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Part 3. Spectrum Estimation
3.3 Subspace Approaches to Frequency Estimation
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Logistics

e Final Exam: cover Part-1l and IlI
— Primary reference in your review: Lecture notes
— Related readings (see a list of summary given)
— Office hours will be posted

e Previous Sec.3.2: Parametric approaches for spectral estimation
— AR modeling and MESE
— MA and ARMA modeling

e Today: (readings: Hayes 8.6)
— Frequency estimation for complex exponential/sinusoid models

* Note: Hayes book uses sig vector x = [ x(n), x(n+1), ... ]" to define a
correlation matrix, which is Hermitian w.r.t. the one per our
convention with x = [ x(n), x(n-1), x(n-2) ... "
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Recall: Limitations of Periodogram and ARMA Motivation

( Fig.2.17 from Lim/Oppenheim
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e Random process studied in the previous section:

— w.s.S. process modeled as the output of a LTI filter driven by a white
noise process ~ smooth p.s.d. over broad freg. range

— Parametric spectral estimation: AR, MA, ARMA

e Another important class of random processes:
A sum of several complex exponentials in white noise

=3 A expl i(2x £+ )]+ winl

— The amplitudes and p different frequencies of the complex
exponentials are constant but unknown
« Frequencies contain desired info: velocity (sonar), formants (speech) ...
— Estimate the frequencies taking into account of the properties of
such process
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The Signal Model

x[n] = Zp: Ae'’el? i L win]

n=01..,N—-1 (observe N samples)
w[n] white noise, zero mean, variance O'\,zv
A, fi real, constant, unknown

= to be estimated

) uniform distribution over [0, 21r);

uncorrelated with w[n] and between
different i
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w

Recall: Single Complex Exponential Case

xtn] = A ex) Qerpnt ]
E(xtn)] =0 ¥n

RP_,L}( (."'JJ d} —0

g X7 |
= E[ AexP[:‘(mjbm-@) A expl (amfon-2r ak-+4>)]J
= »exp [JeTK)]
Sv XA s Seoman nss. With Mx(K) = A QXP(\]AW:JLF_)
¥ 7" k=o
YO0 = XD+ W) e wede o E L] p\\wm:% e
W(K) = elym \f*_U\-K]J = E[(xcaijUﬂ)(x*gwnl.*,j[,ﬁ@ﬂ
= M+ M) (v EXCIWDT)=o  womelaced.)

= Aexprfel] + TS0

E[x()w()1=Ex()] Ew()]=0
this crosscorr term vanish
because of uncorrelated *and*
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Deriving Autocorrelation Function

x[n] = ZAe”’eJZ’”WW[n] Zs[n]+w[n]
r.(k) = E[x[n]x'[n—k]]=E HZs[nhw[n]} {Zsm*[n—khw*[n—k]ﬂ

s,[nE[s, [n-k]] =0 (forl=m)
(k)= A’e’*™*  (forl =m)
E[s,[n]JE[w[n -K]] =0

o E[w[nw'[n—K]|= o2 - 5[K]

=>r,(k) = E[x[n]x[n—K]]= i A2 4 525 (K)

« E[s,[nls, [n - k]| = {

o E[s,[nw'[n—k]|=E[

cy estimation 9

Deriving Correlation Matrix

e May bring rx(k) into the correlation matrix

e Or from the expectation of vector’s outer product and use
the correlation analysis from last page

X[l =Y 5[]+ win]

m=1

R, = E[xn]x" [n]]= Eﬂig. [n]+v_v[n]Hi§mH [n]+ w* [n]ﬂ

p
=>R,=> P ee +oll

i=1
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Summary: Correlation Matrix for the Process

r.(k) = E[X[n]x*[n - k]]:

An MxM correlation matrix for {x[n]} (M>p):

R}(: Rs‘f RL\\

v

S [ e V4 s i
where e_—‘ﬁ[,‘r@l ftéﬁ j;-

~fzrfo(m- T
_e’\]znj (M'-(J

AS
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Summary: Correlation Matrix for the Process

r,(k) = E[x[n]x [n—k]]= i AZe i 4 525(K)

2P
An MxM correlation matrix for {x[n]} (M>p):
Rw= 0w I  =fullrank
t
Re = é} Piei <t

