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LogisticsLogistics
 Final Exam:  cover Part-II and III

– Primary reference in your review:  Lecture notes
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– Related readings (see a list of summary given)
– Office hours will be posted
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 Previous Sec.3.2:  Parametric approaches for spectral estimation
– AR modeling and MESE
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– MA and ARMA modeling

 Today:    (readings:  Hayes 8.6) 

C
P 

EN
EE

62
4/

6

– Frequency estimation for complex exponential/sinusoid models
* Note: Hayes book uses sig vector x = [ x(n), x(n+1), … ]T to define a 

correlation matrix which is Hermitian w r t the one per our
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correlation matrix, which is Hermitian w.r.t. the one per our 
convention with x = [ x(n), x(n-1), x(n-2) … ]T

Recall:  Limitations of Periodogram and ARMARecall:  Limitations of Periodogram and ARMA
( Fi 2 17 f Li /O h i( Fig.2.17 from Lim/Oppenheim 

Book on Adv DSP Topics )
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MotivationMotivation
 Random process studied in the previous section: 

– w.s.s. process modeled as the output of a LTI filter driven by a white 
noise process smooth p s d over broad freq rangenoise process ~  smooth p.s.d. over broad freq. range

– Parametric spectral estimation:  AR, MA, ARMA

 Another important class of random processes:
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 Another important class of random processes:
A sum of several complex exponentials in white noise
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– The amplitudes and p different frequencies of the complex 
i l b kexponentials are constant but unknown

 Frequencies contain desired info:  velocity (sonar), formants (speech) …

– Estimate the frequencies taking into account of the properties of 
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The Signal ModelThe Signal Model
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1, ... ,1,0  Nn (observe N samples)

white noise, zero mean, variance 2
w][nw

real, constant, unknown
 to be estimated

ii fA ,

uniform distribution over [0, 2π);
uncorrelated with w[n] and between 
diff t i
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different i

Recall:  Single Recall:  Single Complex Exponential Complex Exponential CaseCase

E[ x( ) w( ) ] = E[x( )] E[w( )] = 0
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E[ x( ) w( ) ] = E[x( )] E[w( )] = 0
this crosscorr term vanish 
because of uncorrelated *and* 
zero mean for either x( ) or w( ).

Deriving Autocorrelation FunctionDeriving Autocorrelation Function
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Deriving Correlation MatrixDeriving Correlation Matrix

 May bring rx(k) into the correlation matrix

 Or from the expectation of vector’s outer product and use Or from the expectation of vector s outer product and use 
the correlation analysis from last page
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Summary:  Correlation Summary:  Correlation Matrix for the ProcessMatrix for the Process
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An MxM correlation matrix for {x[n]} (M>p):

i 1

An MxM correlation matrix for {x[n]} (M>p):

 full rank full rank

wherewhere
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Summary:  Correlation Summary:  Correlation Matrix for the ProcessMatrix for the Process
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An MxM correlation matrix for {x[n]} (M>p):

i 1

An MxM correlation matrix for {x[n]} (M>p):

 full rank

where
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Correlation Matrix for the Process (cont’d)Correlation Matrix for the Process (cont’d)

H
ii ee has rank 1 (all columns are related by a factor)

The MxM matrix Rs has rank p, and has only 
p nonzero eigenvalues.
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Correlation Matrix for the Process (cont’d)Correlation Matrix for the Process (cont’d)

H
ii ee has rank 1 (all columns are related by a factor)

The MxM matrix Rs has rank p, and has only 
p nonzero eigenvalues.
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Review:  Rank and Eigen PropertiesReview:  Rank and Eigen Properties
 Multiplying a full rank matrix won’t change the rank of a matrix

i.e.  r(A) = r(PA) = r(AQ) 
h A i P i f ll k d Q i f ll kwhere A is mxn, P is mxm full rank, and Q is nxn full rank. 

– The rank of A is equal to the rank of A AH and AH A.
– Elementary operations (which can be characterized as multiplying by a full y p ( p y g y

rank matrix) doesn’t change matrix rank: 
 including interchange 2 rows/cols; multiply a row/col by a nonzero 

factor; add a scaled version of one row/col to another.

 Correlation matrix Rx in our model has full rank. 

 Non-zero eigenvectors corresponding to distinct eigenvalues 
are linearly independent

 det(A) = product of all eigenvalues; so a matrix is invertible iff all 
eigenvalues are nonzero
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eigenvalues are nonzero.
(see Hayes Sec.2.3 review of linear algebra)

EigenvaluesEigenvalues/vectors for /vectors for HermitianHermitian MatrixMatrix
 Multiplying A with a full rank matrix won’t change rank(A)
 Eigenvalue decomposition

– For an nxn matrix A having a set of n linearly independent 
eigenvectors, we can put together its eigenvectors as V  s.t.

