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Outline of Part-l: Multi-rate Signal Processing
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§1.8
§1.9
§1.10

Building blocks and their properties

Properties of interconnection of multi-rate building blocks
Polyphase representation

Multistage implementation

Applications (brief): digital audio system; subband coding
Quadrature mirror filter bank (2-channel)

M-channel filter bank

Perfect reconstruction filter bank

Aliasing free filter banks

Application: multiresolution analysis

Ref: Vaidyanathan tutorial paper (Proc. IEEE '90);
Book §1, 84, §5.
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Single-rate v.s. Multi-rate Processing

o Single-rate processing: the digital samples before and after
processing correspond to the same sampling frequency with
respect to (w.r.t.) the analog counterpart.

e.g.: LTI filtering can be characterized by the freq. response.

@ The need of multi-rate:

e fractional sampling rate conversion in all-digital domain:
e.g. 44.1kHZ CD rate <= 48kHZ studio rate

@ The advantages of multi-rate signal processing:
o Reduce storage and computational cost
e e.g.: polyphase implementation

e Perform the processing in all-digital domain
without using analog as an intermediate step that can:

@ bring inaccuracies — not perfectly reproducible
@ increase system design / implementation complexity
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ecimation and Interpolation
igital Filter Banks

1 Basic Multirate Operations

1.1 D
2 Interconnection of Building Blocks 1.2D

Basic Multi-rate Operations: Decimation and Interpolation

@ Building blocks for traditional single-rate digital signal
processing: multiplier (with a constant), adder, delay,
multiplier (of 2 signals)

&= -~ e

@ New building blocks in multi-rate signal processing:

M-fold decimator \(En3> g/é_j
L-fold expander X J—4 L \/E[M

Readings: Vaidyanathan Book §4.1; tutorial Sec. Il A, B
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M-fold Decimator

yp[n] = x[Mn], M € N

\1;//’/%9‘3

1 Decimation and Interpolation
.2 Digital Filter Banks

R

O

Corresponding to the physical time scale, it
is as if we sampled the original signal in a
slower rate when applying decimation.

Questions:

@ What potential problem will this bring?
@ Under what conditions can we avoid it?

@ Can we recover x[n]?
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L-fold Expander

Decimation and Interpolation
D

1
2 Digital Filter Banks

0 otherwise

L] if nis int Itiple of L € N n (n?
veln] = {X[n/ | if nis integer multiple o XU Jq@__«?\fﬁ

& ] ' Xend
I } R — Question: Can we recover x[n|
0 L 2 n
L,:z) \\\ delr) from yg[n]? — Yes.
] l NN The expander does not cause loss of
v
> (I§4s47&--. information.
Tt~ r
qum,zws

Question: Are 1 L and | M linear and shift invariant?
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Decimation and Interpolation

1 Basic Multirate Operations 1.1
1.2 Digital Filter Banks

2 Interconnection of Building Blocks

Transform-Domain Analysis of Expanders

Derive the Z-Transform relation between the Input and Output:
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Input-Output Relation on the Spectrum

Ye(z) = X(25)
Evaluating on the unit circle, the Fourier Transform relation is:
Ye(e) = X(et) =  Ye(w) = X(wl)

i.e. L-fold compressed version of X(w) along w

v NE A

Ly 2T N

@Qemw} RS

mmmmﬁ@mmmmm

- )“\/S /5 ()'“/S
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1
2 Digital Filter Banks

Periodicity and Spectrum Image

The Fourier Transform of a discrete-time signal has period of 2.
With expander, X(wL) has a period of 27/L.

The multiple copies of the compressed spectrum over one period of
27 are called images.

And we say the expander creates an imaging effect.
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1 Basic Multirate Operations 1.1 Decimation and Interpolation
2 Interconnection of Building Blocks 1.2 Digital Filter Banks

Transform-Domain Analysis of Decimators

Yp(z) =302 yplnlz™" =302 x[nM]z™"

AN D Y] — Vvl
k_’—ﬁ

% \.\1 ] \\\11\\!2))-\%“
W C‘:\j{ﬂ\} Q\LPMS\UYL‘

x[n] if nis integer multiple of M

, then we have
0 o.w.

Define x1[n] = {

Yp(z) = Xq1(z)
X1(2) = 17 Xhto X(W2)
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1
.2 Digital Filter Banks

Transform-Domain Analysis of Decimators

Yp(z) = > 02 _yplnlz™" =302 x[nM]z™"

PYAN X (w] Yaind
L= =

’Wu\*\’l P Sinyess”
01:]\(,"‘3 Q,‘LPMS‘ 1AW

Putting all together:

Yp(z) = & S X(Whzw)

Yp(w) = 4 Skt X (2=2k)
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Frequency-Domain lllustration of Decimation

Interpretation of Yp(w) ﬁ ﬁ\ /\ /\ R
T
Step-1: stretch X(w) by a factor of M to .A\X_(w/\s) /\
obtain X(w /M) N L

T 2T 3T 4w 110
Xz

N AN

Step-2: create M — 1 copies and shift 3T f‘l’ Ly 2T 3T 4‘,1\' £

them in successive amounts of 27 XLN:;UY> T

«
(
{

\

1

- = ursvmnm

)

Step-3: add all M copies together and A3

multiply by 1/M.

=t & 2t 3T 4m 8T
T itk perrod- o 2> .
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1
2 Digital Filter Banks

Aliasing

@ The stretched version X(w/M) can in general overlap with its
shifted replicas. This overlap effect is called aliasing.

@ When aliasing occurs, we cannot recover x|[n] from the
decimated version yp[n], i.e. | M can be a lossy operation.

@ We can avoid aliasing by limiting the bandwidth of x[n] to

W] < 7/M.

@ When no aliasing, we can recover x[n] from the decimated
version yp[n] by using an expander, followed by filtering of the
unwanted spectrum images.
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2 Interconnection of Building Blocks

1
.2 Digital Filter Banks

Example of Recovery from Decimated Signal

M)
= & % 3t 7
VLN\

Won) Saln) VTN - o
— \11%5 >/‘\3 >HG) > =T oW 3T 4w
D ged - , He
n| = x[n] where no aliasin { . ﬁ . .

i)/([:c]urs v ¢ =W O™ D

N—U’e} = X(wy

freq.—domaln interpretation

Question: |s the bandlimit condition |w| < /M necessary?
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1 Basic Multirate Operations 1.1 Decimation and Interpolation
2 Interconnection of Building Blocks 1.2 Digital Filter Banks

Decimation Filters

The decimator is normally preceded by a lowpass filter called
decimator filter.

Decimator filter ensures the signal to be decimated is bandlimited
and controls the extent of aliasing.

Typieak resprrat
X1 ,_a XHU\W\ A oA e
n \H(zﬂ ~[ym { of deG ot j‘\
Decmarion— Deci motor W
T\H’U’ o WD ,(T/ T N
e M

Poss bowd. V{tt{b_;)am-dv
L’{‘J—twmst Yonbond—
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Interpolation Filters

An interpolation filter normally follows an expander to
suppress all the images in the spectrum.

X[n)
n ] } i)
. /m&\la 12) - ‘ \ Pl
Exponder  Tuterpolosion -0 L 2 3 4
‘-\‘f"[‘b@\" H’ED\]
Ty pieak pesporat .. \
L [HOY q]y{nterpolaﬁMj“[W —)i[—ll(.\_!l-fl‘.( YL)
N \ PEN
e i il

(‘/‘MW:% =2 -\ (RN )

time-domain interpretation
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Fractional Sampling Rate Conversion

So far, we have learned how to increase or decrease sampling rate
in the digital domain by integer factors.

Question: How to change the rate by a rational fraction L/M?
(e.g.: audio 44.1k < 48k)

@ Method-1: convert into an analog signal and resample

@ Method-2: directly in digital domain by judicious combination
of interpolation and decimation

Question: Decimate first or expand first? And why?