S [ e V- 4 s i
where e_—‘ﬁ[,‘r@l ‘fteis j;-

<fzrfo(m-) T
_e’\]znj (M—cJ

w

UMD ENEE630 Advanced Signal Processing (ver.1211) Frequency estimation

Correlation Matrix for the Process (cont’d)

p H
Rs= % P. et

gigiH has rank

The MxM matrix Rq has rank
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Correlation Matrix for the Process (cont’d)

Pl e.(H
—_—[Q__“Q:.r_ Lo Py P
24 CPedley
MX P P
H =D
— SDS pxp

gigiH has rank 1 (all columns are related by a factor)

The MxM matrix R has rank p, and has only
p nonzero eigenvalues.
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Review: Rank and Eigen Properties

e Multiplying a full rank matrix won’t change the rank of a matrix
i.e. r(A) =r(PA) =r(AQ)
where A is mxn, P is mxm full rank, and Q is nxn full rank.
— The rank of A is equal to the rank of A AH and A" A.

— Elementary operations (which can be characterized as multiplying by a full
rank matrix) doesn’t change matrix rank:

« including interchange 2 rows/cols; multiply a row/col by a nonzero
factor; add a scaled version of one row/col to another.

e Correlation matrix Rx in our model has full rank.

e Non-zero eigenvectors corresponding to distinct eigenvalues
are linearly independent

e det(A) = product of all eigenvalues; so a matrix is invertible iff all
eigenvalues are nonzero.
(see Hayes Sec.2.3 review of linear algebra)

Eigenvalues/vectors for Hermitian Matrix

e Multiplying A with a full rank matrix won’t change rank(A)

e Eigenvalue decomposition

— For an nxn matrix A having a set of n linearly independent
eigenvectors, we can put together its eigenvectorsas V s.t.

Ay, = XUl
e For any nxn Hermitian matrix ALY, V] N
Vi ~
— There exists a set of n orthonormal B { - }
eigenvectors = _\_J'\'(___]f"} A
— Thus V is unitary for Hermitian v
matrix A, and

(see Hayes Sec.2.3.9 review of linear algebra)
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Eigenvalues/vectors for Hermitian Matrix

e Multiplying A with a full rank matrix won’t change rank(A)

e Eigenvalue decomposition

— For an nxn matrix A having a set of n linearly independent
eigenvectors, we can put together its eigenvectorsas V s.t.

A =V diag(hy, Ay, ... X)) V2 Pevs = 2V

— There exists a set of n orthonormal N, - .,v,\]
eigenvectors —

’V

e For any nxn Hermitian matrix ACv,v. .. d A X
{ AN

— Thus V is unitary for Hermitian
matrix A, i.e. V1 =VH

A=Vdiag(h, Ay, ..o A) VH=0 v vP +0+ A v, v P

(see Hayes Sec.2.3.9 review of linear algebra)

Eigen Analysis of the Correlation Matrix

Let v, be an eigenvector of R, with the
corresponding eigenvalue A, i.e., R, v; = AV,

v RyeVi= Rsti+ Ol = MW

' R has p
S NP = -( nonzero
igenvalues
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Eigen Analysis of the Correlation Matrix

Let v, be an eigenvector of R, with the
corresponding eigenvalue A, i.e., R, v, = \, v,

, N N
v Rx Ve = Rsti + 0wl = AW

X
S Rs Vo = (N —0W D) Vg
i.e., v, is also an eigenvector for R, and
the corresponding eigenvalue is

(s) _ 2
A =4 ~Ow

(s) 5 § oz Rs has p
~ Np = AN +0w > 00, t=l,a, -=-P nonzero
o { { O_wL {= Pl —o- M eigenvalues
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Signhal Subspace and Noise Subspace It
For (=P+l,--- M, RV = 0 Ve
Also, Rs= SDS" ;
SLoSDst Y =
| I
== SrUi=
Since 8= [~ &pl =

ul Frequency estimation 22

Signal Subspace and Noise Subspace

For L-—..: P"l‘l R M % Rsull = O+ _.u('

Also, Rs= SDS" ;