A V di (   ) V 1A = V diag(1, 2, … n) V-1

 For any nxn Hermitian matrix
– There exists a set of n orthonormal 

eigenvectors
Thus V is unitary for Hermitian– Thus V is unitary for Hermitian 
matrix A, and
A = V diag(1, 2, … n) VH = 1 v1 v1

H  +…+ n vn vn
H
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(see Hayes Sec.2.3.9 review of linear algebra)

Eigenvalues/vectors for Hermitian MatrixEigenvalues/vectors for Hermitian Matrix
 Multiplying A with a full rank matrix won’t change rank(A)

 Eigenvalue decompositiong p
– For an nxn matrix A having a set of n linearly independent 

eigenvectors, we can put together its eigenvectors as V  s.t.
A = V diag(   ) V-1A = V diag(1, 2, … n) V 1

 For any nxn Hermitian matrix
– There exists a set of n orthonormal 

eigenvectors
– Thus V is unitary for HermitianThus V is unitary for Hermitian 

matrix A, i.e. V-1 = VH

A = V diag(1, 2, … n) VH = 1 v1 v1
H  +…+ n vn vn

H
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(see Hayes Sec.2.3.9 review of linear algebra)

Eigen Analysis of the Correlation MatrixEigen Analysis of the Correlation Matrix

Let vi be an eigenvector of Rx with the 
corresponding eigenvalue λi i e R vi = λi vicorresponding eigenvalue λi, i.e., Rx vi  λi vi

i e v is also an eigenvector for R andi.e., vi is also an eigenvector for Rs, and 
the corresponding eigenvalue is 

2)(
i

s
i   wii 

Rs has p 
nonzero 
eigenvalueseigenvalues

UMD ENEE630 Advanced Signal Processing (ver.1211) Frequency estimation  [19]



Eigen Analysis of the Correlation MatrixEigen Analysis of the Correlation Matrix
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eigenvalues

Signal Subspace and Noise SubspaceSignal Subspace and Noise Subspace

For

AlsoAlso,

for   i= p+1, …, M

i.e., the p column vectors are linearly independent
M x p,  full rank=p

i.e., the p column vectors are linearly independent
M x p,  full rank=p

i.e., the p column vectors are linearly independent
M x p,  full rank=p

i.e., the p column vectors are linearly independent

Since M
pl

ve i
H
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,...,2,1
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SIGNAL SUBSPACE NOISE SUBSPACE

Mpiil ,...,1
,
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SIGNAL SUBSPACE NOISE SUBSPACE correspond to 
eigenvalue = 
noise varUMD ENEE630 Advanced Signal Processing (ver.1211) Frequency estimation  [22]
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SIGNAL SUBSPACE NOISE SUBSPACE correspond to 
eigenvalue = 
noise varFrequency estimation  [23]

Relations Between Signal and Noise SubspacesRelations Between Signal and Noise Subspaces

Since Rx and Rs are Hermitian matrices,

the eigenvectors are orthogonal to each other:the eigenvectors are orthogonal to each other:

Recall

So it follows that noise eigenvector

signalsignal 
eigenvectors

sig vector
SIGNAL 
SUBSPACEsig. vector SUBSPACE
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Relations Between Signal and Noise SubspacesRelations Between Signal and Noise Subspaces

Since Rx and Rs are Hermitian matrices,

the eigenvectors are orthogonal to each other:the eigenvectors are orthogonal to each other:

Recall

So it follows that noise eigenvector

signalsignal 
eigenvectors

sig vector
SIGNAL 
SUBSPACEsig. vector SUBSPACE

UMD ENEE630 Advanced Signal Processing (ver.1211) Frequency estimation  [25]

Discussion:  Complex Discussion:  Complex Exponential VectorsExponential Vectorspp pp
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sig. vector

SIGNAL 
SUBSPACE

Frequency Estimation Function: General FormFrequency Estimation Function: General Form

Recall                          for l=1, … p;  i = p+1, … M0i
H
l ve

Knowing eigenvectors of correlation matrix Rx, we can use 
these orthogonal conditions to find the frequencies { fl }:

We form a frequency estimation function

?0)( i
H vfe

We form a frequency estimation function

Here αi are properly 
chosen constants 


 MfP

2

1)(ˆ
(weights) for producing 
weighted average for 
projection power with all fffP atLARGEis)(ˆ


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H

i vfe
1

2
)(

p j p
noise eigenvectorspfffP ,...,at  LARGE is )( 1
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Frequency Estimation Function: General FormFrequency Estimation Function: General Form
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Pisarenko Method for Frequency Estimation (1973)Pisarenko Method for Frequency Estimation (1973)

 This assumes the number of complex exponentials (p) 
and the first (p+1) lags of the autocorrelation function areand the first (p+1) lags of the autocorrelation function are 
known or have been estimated

r(0),…,r(P)

 The eigenvector corresponding to the smallest 
eigenvalue(s) of R(p+1)x(p+1) is in the noise subspace and 

(0), , ( )

g ( ) (p+1)x(p+1) p
can be used in the Pisarenko method.