Xcnd @XH HE) WE\—?M
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Decimation and Interpolation

1 Basic Multirate Operations 1.1
1.2 Digital Filter Banks

2 Interconnection of Building Blocks

. . HGY === iM .
Fractional Rate Conversion o T m@wm“

e%. destred Ty L=2,M=3 1o get”
. s sJust ens T~
N > AN ~L GMJ“\MX(N) aua:fé\ M?&S\ ugt\/
v T
- ol -
N 3 o th be
2—25— N CAORNRMIEN, K100 "M% dout
\ /\ ““/\ /
= ol V3 T

Use a low pass filter with passband greater than 7/3 and stopband
edge before 27/3 to remove images

Huy ( Kend Equiv. to getting 2 samples
; out of every 3 original samples
N o, g § N . . ..
R R AR 0 u;’u’_ Y ert . @ thesignal now is critically

i Yo sampled

. @ some samples kept are
o [ i 3 interpolated from x[n]
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Time Domain Descriptions of Multirate Filters

Recall:

xond Wend ¢
=
[hor F—=Temk

ol N D‘Aj & )
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Summary of Time Domain Description

Input-output relation in the time domain for three types of
multirate filters:

Y e x[k]A[nM — k] M-fold decimation filter
y[nl = <3202 x[k]h[n — kL] L-fold interpolation filter

k=—o00

> e oo XIk]JA[nM — kL] M/L-fold decimation filter

Note: Systems involving expander and decimator (plus filters) are
in general linear time-varying (LTV) systems.
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1.1 Decimation and Interpolation

1 Basic Multirate Operations
1.2 Digital Filter Banks

2 Interconnection of Building Blocks

Digital Filter Banks

A digital filter bank is a collection of digital filters, with a common

input or a common output.

xtnd Ho(3) l‘;ﬁnj %"UL = Fn(é\\
mpuwtc on) .
A [EETES) ke R Etb / @ H;(z): analysis filters
. K01 ) F . T @ xi[n]: subband signals
\ﬁ;‘w - wtpe- @ Fj(z2): synthesis filters
.Am\(su Bamk_ S&nﬂ\e_srs Rank.
o Typical frequency response for analysis filters: can be
Hi Ha
S @ marginally overlapping
Dl
He H He @ non-overlapping
Ny @ (substantially) overlapping
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Review: Discrete Fourier Transform

Recall: time-domain N frequency-domain

M-point DFT discrete periodic discrete periodic
DFT: X[k] = M- x[njwnk (W = e=2m/M)
IDFT: x[n] = & S0t X[kJw =k

@ Subscript is often dropped from W), if context is clear
@ The M x M DFT matrix W is defined as [W]y, = Wk"

@ We use W* to represent the conjugate of W;
also note W = W' (symmetric)
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1 Basic Multirate Operations 1.1 Decimation and Interpolation
2 Interconnection of Building Blocks 1.2 Digital Filter Banks

DFT Filter Bank

Consider passing x[n] through a delay chain
to get M sequences {s;[n]}: si[n] = x[n — i]

Setnd
KO | sem
—_—

x
{
¢

&—\ ‘]l S~ 53]

i.e., treat {s;[n]} as a vector s[n], then apply W*s[n] to get x[n].

Question: What are the equiv. analysis filters?
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1 Basic Multirate Operations 1.1 Decimation and Interpolation
2 Interconnection of Building Blocks 1.2 Digital Filter Banks

Uniform DFT Filter Bank
A filter bank in which the filters are related by
Hi(z) = Ho(zW*)

is called a uniform DFT filter bank.

| Tm 4
~l3dp
S 2T
o 2T/
[, (v
o -"Tf/M >

The response of filters |Hx(w)| have a large amount of overlap.
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Time-domain Interpretation of the Uniform DFT FB
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Time-domain Interpretation of the Uniform DFT FB

The DFT filter bank can be thought of as a spectrum analyzer

@ The output {xk[n]},ll/’:_o1 is the spectrum captured based on
the most recent M samples of the input sequence x[n].

@ The filters themselves are not very good: wide transition
bands and poor stopband attenuation of only 13dB
— due to the simple rectangular sliding window Hy(z).

Question: How can we improve the filters in the uniform DFT
filter bank?
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2 Interconnection of Building Blocks 2.2 Noble Identities

Interconnection of Building Blocks: Basic Properties
Basic interconnection properties

WS- =

U M|—
LSM,\M—TW)
by the linearity of | M & 1 L
X)) X))
\ ﬁ — -—_\
XW XLU\J
XTh]

Q-’@—” _ —>h
Atnq

R
Readings: Vaidyanathan Book §4.2; tutorial Sec
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Decimator-Expander Cascades

[0\3 XCn) WM e /\\L‘L &\C’\]

Kl

B %0 — e} $:0

Questions:
@ Is y1[n] always equal to ys[n]? Not always.
E.g., when L = M, ys[n] = x[n], but

yi[n] = x[n] - em[n] # y2[n], where cp[n] is a comb sequence

@ Under what conditions yi[n] = y2[n]?
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2 Interconnection of Building Blocks

2.1 Decimator-Expander Cascades

2.2 Noble Identities

Example of Decimator-Expander Cascades

x0 L=3,M=2

Prof. Min Wu

L=6M=4
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Examine the ZT of yi[n] and y»[n]:



1 Basic Multirate Operations 2.1 Decimator-Expander Cascades
2 Interconnection of Building Blocks 2.2 Noble Identities

Condition for yi[n] = y»[n]

Equiv. to examine the condition of {W,\kﬂ p 0 = {WkL}
iff M and L are relatively prime.

Question: Prove it. (see homework).

= Thus the outputs of the two decimator-expander cascades,
Y1(z) and Y,(z), are identical and (a) = (b) iff M and L are
relatively prime.
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1 Basic Multirate Operations 2.1 Decimator-Expander Cascades
2 Interconnection of Building Blocks 2.2 Noble Identities

The Noble ldentities

Recall: the cascades of decimators and expanders with LTI systems
appeared in decimation and interpolation filtering.

Question:
) T Sy S
2| 2
’? j “’@\”“@—_}
= Generally “No”.
Observations:

0 >3 AM > # Uzl (i) by sifrumiene.
® —bsju%@—% = %@—\}ﬁ——» N —;"’E—-ﬁg}—v:—)?
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2 Interconnection of Building Blocks 2.2 Noble Identities

The Noble ldentities

Consider a LTI digital filter with a transfer function G(z):

tnd $ 0] S
e 2 e ] e
X\DAJ X,_‘Lv\,l
Xend &HOY xn j g4l
(b "——ler)—IL = ALY 63
IS Eeri-ean}

Recall: the transfer function G(z) of a LTI digital filter is rational
for practical implementation, i.e., a ratio of polynomials in z or
z~L. There should not be terms with fractional power in z or z71.
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Details

Transform-Domain Analysis of Expanders

Z-Transform Relation between the Input and Output

= <~ n ‘_V\‘: > 2 0n] e
e )= f—?m HEL 4 vx:m,zez% 5

oo Cie. excinde expw\o\&i,ms)
= > Jelellge
K=—o

2 " = X6
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Details

Transform-Domain Analysis of Decimators

hxed - t® -n
Tolp) = >, 2;@»3 - ,r?:wXULMJ&
YA Y. (w] ]
e e L
b Mnvera!
r\/\T\“\é\h(;?M (FA) ]Q\(\[P NSV

"ng-\"ne, Xl = ﬁxm }jms‘\n‘tﬂau’v\mlﬁ?uﬂ’rd\
o DS .
Rehwe W3y = 5 xeeg M £ *'CL]%VM) =X (3™
K=n NEZ Y=-t0
honge

Yoakoblo
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Details

Transform-Domain Analysis of Decimators

To estmblish-The Wsj’rm&—dmm)w relation between
X (& ondh X ().
e msle Yo TAY con b nitten oS
XInl= Cu 0] XTn]
MW paEn] = % \ ijnts]m%ermdﬁplegf‘/v\
Qumb“se@wey\w) ) AN

et | Dsing e WP oot &7 uty P defined- as
N = e/’\l?,w/v\
Ne have M-

A —kn
Cuind= 1 2 N
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Details

Transform-Domain Analysis of Decimators

By thd wvmfrj g1
X, ) = % xm]g/ z CulIXCn] 37

=~

oo M _
SN VI SN S

vL=«¢aMK:°
= M%o %ﬁxug(}y [/\\M)w
ZJ/EX(V\)wS/)
/\_/\_/\(/—\/\/—vv (/
e LG = X d™)
— l J)_(\K/
7S (MM
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Details

