACF valuesg g (p )

=> Maximizing entropy leads to estimated p.s.d. be the 
smoothest one
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– Recall white noise process has flat p.s.d.



MESE for Gaussian Process:  FormulationMESE for Gaussian Process:  Formulation

For a Gaussian random process, the entropy per sample 
is proportional to 
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MESE for Gaussian Process: SolutionMESE for Gaussian Process: Solution

Using the Lagrangian multiplier technique, the solution 
can be found ascan be found as
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where {ak} are found by solving the Yule-Walker 
equations given the ACF values r(0), …, r(p)

 For Gaussian processes, the MESE is equivalent to AR 
spectral estimator and the PME(f) is an all-pole spectrum

Diff i h G i AR
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– Different assumptions on the process:  Gaussian vs AR processes
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– Different assumptions on the process:  Gaussian vs AR processes



3.2.3  MA Spectral Estimation3.2.3  MA Spectral Estimation

An MA(q) model
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(1) The problem of solving for bk given {r(k)} is to solve a set of 
nonlinear equations;

(2) An MA process can be approximated by an AR process of
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(2) An MA process can be approximated by an AR process of 
sufficiently high order.



Basic Idea to Avoid Solving Nonlinear EquationsBasic Idea to Avoid Solving Nonlinear Equations

Consider two processes:  

 Process#1: we observed N samples and need to perform Process#1:  we observed N samples, and need to perform 
spectral estimate
– We first model it as a high-order AR process, generated by 1/A(z) filter

 Process#2:  an MA-process generated by A(z) filter
– Since we know A(z), we can know process#2’s autocorrelation function;
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– We model process#2 as an AR(q) process => the filter would be 1/B(z)



Use AR Model to Help Finding MA ParametersUse AR Model to Help Finding MA Parameters
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– For simplicity, we consider the real coefficients for the MA model.
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 The RHS represents power spectrum of an AR(q) process
 The unverse ZT of LHS is the ACF of the AR(q) process The unverse ZT of LHS is the ACF of the AR(q) process
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Use AR Model to Help Finding MA ParametersUse AR Model to Help Finding MA Parameters
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 The unverse ZT of LHS is the ACF of the AR(q) process



Use AR Model to Find MA Parameters:  SolutionsUse AR Model to Find MA Parameters:  Solutions
– For simplicity, we consider the real coefficients for the MA model.

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation  [25]



Recall: ACF of Output Process After LTI FilteringRecall: ACF of Output Process After LTI Filtering

w.s.s. 
processprocess

stable LTI filter

filter filterfilter filter

deterministic autocorrelation 
of filter’s impulse response
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Use AR to Help Finding MA Parameters Use AR to Help Finding MA Parameters (cont’d)(cont’d)

A random process with power spectrum A(z)A(z-1) can 
be viewed as filtering a white process by a filter A(z), 
and has autocorrelation

proportional to for lag k
kL

kaaproportional to for lag k

 Knowing such autocorrelation function,
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 Knowing such autocorrelation function, 
we can use Levinson-Durbin recursion to find the optimal 
linear prediction parameters for the process 
(or equivalently its AR approximation parameters)(or equivalently its AR approximation parameters)

Thus we get {bk} as
1)()( 1 zAzAThus we get {bk} as
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Use AR to Help Finding MA Parameters Use AR to Help Finding MA Parameters (cont’d)(cont’d)

A random process with power spectrum A(z)A(z-1) can 
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Thus we get {bk} as
)()(
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Durbin’s MethodDurbin’s Method

1. Use Levinson-Durbin recursion and solve for 

here

– That is we first approximate the observed data sequence {x[0]

where

– That is, we first approximate the observed data sequence {x[0], …, 
x[N]} with an AR model of high order (often pick L > 4q)

– We use biased ACF estimate here to ensure nonnegative definiteness 

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation  [30]

and smaller variance than unbiased estimate (dividing by N-k)



Durbin’s MethodDurbin’s Method

1. Use Levinson-Durbin recursion and solve for 

where

We first approximate the observed data sequence {x[0] x[N]}– We first approximate the observed data sequence {x[0], …, x[N]} 
with an AR model of high order (often pick L > 4q)

– We use biased ACF estimate here to ensure nonnegative definiteness 
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and smaller variance than unbiased estimate (dividing by N-k)



Durbin Method (cont’d)Durbin Method (cont’d)

2. Fit the data sequence to an AR(q) model:}ˆ,...,ˆ,ˆ,1{ 21 Laaa

where

– The result {bi} is the estimated MA parameters for original{x[n]}
– Note we add 1/(L+1) factor to allow the interpretation of ra(k) as an 
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( ) p a( )
autocorrelation function estimator



Durbin Method (cont’d)Durbin Method (cont’d)