 The equivalent frequency estimation function is: The equivalent frequency estimation function is:

2
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1)(ˆ
f

fP
H


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min)( vfe H

Pisarenko Method for Frequency Estimation (1973)Pisarenko Method for Frequency Estimation (1973)

 This assumes the number of complex exponentials (p) 
and the first (p+1) lags of the autocorrelation function areand the first (p+1) lags of the autocorrelation function are 
known or have been estimated

r(0),…,r(p)

 The eigenvector corresponding to the smallest 
eigenvalue(s) of R(p+1)x(p+1) is in the noise subspace and 

(0), , (p)

g ( ) (p+1)x(p+1) p
can be used in the Pisarenko method.

 The equivalent frequency estimation function is: The equivalent frequency estimation function is:
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min)( vfe H

Estimating the Estimating the AmplitudesAmplitudes

Once the frequencies of the complex exponentials are 
determined, the amplitudes can be found from the , p
eigenvalues of Rx:
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ki fv  at  )(eigvector  sig of DTFT  Solve p equations for { Pk }
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Estimating the AmplitudesEstimating the Amplitudes

Once the frequencies of the complex exponentials are 
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Interpretation of Pisarenko MethodInterpretation of Pisarenko Method

Since ,
,...,1
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i.e. 0)}({DTFT   lffiv

Thus given any vi, i=p+1,…,M, we can 
estimate the sinusoidal frequencies by 
fi di h i i l f
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1-M

i )(v)( the angle of zeros reflects the freq.

finding the zeros on unit circle from
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0k
i )(v)( the angle of zeros reflects the freq.
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Improvement over Pisarenko MethodImprovement over Pisarenko Method
 Need to know or accurately estimate the # of sinusoids (p)

 Inaccurate estimation of autocorrelation valuesaccu ate est at o o autoco e at o a ues
=> Inaccurate eigen results of the (estimated) correlation matrix
=> p zeros on unit circle in frequency estimation function may not 

be on the right places

 What if we use larger MxM correlation matrix?
– More than one eigen vectors to form the noise subspace:  which of 

(M-p) eigen vectors shall we use to check orthogonality with e(f) ? 

ZT[ { v (0) v (M 1)} ] (M 1)th order polynomial => (M 1) zerosZT[ { vi(0), … vi(M-1)} ] ~ (M-1)th order polynomial => (M-1) zeros

– p zeros are on unit circle (corresponding to the freq. of sinusoids)
Other (M 1 p) zeros may lie anywhere and could be close to unit
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– Other (M-1-p) zeros may lie anywhere and could be close to unit 
circle  => may give false peaks

MUltiple SIgnal Classification (MUSIC) AlgorithmMUltiple SIgnal Classification (MUSIC) Algorithm

 Addressing issues with larger correlation matrix
ZT[ { vi(0) vi(M-1)} ] ~ (M-1)th order polynomial => (M-1) zerosZT[ { vi(0), … vi(M 1)} ]  (M 1) order polynomial > (M 1) zeros

– p zeros are on unit circle (corresponding to the freq. of sinusoids)
Other (M 1 p) zeros may lie anywhere and could be close to unit– Other (M-1-p) zeros may lie anywhere and could be close to unit 
circle  => may give false peaks

 Basic idea of MUSIC algorithm
– Reduce spurious peaks of freq. estimation function by averaging over 

th lt f (M ) ll t i l f th l ti t ithe results from (M-p) smallest eigenvalues of the correlation matrix 
=> i.e. to find those freq. that give signal vectors consistently 

orthogonal to all noise eigen vectors
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MUSIC AlgorithmMUSIC Algorithm

The frequency estimation function

Locate 
the peaks

where

the peaks

where
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ExampleExample--11

( Fig.8.31 from M. Hayes Book; 
examples are for 6x6 correlation 
matrix estimated from 64-value
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matrix estimated from 64-value 
observations )

ExampleExample--22
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( Fig.8.37 & Table 8.10 from M. Hayes Book;  
overlaying results of10 realizations with 64 
observed signal points each. )