Transform-Domain Analysis of Decimators

FW“:W S()ech-uwx . Sek 5,» e\\)"‘x -
) = 1otk w
S X(e ’\‘”T/MQJ oy
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Details

Time Domain Descriptions of Multirate Filters
Recall:

xcnd Nend

T e e

—

o
Werd = % hee) XLt = {_ kel x L)

GUmd = WMw] = 57 MKIX[Mm-K])

= 3 W M-k x ()
Nl W) &CWLJ

o R Im

oM = i )(]:_M/LJ'] .j wm s v\mH‘IFU/ ca‘ Ly

0 DS

grmi= 3 w0 ko] = T Xy hmL]
oyt o o
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Details

Input-Output Relation of DFT Filter Bank

kj’ﬂwwojW*
i —«d —point IDF T ¢
XV_LVLJ': _(% SZCY\JU\\ ~ mﬁsﬁzjr.,iu-\’gﬂj -

oo (except ij-n,uhﬂ’ Um)
. /d—lA\é MU e
Xe) = 32 SiO W™ = 2 3 WX
M=l ., L
= =N XH
e this as e, e have .
(e tronsferfunchitns )
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Details

Relation between H;(z)

M -
Holg) = rzm, 57 e %T{K’wred‘o@uiarm?ndm\
1[ [ - ] 27 (=
- — o) = ——F
! = — = Ho(¥) =
N LH°(M>I - 'gm( MAY/2) t

Sin(w/2)

fretgy = () = B (P
3= Hey = Ho(eo— )

«\a.unjjorml\/ &k}f‘re)\ VOMITN oj Ho () spedwm
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Details

Time-domain Interpretation of the Uniform DFT FB

el - —K{ Q: M——[—(:
M=) = M-l et
X [nxM=1] %XU\ J N = (= -4
Here we consider
- —K (M- M
§e(::i|:r¥ec>df?<_k[] — —Lf‘ x [n+d] NKL_ N ) Nste N7
'Or convenience. =0
LS K
= W< 2 x[nlI W t
> =0 N
PMM’SW s Pbim—ﬁ Yt - va&.‘ DET
tomeorphossatermreflects zi‘g' {XDL], ——— XCVL‘?M~\]}(

Tome deloyf . W]
N{ 4 ,’A\:TM_'K)
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Details

Condition for yi[n] = y»[n]

Examine the ZT of y;[n] and y»[n]:

Yl(})-’ \\3) M) "
NTET i (Y 5/‘*)}> Y= & %X(MZ(L/ )

3= u-}XAU\\u& )} N ) EX(NKb ™)

X=X (&5
d ( v\eemx roXytho vholetermsts L0k W\W“

_\]zmc
V\sM M keo, M-l gre M distingt M mﬁ@w‘t‘/

‘);WKL.
V\\;LJ: e/‘d_ﬂ’ ST Wt rePreseM’ M- s tinet
fmcbers pshenc L ande M share.
CAn DR jaa-ns.
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Details

Proof of Noble Identities

> X (g™
Xo)= 6 TE) S Kl )= Gl DT (e 3™
= B E e R
= &HI )= YN

: Mo\
W Yaild)=m =

B Y= 63 = 633G

T3 = 300 %37 s 3)- 66X
I35 = GGIX(E) =Y g
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Details

. . k1 M-1 —7 — kY M—-1
Equiv. to examine for {WM g == {WM }k:O
(WL = (WL iff M and L are relatively prime.

0 "=". Prve QY ontradsRow, e, Lo L and- M. hawe o cmmen
Joor 32 ot M;umjm‘w]ﬁ%erm<»4,
odo Lsalforsomwe Do),

ML= kL= ML = mL wodM =0

et set §o,L, 2L, oo (ML wed A hos ot wssC
M- dustiner @lements TS F 0,1, oo, (M=)
Cptradick With T gver cordiion.

B ‘" Prove by ontradinon, Y. uppedtha tue sets are
differenx | where I Kik Ky st. DeKa< KigM= arok
Kil wnd M= KoLwwd M.
Ths weans T Sowe Wheged gy omd A1, pse howe
kil —0A= KoL-02M ML{ R-HL< MM < Kl
(ks )L < O2M < Kol
(K- = (M-0)M > Q-0 = (Kik) %
Ln=02) 15 M'H\K%&U' oo (-2 L shoutd be uutiplas 5614
vop <(Kimky) g Mol ol L owast mbsmmmmjms Witk M
2 Cowtrodidlon
m
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3 The Polyphase Representation
Appendix: Detailed Derivations

Multi-rate Signal Processing
3. The Polyphase Representation

Prof. Min Wu

University of Maryland, College Park

minwu®@umd.edu
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3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Polyphase Representation: Basic Idea

Example: FIR filter H(z) =1+ 2z 1 + 3272+ 4z73

Group even and odd indexed coefficients, respectively:
= H(z) = (1+3z72) +z7}(2+427?),

More generally: Given a filter H(z) = > 72 __ h[n]z™", by

n=—oo
grouping the odd and even numbered coefficients, we can write

H(z) =0 h[2n]z72" 4+ z715°% h[2n+1]z72"

n=—0o0
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3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Polyphase Representation: Definition
H(z) =% h[2n]z=2" + z~1 S hl2n+ 1]z72"

Define Ey(z) and Ej(z) as two polyphase components of H(z):

Eo(2) = 302 oo hl2n]z7",
Ei(z) =302 hl2n+1]z7",
We have
H(z) = Eo(z?) + z 1 E1(2?)

@ These representations hold whether H(z) is FIR or IIR, causal
or non-causal.

@ The polyphase decomposition can be applied to any sequence,
not just impulse response.
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3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model

3.4 Discussions: Multirate Building Blocks & Polyphase Concept

FIR and IIR Example

Q FIR filter: H(z) =1+2z714+3272 44273
wH(z)= (143272 + 2712+ 4272),
SE(z) =1+ 3z7L; Ei(z) =2+ 471

Q IIR filter: H(z) = —2

T l-az 1

Write into the form of H(z) = Eg(2?) + z 1 E1(Z2):

.. _ 1 l1+az"! _ 14az?
: H(Z) T l—az ! 1+az ! 7 1-a2z2

_ 1 -1 a
T 1-a?z2 tz 1-a=2z-2

- Eo(2) = H%; Ei(z) = %=

Prof. Min Wu ENEE630 Lecture Part-1
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3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Extension to M Polyphase Components
For a given integer M and H(z) =72 h[n]z™", we have:
H(z) = 30l o hinM]z="M 271 3700 h[nM + 1]z="™M
+ o Az WMDY ChnM A+ M — 1]z

Type-1 Polyphase Representation

H(z) = Ze 0 L 2tE (M)

where the /-th polyphase components of H(z) given M is
Ei(z) 2550 ednlz" = S350 hnM + £z~

n=—o0 n=—0o0

Note: 0 < ¢ < (M — 1); strictly we may denote as EZ(M)(Z).
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3 The Polyphase Representation
Appendix: Detailed Derivations

Example: M =3

L R M=3
T
| « 2 32aF 4 -8 p
ekuq’ //.lﬂT\\
°] [
palt] f e
B
p ; 'y "
e yng %
-1 I
! > pn
Prof. Min Wu

3.1 Basic Ideas

3.2 Efficient Structures

3.3 Commutator Model

3.4 Discussions: Multirate Building Blocks & Polyphase Concept

€y (1)
P
z% time advance

(there is a delay term when
putting together the polyphase
components)
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3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model

3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Alternative Polyphase Representation

If we define Ry(z) = Ep—1-¢(z), 0 < ¢ < M — 1, we arrive at the
Type-2 polyphase representation
H(z) = St 2= M=1=0R,(2M)

Type-1: Ei(z) is ordered
consistently with the number of delays
in the input

—_— @ RO(S‘M> %—\
Fm =

& tl>m—>3h_ o SR A

Prof. Min Wu ENEE630 Lecture Part-1 7/25
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3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Issues with Direct Implementation of Decimation Filters

Decimation Filters: l &) %

Question: Any wasteful effort in the direct implementation?