SDSH V¢ =o for i=p+1, .., M

| I
M x p, full rank=p

i.e., the p column vectors are linearly independent

= shyvi=g 1=1,2,..., p

H J—
Since S= (2~ &p] = &Vv=0 I=p+1,...,M

oo Sprde - Y - Spe{Vpu - Unp

SIGNAL SUBSPACE NOISE SUBSPACE corréspond to

eigenvalue =
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Relations Between Signal and Noise Subspaces

Since R, and R, are Hermitian matrices,

the eigenvectors are orthogonal to each other:
Vit Vj V o]

=

Recall sprnfe, «-- Qp} L SpomdUper,--- Unf,

noise eigenvector

signal

) "
eigenvector: i—>—
U /l e SIGNAL
- e, sig. vector SUBSPACE

So it follows that T! 3
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Relations Between Signal and Noise Subspaces

Since R, and R, are Hermitian matrices,
the eigenvectors are orthogonal to each other:
Uit Vi ¥ ig]
= spon§ B, .- Vpf L SPfLpa, - Tm]

Recall sponfe ~--Qp} L SponfVp, -~ Un},

So it follows that ]\Qa noise eigenvector

signal

. Vi
eigenvector: §—> =
U, /L e> SIGNAL

= e, sig. vector SUBSPACE

Spnfe, .. ept=
SFo‘Nﬁl}nyP‘f

Discussion: Complex Exponential Vectors

_. _' _. B T
Q(f):[l,e JZ;rf’e J47Zf__-’e j2z(M 1)f]

y M (ot 1_ gi2z(hi-f)M
_ j2x(f- _ ;

e (1,)-e(f,) = Y, el = =S if £, 2 1,

k=0 -

If f,— f, =2, for some integer a = gH(fl)-g( f,)=0
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sponfe - @pY L SpomfVper, - Unf,

¥, noise eigenvector

_ signal
SPM§ &~ Ep k - eigenvector, Vs
spd Vi< Vpy Y ex  SIGNAL

e, sig. vector SUBSPACE

Frequency Estimation Function: General Form

H
Recall €, V; =0 fori=1,..p; i=p+l, ..M

Knowing eigenvectors of correlation matrix R,, we can use
these orthogonal conditions to find the frequencies {f,}:

e"(f)y,=0?

We form a frequency estimation function

Here a; are properly
chosen constants
(weights) for producing
weighted average for
projection power with all
noise eigenvectors

Frequency Estimation Function: General Form

H
Recall €, V,; = 0 fori=1, Py i=p+l, M

Knowing eigenvectors of correlation matrix R,, we can use
these orthogonal conditions to find the frequencies {f,}:

e"(f)y, =0?
We form a frequency estimation function
|3( f) _ 1 Here a; are properly
Y 2 chosen constants
z a, ‘e( f )H vi‘ (weights) for producing
iprl a weighted average for

— P(f)isLARGEat f,,..., f  Projection power with al
1 'p - noise eigenvectors
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Pisarenko Method for Frequency Estimation (1973)

= This assumes the number of complex exponentials (p)
and the first (p+1) lags of the autocorrelation function are
known or have been estimated

= The eigenvector corresponding to the smallest
eigenvalue(s) of R ;.1)p+1) IS In the noise subspace and
can be used in the Pisarenko method.

= The equivalent frequency estimation function is:

Pisarenko Method for Frequency Estimation (1973)

= This assumes the number of complex exponentials (p)
and the first (p+1) lags of the autocorrelation function are
known or have been estimated

= The eigenvector corresponding to the smallest
eigenvalue(s) of R y.1)p+1) IS In the noise subspace and
can be used in the Pisarenko method.

= The equivalent frequency estimation function is:
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e(f)'v |
= —min
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Estimating the Amplitudes

Once the frequencies of the complex exponentials are
determined, the amplitudes can be found from the
eigenvalues of R;

Rv.=Av, (i=12,.,p) normalize v, s.t.

\_/iH\_/i =1

p
Recall R, =ZPk§k§:| +oll
k=1

Estimating the Amplitudes

Once the frequencies of the complex exponentials are
determined, the amplitudes can be found from the
eigenvalues of R;

RVi=4v, (i=12..,p) normalize v, s.t.