2. Fit the data sequence to an AR(q) model:}ˆ,...,ˆ,ˆ,1{ 21 Laaa (q)}, ,,,{ 21 L

where

– The result {bi} is the estimated MA parameters for original {x[n]}
– Note we add 1/(L+1) factor to allow the interpretation of ra(k) as an 
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( ) p a( )
autocorrelation function estimator



3.2.4 ARMA Spectral Estimation3.2.4 ARMA Spectral Estimation

qp

Recall the ARMA(p,q) model
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Modified YuleModified Yule--Walker EquationsWalker Equations

Recall the Yule-Walker Eq. for ARMA(p,q) process

We can use the equations for k≥q+1 to solve for {al} 

“Modified Yule Walker Equations”Modified Yule-Walker Equations
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Modified YuleModified Yule--Walker EquationsWalker Equations

Recall the Yule-Walker Eq. for ARMA(p,q) process

We can use the equations for k≥q+1 to solve for {al} 

“Modified Yule Walker Equations”
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Modified Yule-Walker Equations



Estimating ARMA ParametersEstimating ARMA Parameters

1. By solving the modified Yule-Walker eq., we get
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We first filter {x[n]} with         , and model the output )(ˆ zA
2. To estimate {bk},

with an MA(q) model using Durbin’s method.
)(
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Estimating ARMA ParametersEstimating ARMA Parameters
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Extension: LSMYWE  EstimatorExtension: LSMYWE  Estimator

 Performance by solving p modified Yule-Walker equations 
followed by Durbin’s method
– May yield highly variable spectral estimates (esp. when the matrix 

involving ACF is nearly singular due to poor ACF estimates)

 Improvement: use more than p equations to solve {a1 .. ap} in 
a least square sense

U Y l W lk ti f k ( +1) M i || t S ||2– Use Yule-Walker equations for k = (q+1), … M:   min || t – S a ||2

– Least square solution:  a = (SH S) —1 SH t
Then obtain {b } by Durbin’s method– Then obtain {bi} by Durbin s method

 “Least-square modified Yule-Walker equation” (LSMYWE)
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Ref:  review in Hayes’ book Sec.2.3.6 on least square solution



Comparison of Different Methods:  RevisitComparison of Different Methods:  Revisit
 Test case: a process consists of narrowband components 

(sinusoids) and a broadband component (AR)
– x[n] = 2 cos(1 n) + 2 cos(2 n) + 2 cos(3 n) + z[n]

where z[n] = a1 z[n-1] + v[n],  a1 =  0.85, 2 = 0.1
1/2 = 0.05, 2/2 = 0.40, 3/2 = 0.421/2  0.05, 2/2  0.40, 3/2  0.42

– N=32 data points are available  
 periodogram resolution f = 1/32

 Examine typical characteristics 
f i t i dof various non-parametric and

parametric spectral estimators
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(Fig.2.17 from Lim/Oppenheim book)
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3.2.5 Model Order Selection3.2.5 Model Order Selection

 The best way to determine the model order is to base it on 
the physics of the data generation process

 Example:  speech processing
– Studies show the vocal tract can be modeled as an all-pole filter p

having 4 resonances in a 4kHz band, thus at least 4 pairs of 
complex conjugate poles are necessary
 Typically 10 12 poles are used in an AR modeling for speech Typically 10-12 poles are used in an AR modeling for speech

 When no such knowledge is available, we can use someg
statistical test to estimate the order

Ref for in-depth exploration: “Model-order selection ” by P Stoica and Y Selen
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Ref. for in-depth exploration:  Model-order selection,  by P. Stoica and Y. Selen, 
IEEE Signal Processing Magazine, July 2004.



Considerations for Order SelectionConsiderations for Order Selection

 Modeling error 
– Modeling error measures the (statistical) difference between the true g ( )

data value and the approximation by the model
 e.g. estimating linear prediction MSE in AR modeling 

U ll f i f d l ( AR ARMA) h d li– Usually for a given type of model (e.g. AR, ARMA), the modeling 
error decreases as we increase the model order

 Balance between the modeling error and the amount of Balance between the modeling error and the amount of 
model parameters to be estimated
– The number of parameters that need to be estimated and represented 

increases as we use higher model order   Cost of overmodeling
– Can balance modeling error and the cost of going to higher model by 

imposing a penalty term that increases with the model order
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imposing a penalty term that increases with the model order



A Few Commonly Used CriteriaA Few Commonly Used Criteria

 Akaike Information Criterion (AIC)
– A general estimate of the Kullback-Leibler divergence between g g

assumed and true p.d.f., with an order penalty term increasing linearly
– Choose the model order that minimize AIC

iNi p 2  ln)(AIC  
size of model order: 

i=p for AR(p)

 Minimum Description Length (MDL) Criterion

available data model error i=p for AR(p)
i=p+q for ARMA(p,q)

– Impose a bigger penalty term to overcome AIC’s overestimation
– Estimated order converges to the true order as N goes to infinity
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iNNi p )(log  ln)(MDL  
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iNNi p )(log  ln)(MDL  