@ The filtering is applied to all original signal samples, even
though only every M filtering output is retained finally.

e Even if we let H(z) operates only for time instants multiple of
M and idle otherwise, all multipliers/adders have to produce
results within one step of time.

e Can | M be moved before H(z)?

Only when H(z) is a function of zM, we can apply the noble
identities to switch the order.

Prof. Min Wu ENEE630 Lecture Part-1 8/25



3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Efficient Structure for Decimation Filter

Apply Type-1 polyphase representation:

£ 3™ Y ’_—:'_’WI—’M_P’ Eo®)

e — Ve
3 L, Eua(3" >_T peblay o

Yolendity é -_>E 3
( w\d@@b)
__N__ = N+
pU=—hi AR 3 u:»@i
.j;ww.a WPWWA wer dtoe NIR
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3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Computational Cost
For FIR filter H(z) of length N:

@ The total cost of N multipliers and (N — 1) adders is
unchanged.

e Considering multiplications per input unit time (MPU) and
additions per input unit time (APU),
Ex(z) now operates at a lower rate:

only N/M MPU and (N —1)/M APU are required.

@ This is as opposed to N MPU and (N — 1) APU at every M
instant of time and system idling at other instants, which
leads to inefficient resource utilization.

(i.e., requires use fast additions and multiplications but use them
only 1/M of time)
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3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Polyphase for Interpolation Filters —’»

Observe: the filter is applied to a signal at a high rate, even
though many samples are zero when coming out of the expander.

Using the Type-2 polyphase decomposition:

5 =2
NN X3 ;
ﬂ)-—E@ WJT:W]
Ri G
hbb(.a_,\w‘ (M‘%[M"g/
H(z) = z_lRo(zz) + Rl(zz): @ 2 polyphase components

@ Ri(z) is half length of H(z)
The complexity of the system is N MPU and (N —2) APU.

Prof. Min Wu ENEE630 Lecture Part-1 11/25



3 The Polyphase Representation
Appendix: Detailed Derivations

General Cases

3.1 Basic Ideas

3.2 Efficient Structures

3.3 Commutator Model

3.4 Discussions: Multirate Building Blocks & Polyphase Concept

In general, for FIR filters with length N:

M-fold decimation:
N N—1

a-qm
ﬁ.&@d

P L)

filtering is performed at a lower
data rate

Prof. Min Wu

L-fold decimation:

MPU = N, APU=N—-L

—>Re( 3'__\
k&) P@Wﬁ
) md G

LY

N |

. ‘ .—\
ot

APU = (F—1)xL
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3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Fractional Rate Conversion

X gr)
Il —
Dt

@ Typically L and M should be chosen to have no common
factors greater than 1 (o.w. it is wasteful as we make the rate
higher than necessary only to reduce it down later)

e H(z) filter needs to be fast as it operates in high data rate.

@ The direct implementation of H(z) is inefficient:
there are L — 1 zeros in between its input samples

only one out of M samples is retained

Prof. Min Wu ENEE630 Lecture Part-1 13/25



3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Example: L=2and M =3

@ Use Type-1 polyphase decomposition (PD) for decimator:

@ Use Type-2 PD for interpolator:
!
[R—[r2t= /gmw ples are
podngy L m»w.*

Prof. Min Wu ENEE630 Lecture Part-1 14 /25



3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Example: L=2and M =3

© Try to take advantage of both:

Question: What's the lowest possible data rate to process?
f/M

Challenge: Can't move 1 2 further to the right and | 3 to
the left across the delay terms.
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3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Trick to enable interchange of T L and | M

7 =z

@ z 3 and z2 can be considered as filters in z—M and z Tt

@ Noble identities can be applied:

5-»)_ 3;3

%
—>——7‘ﬂj§-—§_l—
& S

can be interchanged as they are relatively prime
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3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Overall Efficient Structure

¥
becomes (N3 —>W_5__\—’

N
can move decimation earlier by Type-1 PD of Ry(z)

RO()(Z ) + 271R01(Z3) + 272R02(Z3)

Rlo(z ) + Z_1R11(Z3) + Z_2R12(Z3)

o3

Prof. Min Wu ENEE630 Lecture Part-1 17 /25



3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Observations

e For N-th order H(z): MPU = (N + 1)/M = independent of L

@ The final structure is the most efficient:
Decimators are moved to the left of all computational units
Expanders are moved to the right of all computational units

Thus the computation is operated at the lowest possible rate.

@ The above scheme works for arbitrary integers L and M as
long as they are relatively prime.

Under this condition, we have:

© 3Jng,m €7Z st. mM — ngl =1 (Euclid’s theorem)
We can then decompose z=1 = z™lz—mM
@ 1 Land | M are interchangeable
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3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Commutator Model: A Delay Chain followed by Decimators

Polyphase implementation is often characterized by

@ A delay chain followed by a set of decimators,

CouwtRrt Ao T S Crummictod BT
=
Ea — 4’%/._) h otk 3=~
%* - hA— Nomool 3=
a-—% -
e o T
M= =21, 4y - Ne =2, 5 -~ - N=0036---
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3.1 Basic Ideas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Commutator Model: Expanders followed by A Delay Chain

@ A set of expanders followed by a delay chain
clockmwise  frmmuntatsv

n=o
— - ~—
N=o,3, 6, --- Ne V12,7, ~~- n=x. & & ---

Commutator/switch model is an appealing conceptual tool to
visualize these operations
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3.1 Basic ldeas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Discussions: Linear Periodically Time Varying Systems

Some multirate systems that we have seen are linear periodically
time varying (LPTV) systems.

) L= A
L R

e.g.,
(1] x[n] if nis multiple of M
n =
Y 0 otherwise
= x[n] - c[n]

c[n] is a comb function: takes 1 for n is multiple of M and 0 o.w.

= This is a linear system with periodically time varying response
coefficients, and the period is M.
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3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Time-invariant System with Decimator / Expander

Even though 1 L and | M are time-varying, a cascaded system
having them as building blocks may become time-invariant.

X nd X2l GCny

™3]

|
{
t
t
!

YEPHE)  T@
TG

This structure is the same as a fractional decimation system with
L=M.
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3.1 Basic ldeas
3 The Polyphase Representation 3.2 Efficient Structures
Appendix: Detailed Derivations 3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Time-invariant System with T M & | M

Xy X2mn] g

L = DL

LIy @
TG EPME:

Recall: [X( 2)\m=
X(W" 1/M)
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3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Perfect Reconstruction (PR) Systems

shs sgm&e,st 4 E"J
l)am,L

The above system is said to be a perfect reconstruction system
if X[n] = cx[n — ng] for some ¢ # 0 and integer ng,

i.e., the output is identical to the input, except a constant
multiplicative factor and some fixed delay.
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3 The Polyphase Representation
Appendix: Detailed Derivations

Special Time-invariant System with t+ M & | M

Y[ X1 Kalad &l
| ! ' ; Recall: [X(2)], =
@ COIEMEEY Y@ LM (WM

E™)

Y(z) = [X(zM)H(2)]
= i1 Thlo X (Witkz) H (Wisz/M) = X(2)[H(2)]ym

[H(z)] m implies decimating the impulse response h[n] by M-fold,
corresponding to the O-th polyphase component of H(z).

e &l
= Y(z) = X(2)Eo(2), i.e, B8 , an LTI system.
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4.1 Interpolated FIR (IFIR) Design

4 Multistage Implementations
4.2 Multistage Design of Multirate Filters

5 Some Multirate Applications

Preliminaries: Filter's magnitude response

] pss band Filter design theory

SN
“oterance A linear phase FIR filter that satisfies

4 =81 2me _ pueRs
this specification has order
N = g(61,52, AW)
£y
v l \NS =i bmkl? @ as a function of 1, d», and Af
Ws?ﬁ%adme tolerance o Arn Y
bond-ye! 2ones (normalized transition b.w. € [0,1])

For fixed ripple size, N ﬁ:

Af t— N | (computation |)
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4 Multistage Implementations 4.1 Interpolated FIR (IFIR) Design
5 Some Multirate Applications 4.2 Multistage Design of Multirate Filters

Doubling Filter Transition Band

Consider an original LPF implementation

—= &
PUT— ~N el o A

TRy INs

If we have a LPF with transition band 2Af, we may reduce the
order by about half.