H
vilv. =1
:>\—/|H Rx\_/i :ﬂﬁ\_/:—i Vi :ﬂvi -
p
Recall R, :ZPkgkg:' +oll
k=1
0 2
:zpk‘ng\L‘ :ﬂ'i_av%l i:]-s---’ p
k=1 L'—T\.-’

DTFT of sig eigvectorv,(-)at— f, ~ =» Solve p equations for { P, }
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Interpretation of Pisarenko Method

1=12,.., V)
Since e/'v,; =0, . ’ . Vo
1= p+1,..., M npise .
eigvector 'U‘L M-0)

M-1 _
=Y vi(k)e! =0 for 1=12,..,p
k=0 )

Thus given any y,, i=p+1,...,M, we can i
estimate the sinusoidal frequencies by
finding the zeros on unit circle from

Interpretation of Pisarenko Method

1=12,.., Vi)
Since e/'v,; =0, . ’ . vis Vo
1= p+1,..., M ngise .
eigvector 'U.L M)

M-1 _
=Y vi(k)e! =0 for 1=12,..,p
k=0

ie.  DTFT{,()},_, =0 f/,ﬁ.:‘,\j
Ra

Thus given any y,, i=p+1,...,M, we can i
estimate the sinusoidal frequencies by
finding the zeros on unit circle from

M-1
Z [Vi ()] = Zvi (K)z™  the angle of zeros reflects the freq.
k=0
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Improvement over Pisarenko Method

e Need to know or accurately estimate the # of sinusoids (p)

e Inaccurate estimation of autocorrelation values
=> |naccurate eigen results of the (estimated) correlation matrix
=> p zeros on unit circle in frequency estimation function may not
be on the right places
e What if we use larger MxM correlation matrix?

— More than one eigen vectors to form the noise subspace: which of
(M-p) eigen vectors shall we use to check orthogonality with e(f) ?

ZT[{vi(0), ... vi(M-1)} 1 ~ (M-1)" order polynomial => (M-1) zeros
— p zeros are on unit circle (corresponding to the freq. of sinusoids)

— Other (M-1-p) zeros may lie anywhere and could be close to unit
circle => may give false peaks

MUItiple Slgnal Classification (MUSIC) Algorithm

e Addressing issues with larger correlation matrix
ZT[ {v(0), ... v{(M-1)} ] ~ (M-1)"" order polynomial => (M-1) zeros

— p zeros are on unit circle (corresponding to the freq. of sinusoids)

— Other (M-1-p) zeros may lie anywhere and could be close to unit
circle => may give false peaks

e Basic idea of MUSIC algorithm

— Reduce spurious peaks of freg. estimation function by averaging over
the results from (M-p) smallest eigenvalues of the correlation matrix

=> i.e. to find those freq. that give signal vectors consistently
orthogonal to all noise eigen vectors
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MUSIC Algorithm

The frequency estimation function &
[ P

N\
) = M H 2
Puusic & %ﬂ\g@l&\

| :
m H Locate
gV Ve the peaks

I .
where %(j) = e’i‘]mj ; \/:: [ HP‘H; N _?_/M}
prJerf
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FREQUENCY ESTIMATION

Example-1

( Fig.8.31 from M. Hayes Book; .
examples are for 6x6 correlation
matrix estimated from 64-value
observations )
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Figure 8.31 Frequency estimation functions of a single complex exponential in
white noise. {a) The frequency estimation function that uses all of the noise eigen-
vectors with a weighting a; = 1. (b) An averlay plot of the frequency estimation

Sunctions Vi(e'™) = 1/|e"v,|* that are derived from each noise eigenvector.

PRINCIPAL COMPONENTS SPECTRUM ESTIMATION 469

Example-2

Table 8,10 Noise Subspace Mett

Estimation
Pisarenko f',,,,.h"": = ——7
MUSIC Pyple™) = —
3t
et N T T I TR T T T R TR
Ty ot oy bt 1
" 1 <) (d)
A (el) = ————
Eigenvector Method Fev(e™) Moy P rguency estimation functions for a process consisting of four complex exponen-
Z le” wil sing (a) the Pisarenko harmonic decompaosition, (b) the MUSIC algorithm, (¢)
[T ad and (d) the minimum norm algorithm.
" 1 . : .
Minimum Norm Pu(e™) = 155 a=iPu ( Fig.8.37 & Table 8.10 from M. Hayes Book;

overlaying results of10 realizations with 64
observed signal points each. )