&(5; Q‘;’ Double transition band leads to half
~ ~ of the required order for the filter.

)_NF SYNYS
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4.1 Interpolated FIR (IFIR) Design

4 Multistage Implementations
4.2 Multistage Design of Multirate Filters

5 Some Multirate Applications

Interpolated FIR (IFIR)

Questions:
@ With passband and stopband also doubled, what will be the

response of a new filter that is an expanded version of the
impulse response for G(z), i.e., G(z?)?

@ What else is needed to get the same system response as H(z)?

—f@ e

New Interpolated FIR Design:
P g N¢ Na = t\\/;
g <
I 6(}*)?‘ e N
b‘ﬂ \ + ?M S peetum—
é i ‘ Wp— NS Tremg ai t‘i«%e/
: w | T mide.oasiion. bod = T(3) con have
‘Q)_é - =~ vy (o1 order
}h ' Y 4 T—-Ws ‘?T$ ~ I(z) fills in interpolated
values for G(z*2)

4/24
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4 Multistage Implementations 4.1 Interpolated FIR (IFIR) Design
5 Some Multirate Applications 4.2 Multistage Design of Multirate Filters

Multistage Decimation / Expansion

With what we have in IFIR design, reconsider now the efficient
implementation of multirate filters:

eg e Narrow passband for H(z)
= = long filter needed
—>| H(5) @—-}

@ Using polyphase representation
= need many decomposition
components for large M!

How about?

— (b ot

Multistage implementation can be more efficient
(in terms of computations per unit time).

Prof. Min Wu ENEE630 Lecture Part-1
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4 Multistage Implementations 4.1 Interpolated FIR (IFIR) Design
5 Some Multirate Applications 4.2 Multistage Design of Multirate Filters

Multistage Decimation / Expansion

Similarly, for interpolation, (9 H@\—=
,,_:__)‘ 6(%)F—>@—>

Summary

By implementing in multistage, not only the number of polyphase
components reduces, but most importantly, the filter specification
is less stringent and the overall order of the filters are reduced.
Exercises:

@ Close book and think first how you would solve the problems.

@ Sketch your solutions on your notebook.

@ Then read V-book Sec. 4.4.
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4 Multistage Implementations 4.1 Interpolated FIR (IFIR) Design
5 Some Multirate Applications 4.2 Multistage Design of Multirate Filters

IFIR Design
—fi—{ewi—

—= &
Original system: nder N New system: D
H(z) ~ N S\ reaf (omit ripples in the sketches)
L A
wWp oINS
Doubled transition band leads
G(z)~ 4§ —af N R~ to half of the required order
NP 2wy for the filter

G(2?) \ /— Note the undesired spectrum
image

Wp NS T

I(2) m,e N Wide transition band =
i c —— I(z) can have very low order
rp T-Ws ™
% G(2w) x I(w) = H(w)
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4 Multistage Implementations 4.1 Interpolated FIR (IFIR) Design
5 Some Multirate Applications 4.2 Multistage Design of Multirate Filters

Discussions

The complexity of the two-stage implementation is much less than
that of the direct implementation.

e G(z): the model filter
(designed according to the “scaled” specification of H(z))
e /(z): image suppressor
@ Number of adders: N; + Ng < N
o Number of multipliers: (N; +1) 4+ (Ng +1) < (N +1)
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4 Multistage Implementations 4.1 Interpolated FIR (IFIR) Design
5 Some Multirate Applications 4.2 Multistage Design of Multirate Filters

Principle of IFIR Design

= Motivated multistage design from an efficient design technique
of narrowband LPF known as IFIR.

@ Applicable for designing any narrowband FIR filter (by itself
not tied with T L or | M)

Readings: Vaidyanathan's Book Sec. 4.4
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4 Multistage Implementations 4.1 Interpolated FIR (IFIR) Design
5 Some Multirate Applications 4.2 Multistage Design of Multirate Filters

Extension to M > 2

In general, it is possible to stretch more, by an amount M > 2,

—1 F=lee™ =

@ so that the transition band of G(z) can be even wider
(= MAF) and further reduces the order N,

e Stopband edge in G(z): Mws <7
~M<|z]
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4 Multistage Implementations 4.1 Interpolated FIR (IFIR) Design
5 Some Multirate Applications 4.2 Multistage Design of Multirate Filters

Extension to M > 2: Tradeoff

I‘€§ AL MIIVESINH -
b [
(WS 2T T

respovar ; LN
i DORA™
) \ N AR,

Tradeoff of the total cost: M 1

e G(z): transition b.w. 1 — order |
@ /(z): transition b.w. | (could become very narrow) — order 1

= can search for optimal M.
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4 Multistage Implementations 4.1 Interpolated FIR (IFIR) Design
5 Some Multirate Applications 4.2 Multistage Design of Multirate Filters

Multistage Design of Decimation Filter

M = My My:

@1 Choice of M; can be cast as
an optimization problem
N 6(8_M\> ,——? U Mo —
Rule of thumb: choose M;
’)—?q@*@g’ larger to reduce the
\

computation complexity &
polyphase implementation each stage data rate early on
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4 Multistage Implementations 4.1 Interpolated FIR (IFIR) Design
5 Some Multirate Applications 4.2 Multistage Design of Multirate Filters

Multistage Design Example: (1) Direct Design

e.g., M = 50 fold decimation of
— l HD \ an 8kHz signal

— [l el H(@): 0 = 0.0L 2 ~0.001,

passband edge = 70Hz, stopband

R _):‘ edge = 80Hz
f)\_@ / ﬁ@ 10 _ 1

~ normalized Af = 3% = 500

polyphase implementation each stage the order of direct equiripple filter

design = N = 2028
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4 Multistage Implementations 4.1 Interpolated FIR (IFIR) Design
5 Some Multirate Applications 4.2 Multistage Design of Multirate Filters

Multistage Design Example: (2) Two-stage Design

M; =25, My, =2

G(2): Af:25><ﬁ

— | HD wp = 0.43757, ws = 0.5,

61 = 0.005, 6, = 0.001

@QJ M= SN, =90
— (I —ewl- - (2): A =17 x5
N

wp = 0.01757, ws = 0.06,
01 = 0.005, 4, = 0.001

= N; =139
higher order than G(z) due to
narrower transition

polyphase implementation each stage

See spectrum sketch in Vaidyanathan's Book, Fig. 4.4-6.
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4 Multistage Implementations 4.1 Interpolated FIR (IFIR) Design
5 Some Multirate Applications 4.2 Multistage Design of Multirate Filters

Interpolation Filter

e e L)
A e T PO e ETON e
— L = {6\ =t =1 —

L1 should be small to avoid too much increase in data rate and
filter computation at early stage

e.g., L =50: L1 = 2, L2 =25

Summary

By implementing in multistage, not only the number of polyphase
components reduces, but most importantly, the filter specification
is less stringent and the overall order of the filters are reduced.
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5.1 Subband Coding / Compression
5.2 Applications in Digital Audio Systems
5.A Warm-up Exercise

4 Multistage Implementations
5 Some Multirate Applications

How to compress a signal?

o Tradeoff between bit rate and fidelity

@ Many aspects to explore:
use bits wisely; exploit redundancy; discard unimportant parts;

@ Allocate bit rate strategically: equal allocation vs. focused
effort
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5.1 Subband Coding / Compression
5.2 Applications in Digital Audio Systems
5.A Warm-up Exercise

4 Multistage Implementations
5 Some Multirate Applications

Compression Tool #1 (lossless if free from aliasing):
Downsample a signal of limited bandwidth

(From what we learned about decimation in §1.1)

If a discrete-time signal is bandlimited with bandwidth smaller than 27,
the signal can be decimated by an appropriate factor without losing
information.

@ i.e., we don't need to keep that many samples

@ Recall the example in §1.1.1: |w| < 27

= can change data rate to % of original

@ If signal spectrum support is in (wy,w; + %) we can decimate the
signal by M fold without introducing aliasing.
(Decimated signal may extend to entire 21 spectrum range)
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4 Multistage Implementations
5 Some Multirate Applications

Compression Tool #2 (lossy):

Dynamic range A of a signal:

@ Use a finite number of bits to represent a continuous valued

sample via scalar quantization:

partition A into N intervals, pick N representative values and

5.1 Subband Coding / Compression
5.2 Applications in Digital Audio Systems
5.A Warm-up Exercise

Quantization

the
value
range A

11

use logy N bits to represent each value.

— Simple quantization: unifor

Prof. Min Wu

m quantization

ENEE630 Lecture Part-1

18 /24



5.1 Subband Coding / Compression
5.2 Applications in Digital Audio Systems
5.A Warm-up Exercise

4 Multistage Implementations
5 Some Multirate Applications

Compression Tool #2 (lossy): Quantization

@ Quantify the “imprecision” between original and quantized:

e maximum error max, |x — X|
e mean squared error E[(x — X)?]: easy to differential in an
optimization formulation

@ For a fixed amount of average error, signal with large dynamic
range requires more bits in representation.
e.g., uniform quantizer: max error = A/(2N)
= dynamic range A T or # intervals N | lead to higher error

@ Non-uniform quantizer: may consider a few aspects

© keep relative error low (smaller stepsize in low value range)

@ take account of signal’s probability distribution and keep the
expected error low (reduce error in most seen values)
e.g., MMSE / Lloyd-Max quantizer
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4 Multistage Implementations ol Subband_ Cod_mg / _Compre§5|on
A o 5.2 Applications in Digital Audio Systems
5 Some Multirate Applications .
5.A Warm-up Exercise

Non-bandlimited Signals

We often encounter signals that are not bandlimited, but have
dominant frequency bands.

Question: How to use fewer bits to represent the signal and keep
the imprecision low?

X

0 n
net Se Smallts be ?ékmﬁ)l,

e.g. x[n]: 10kHz sampled signal, 16 bits/sample (to cover the
dynamic range) = data bit rate 160kbps
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4 Multistage Implementations
5 Some Multirate Applications

Subband Coding

(T N (Y
) ’T/L TL\:" )

@ xo[n] and x1[n] are
bandlimited and can be
decimated

@ Xi(w) has smaller power
s.t. xi[n] has smaller
dynamic range, thus can be
represented with fewer bits

Prof. Min Wu

5.1 Subband Coding / Compression
5.2 Applications in Digital Audio Systems
5.A Warm-up Exercise

Suppose now to represent each
subband signal, we need

xo[n]: 16 bits / sample
x1[n]: 8 bits / sample
.16 x 12K + 8 x 10k — 120kbps
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5.1 Subband Coding / Compression
5.2 Applications in Digital Audio Systems
5.A Warm-up Exercise

Filter Bank for Subband Coding

4 Multistage Implementations
5 Some Multirate Applications

Oy bk i d\f e

L PN e 0 e (75 s R g [T
T?@P R
/Ir

sdvqms:s bank.

bit allocation Knowine a5

owde WTMM \ 3 Dound_
Quodroture
Minsar=Friterbak

Role of Fi(z):

@ eliminate spectrum images introduced by 1 2

o If {Hk(z)} is not perfect, the decimated subband signals may
have aliasing.

o {Fk(z)} should be chosen carefully so that the aliasing gets
canceled at the synthesis stage (in X[n]).
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4 Multistage Implementations 5.1 Subband Coding / Compression
ge 'mp s 5.2 Applications in Digital Audio Systems
5 Some Multirate Applications X
5.A Warm-up Exercise

Applications in Digital Audio Systems

@ During A/D conversion: Oversampling to alleviate the
stringent requirements on the analog anti-aliasing filter

@ During D/A conversion: Filter to remove spectrum images

@ Fractional sampling rate conversion: Studio 48KHz vs. CD
44.1KHz

Readings to explore more: Vaidynathan Tutorial Sec. IlI-A.

Prof. Min Wu ENEE630 Lecture Part-1
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5.1 Subband Coding / Compression
5.2 Applications in Digital Audio Systems
5.A Warm-up Exercise

4 Multistage Implementations
5 Some Multirate Applications

Warm-up Exercise: Two-Channel Filter Bank

Under what conditions does a filter bank preserve information?

Derive the input-output relation in Z-domain.

W\ S ok s(\]wwe; S bank
XoD’\ Voln]
N
¥ m&) — W VﬁDL Fodd

X\0n] N dn Roq
[ —~Rey

™ deo oked
Susborth  subbond ss

Prof. Min Wu ENEE630 Lecture Part-1
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6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Multi-rate Signal Processing
6. Quadrature Mirror Filter (QMF) Bank

Electrical & Computer Engineering
University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by

Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by
Prof. Min Wu and Mr. Wei-Hong Chuang.

Contact: minwu@umd.edu. Updated: September 29, 2011.
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Review: Two-channel Filter Bank

Recall: the 2-band QMF bank example in subband coding

oMLY S bamk— Saw%&s»s b amk

W XOU\ Voln]
Xt HoL%) vaw Fo@«)

Xiw) LV‘] < (@74
V)
[P (R
™ m[;\
swbrd Sl s

Typical magnitude response

Overlapping filter response across
(TORTON I

W]

Ho Hi

/2 may cause aliased subband
signals
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. . 6.1 Errors Created in the QMF Bank
® Quadra/iureenMdIiZ?rDZtZ?IreSQD’\:E\)/a?iZ:‘; 6.2 A Simple Alias-Free QMF System
ppencix: 6.A Look Ahead

6.1 Errors Created in the QMF Bank

The reconstructed signal %[n] can differ from x[n] due to
Q aliasing
@ amplitude distortion
© phase distortion

@ processing of the decimated subband signal vi[n]

e quantization, coding, or other processing

e inherent in practical implementation and/or depends on
applications
= ignored in this section.

Readings: Vaidynathan Book 5.0-5.2; Tutorial Sec.VI.
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Input-Output Relation

ONAB S bomk— decw&sls b ok
Kol Voln] on)
X
L (w | | R
Xin] 3(0"] ()}Cyﬂ
wo
= B
™ d :Thod-ao‘\
o~ eciwocte d
Subed  subbond sgnals

Examine the input-output relation:
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Input-Output Relation

X(2) = SlHo(e)Folz) + ()R] X(2) +
2 IHo(~2)Fol2) + Hh(~2)Fa(2)] X(~2)

In matrix-vector form:
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. . 6.1 Errors Created in the QMF Bank
® Quadra/iureenMdIiZ?rDZtZ?IggQD’\:E\)/a?iZ:t 6.2 A Simple Alias-Free QMF System
ppencix: 6.A Look Ahead

What is X(—z)?

o X(—2)|,—ejw = X(w — ), i.e., shifted version of X(w)

Referred to as the “alias term”.

fo— =
'

X&) X)) 3o

0

\
™ )

If X(w) is not bandlimited by 7/2, then X(—z) may overlap with
X(z) spectrum.

In the reconstructed signal X[n], this alias term reflects aliasing due
to downsampling and residue imaging due to expansion.
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Linear Periodically Time Varying (LPTV) Viewpoint

Write X(z) expression as: X(z) = T(2)X(z) + A(z)X(-z)

i.e., alternatingly taking output from one of the two LTI subsystems
(note: input and ouput have the same rate)

ENEE630 Lecture Part-1
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Linear Periodically Time Varying (LPTV) Viewpoint

s Cro(d) ¥y
0 — X[w
G +— §

If aliasing is cancelled (i.e., A(z) = 0), this will become LTI with
transfer function T(z).

Questions: Why we may want to permit some aliasing?

@ To avoid excessive attenuation of input signal around w = 7 and
expensive H(z) filters for sharp transition band, we permit some
aliasing in the decimated analysis bank instead of trying to

completely avoid it.

@ We then choose synthesis filters so that the alias components in the
two branches can cancel out each other.
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Alias Cancellation

To cancel aliasing for all possible inputs x[n] s.t.
Ho(—2z)Fo(z) + Hi(—2z)F1(z) =0,

we can choose
Fo(z) = Hi(-2)

(a sufficient condition)
Fi(z) = —Ho(-2)

Example: sketch intermediate spectrums step-by-step

n
® xr
\ T > ~d L
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6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

Alias Cancellation in the Spectrum

P.P. Vaidyanathan: "Multirate digital filters, filter banks,
polyphase networks, andapplications: a tutorial”,
Proceedings of the IEEE, Jan 1990, Volume: 78, Issue:

1, pages 56-93. DOI: 10.1109/5.52200

Xoln. Volnd Jo0n
Lol e g R £ 9P
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Alias-tern
at Output
of Fy(2)

Fig. 23.
izontal axis represents w. (@) Typical input. (b) Transform. (c) Aliasing effect. (d) Imaging
effect. (e) Using x,. () Using vy. (g) Using y. (h) Alias-term at output of Fo(2). () Alias-term

lllustration of various Fourier transforms in two-channel QMF bank. Here hor-

at output of Fy(z).
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6.1 Errors Created in the QMF Bank

6 Quadrature Mirror Filter (QMF) Bank t §
o 5 i 6.2 A Simple Alias-Free QMF System
Appendix: Detailed Derivations 6.A Look Ahead

Alias Cancellation in the Spectrum  (sketch)

Assume Hy(z) and Hi(z) have some overlap and across /2
ﬂm {l\nm
i
—A— Km s | /\T-r/\ N
\

(@) -
A VAN Vit Astetd £ s gaaig
3 T [ Sere 9
7 oo f PO

§

/
p N
A T

YL spromsealogs>.

N Yotwy A
. )
_'71. T )‘_T\' s "}’L T T
wude st Arlos term mpgwrude st Arldos terms .

1 Zﬂ,ﬁﬂw‘:}jﬁ QF Fol¥) i) Mﬂ(m@.gej WeEF, (¥)  possible to choose Fi(z)
A A A A to make these terms cancel
yA—— B %«  sw_« each other out
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Amplitude and Phase Distortions

For an aliasing-free QMF bank, X(z) = T(z)X(z2),
where T(z) = % [Ho(z)Fo(2) + Hi(2)F1(2)]
= 3 [Ho(2)Hi(~2) — H1(2)Ho(~2)]

This is called the distortion transfer function, or the overall
transfer function of the alias-free system.

Let T(w) = | T(w)|ef®)

To prevent amplitude distortion and phase distortion, T(w) must
be allpass (i.e. |T(w)| =« # 0 for all w, a is a constant) and
linear phase (i.e., ¢(w) = a+ bw for constants a,b)
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. . 6.1 Errors Created in the QMF Bank
® Quadra/iureenMdIiZ?rDZﬂZ?IggQD’\:E\)/a?iZ:t 6.2 A Simple Alias-Free QMF System
ppencix: 6.A Look Ahead

Properties of T(z)

@ Perfect reconstruction (PR) property: if a QMF bank is free
from aliasing, amplitude distortion and phase distortion,
ie., T(z) =cz ™ = X[n] = cx[n — ng]

e With our above alias-free choice of Fy(z),
T(z) is in the form of T(z) = W(z) — W(-z),
where W(z) = Ho(z)H1(—2).

= T(z) has only odd power of z (as the even powers get
cancelled), i.e., T(z) = z715(z?) for some S(z).

So | T(w)| has period of 7 (instead of 27).
And for real-coefficient filters, this implies | T (w)| is symmetric
w.rt. m/2 for 0 <w < 7.
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

6.2 A Simple Alias-Free QMF System

Consider the analysis filters are related as
H1(z) = Ho(—2)

For real filter coefficients, this means |Hi(w)| = |Ho(m — w)].
. |Ho(w)| symmetric w.r.t. w = 0; |Hy(w)| ~ shift |Ho(w)| by 7.

If Ho(z) is a good LPF,

i.e., |Hi(w)] is a mirror image of |Hp(w)] then Hy(2) is a good HPF.
wrt. w=m/2=2n/4,
the “quadrature frequency” of the Hel$) HG
normalized sampling frequency. X

ol -n"/)_ T N
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

(1) QMF Choice and Alias-free Condition

With QMF choice of Hi(z) = Ho(—z), now the alias-free condition
becomes

Fo(z) = Hi(=2) N Fo(z) = Ho(z)
Fl(Z) = —Ho(—Z) Fl(Z) = —Hl(].Z)
All four filters are completely determined by a single filter Hy(z).

The distortion transfer function becomes

T(z) = 3 [H3(2) — H{(2)] = 5 [HG(2) — Hi(-2)]
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

(2) Polyphase Representation of QMF

% beneficial both computationally and conceptually
Let Ho(z) = Eo(2%) + z7YE1(z?)  (Type-1 PD)
Then Hi(z) = Ho(—z2) = Eo(2?) — z 1 E1(2?)

In matrix/vector form,
Ho(z) ] [1 1 Eo(2?)
[ Hi(z) } - { 1 -1 ] [ z71E(2?) }
Similarly, for synthesis filters,
| Fo(z2) Fui(z) | =[ Ho(z) —Hi(z2) |

= [ z7'E(2?) Eo(22)]“ —11}
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Polyphase Representation: Signal Flow Diagram

w10 S]]
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Polyphase Representation: Efficient Structure

Rearrange using nobel identities to obtain efficient implementation:
Xy EaL&) ku E LS‘B S_\

§ L\k,)_—» E(U{) \EOLS')E \%XL"]
For Ho(z) of length N = Ex(z) has length N/2

@ Analysis bank: N/2 MPU, N/2 APU; same for synthesis bank
@ Total: N MPU & APU

T H2(2) = B3(2%) + Ef(2%)z72 + 2271 By (22) ER(2?)

So the distortion transfer function becomes

T(z) = % [Hg(z) — Hg(fz)] = 22_1E0(22)E1(z2)
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. . 6.1 Errors Created in the QMF Bank
6 Quadrature Mirror Filter (QMF) Bank 6.2 A Simple Alias-Free QMF System
Appendix: Detailed Derivations
6.A Look Ahead

Polyphase Representation: Matrix Form

xCnl =[] [EYH DWS—\
M Eme 1; iq——XL\ o) o > X L)
In matrix form: (with MIMO transfer function for intermediate stages)

[ EléZ) EO(ZZ) ] [ 1 —11 ] [ 1 —11 } { EoéZ) Elc()Z) ]

synthesis 20 analysis

% Note: Multiplication is

| 2E0(2)Ei(2) from left for each stage
0 2Ey(z)E1(2) when intermediate signals
are in column vector form.
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Observations

The distortion transfer function of QMF

T(z) = 2z 1 Ey(2?) E1(2?)
e If Hy(z) is FIR, so are Eo(z), E1(z) and T(z).

e For Hy(z) FIR and Hi(z) = Ho(—z), the amplitude distortion
can be eliminated iff Ey(z) and E;(z) represent a delay:

{Eo(z) =coz™ ™

El(Z) =cqz ™
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. . 6.1 Errors Created in the QMF Bank
6 Quadrature Mirror Filter (QMF) Bank 6.2 A Simple Alias-Free QMF System
Appendix: Detailed Derivations
6.A Look Ahead

Observations

For Eo(z) and Ei(z) each representing a delay, we can only have
analysis filters in the form of

Ho(Z) = C()Zi2n0 + Clzf(2n1+l)
Hi(z) = coz %M — ¢ z—(2m+1)

Such filters don't have sharp cutoff and good stopband
attenuations.

Therefore H1(z) = Ho(—z) is not a good choice to build FIR
perfect reconstruction QMF systems for such applications as
subband coding.
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. . 6.1 Errors Created in the QMF Bank
6 Quadrature M'."_Or Filtgr (QME) Bank 6.2 A Simple Alias-Free QMF System
Appendix: Detailed Derivations
6.A Look Ahead

(3) Eliminating Phase Distortions with FIR Filters

If Ho(z) has linear phase, then we can show that
T(z) = 5 [H3(2) — H5(~2)]
also has linear phase (thus eliminating phase distortion).

Let Ho(z) = Z,’Yzo ho[n]z~" with ho[n] real. The linear phase and
low pass conditions lead to hg[n] = hg[N — n] (symmetric).

We can write Hp(w) = e vy R(w)

real valued
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. . 6.1 Errors Created in the QMF Bank
6 Quadrature M'."_Or Filtgr (QME) Bank 6.2 A Simple Alias-Free QMF System
Appendix: Detailed Derivations
6.A Look Ahead

(3) Eliminating Phase Distortions with FIR Filters

T(w) now becomes:

Note: |Hp(w)| = |R(w)| and
|Ho(w)]| is even symmetric

= T(w) = S5 [[Ho(w)? — (—1)V|Ho(m — w)|*]

If N'is even, T(w)|w=z =0, which brings severe amplitude
distortion around w = 7/2.

To avoid this, the filter order N should be odd (or length is even)
so that T(w) = &5 [|Ho(w)[? + |Ho(m — w)|?]
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

(4) Minimizing Amplitude Distortion with FIR Filters

@ Recall: after choosing Hi(z) = Hp(—z), the amplitude
distortion can be removed iff Hy(z)'s two polyphase
components are pure delay.

But such Hy(z) doesn’t have good low-pass response.

@ For more flexible choices of Hy(z) while eliminating aliasing
and phase distortion, there will be some amplitude distortion.

e What we can do is to adjust the coefficients in Hp(z) to
minimize the amplitude distortion, i.e., to make T (w)
approximately constant:

[ Ho(w)? + [Hi(w)]? ~ 1
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

(4) Minimizing Amplitude Distortion with FIR Filters

| Holw)[™ { 1 — too much overlap b/w Hy and H;
+ H(\w)\l @V"‘ 2 — too little overlap

kY 3 — good choice
. . (can be obtained by trial and error or by
o Tla ™ optimization formulation)

@ Recall T(z) has only odd power of z. For real-coeff. filter, | T(w)] is
symmetric w.r.t. 7/2 for 0 < w < 7.

@ By quadrature mirror condition, | T(w)] is almost constant in the
passbands of Hy(z) and Hi(z) if Hy(z) has good passband and
stopband responses.

@ The main problem is with the transition band. The degree of overlap
between Hyp(z) and Hy(z) is crucial in determining this distortion.

See Vaidyanathan's Book §5.2.2 for details and examples
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

(5) Eliminating Amplitude Distortion with IIR Filters

How about IR filters?

@ The choice of E1(z) = E( y can lead to perfect reconstruction
and provide more room for designing H(z).

But the filters Hx(z) would become IIR and may not provide
desirable response.

e To completely eliminate amplitude distortion, T(z) must be
all-pass (which is 1IR).

@ Review: a lst-order all-pass filter G(z) = i’f:;j

= |G(w)| = 1; zero = —1/a*, pole = —a (conjugate reciprocal).
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

(5) Eliminating Amplitude Distortion with IIR Filters

One way to make T(z) allpass is to choose Eyg(z) and E;(z) to be
IIR and allpass.

Let Eo(z) = # and Ei(z) = aléz) where ap(z) and a;i(z) are
allpass with |ap(w)| = |ag(w)| = 1.

The analysis filter becomes
_ 2 -1 2y _ a(2?)+z'a(2%)
Ho(z) = Eo(2°) + z7* E1(2°) = 25—
= possible to have good H(w) response with such all-pass polyphase form.
Explore PPV book 5.3

The overall distortion transfer function is allpass:
—1
T(z) = % a0(2%)a1(2%)
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Phase Distortion with IIR Filters

@ This design of QMF bank is free from amplitude distortion
and aliasing, regardless of the details of the allpass filters
ap(z) and a;i(2).

@ But the phase distortion remains due to the IIR components.
The phase distortion is governed by the phase responses of

ap(z) and a;i(z).
Question: Can ap(z) and a;(z) be designed to cancel out phase
distortion?

Note the difficulty in designing filters to meet many constraints.
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Summary

Many “wishes” to consider toward achieving alias-free P.R. QMF:
(0) alias free, (1) phase distortion, (2) amplitude distortion,
(3) desirable filter responses.

Can't satisfy them all at the same time, so often meet most of
them and try to approximate/optimize the rest.

A particular relation of synthesis-analysis filters to cancel alias:

{IZ’Z; z Ij-(lo_(z—)z) s.t. Ho(—z)Fo(z) + Hi(—2z)Fi(z) = 0.

We considered a specific relation between the analysis filters:
H1(z) = Ho(—z) s.t. response symmetric w.r.t. w = /2 (QMF)

With polyphase structure: T(z) = 2z 1Ey(2%)E1(2?)
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. . 6.1 Errors Created in the QMF Bank
6 Quadrature M'."_Or Filtgr (QME) Bank 6.2 A Simple Alias-Free QMF System
Appendix: Detailed Derivations
6.A Look Ahead

Summary:  T(z) =2z 'Ey(2?) E1(Z?)
Case-1 Hy(z) is FIR:
@ P.R.: require polyphase components of Hy(z) to be pure delay
s.t. Ho(Z) = C()Z_Z'70 + Clz_(2"1+1)
[cons] Hp(w) response is very restricted.
@ For more desirable filter response, the system may not be P.R., but
can minimize distortion:

— eliminate phase distortion: choose filter order N to be odd,
and hg[n] be symmetric (linear phase)

— minimize amplitude distortion: |Hop(w)|?> + |H1(w)|? =~ 1

Case-2 Hy(z) is lIR:

° £(z2)= % can get P.R. but restrict the filter responses.

@ eliminate amplitude distortion: choose polyphase components to be
all pass, s.t. T(z) is all-pass, but may have some phase distortion
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. . 6.1 Errors Created in the QMF Bank
® QuadragureenMdIiZ?rDthlslregQD’\:E\)/a?iZ:‘; 6.2 A Simple Alias-Free QMF System
AR 6.A Look Ahead

Look Ahead: Simple FIR P.R. Systems

2-channel simple P.R. system:

XLM D h\L How are X(z) and X(z) related?

> \]/;_ What are the equiv. Hi(z) and Fy(z)?

Extend to M-channel:

Xon {( " How are X(z) and X(z) related?

‘&éﬂ What are the equiv. Hi(z) and F(z)?

Lma 5

% { Interpretation: demultiplex then
5 L? [ Y[M multiplex again
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Look Ahead: Simple Filter Bank Systems

Xt

- M50 b=t .
; mq@—’“ﬁ

Ui B~ [ s Ry

If all S(z) are identical as S(z), how are X(z) and X(z) related?

How is this related to the simple M-channel P.R. system on the
last page?
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6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

Look Ahead: M-channel filter bank

6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Study more general conditions of alias-free and PR;
examine M-channel filter bank:

ka Mu] wm

mwm@ﬂ

o)

\Hu—\ (3> \_?M*L’?-——’ — L&)

——
Ma\asls Dowle_ S(\]Mwem banke

Derive the input-output relation.
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6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Input-Output Relation

Examine the input-output relation:
(O Subband signals XL[}\ = HLLX) X (3 k=o,1.
O semmagnas Ve ) = [Xe)) 42
s s
Neod 0 £ X (37 W)t 5 Xe(Fme)
e %_XL(%‘A)“V XK(‘%VL) =0\,
oliasing otoum 1 RS poers Speoimu oy erlapy

2 e Xy, QA)
Ve )= 3 @)+ 53X (-8)
= ’Li HK[;’)X(S’\ + _)IZ HKU&’)X(‘X) ko, (.

Il

® Te®

45
® XH= B@AOYe®t FE T
= T (H)Fol)t IR FUIXRD
+ 5 T RN Bl + HUDE @) X8
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6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Input-Output Relation

In matrix-vector form:

2.‘2(@: LI X)) [Ho) Hi ][ Fold
Ho(-3) He(3) || Feld

VN-A/
bﬂj’"‘f— s 'L—{JQ%§
“odins componert nadrix

= [Fo® F3] [ He@) ot }Xm]
L (3) H(=3)J LX)
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6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

LPTV (Linear Periodically Time Varying) Viewpoint

I/\\NTSL X () expression s -
T = TeXB) + ALZOXL—B/)

e foa— S (Eme ey ) ko <& = ; Xt "

Defire § §oTr]

4.1

eI+ (—)Foule) X< _3/)([)\“_1 (;\n)
tle) — ()< oK) vy
35 W)* x[n]) WIS enen

I

1)

- Q[w}: {
610@—#)([“] pocs odde

i.e., alternatingly taking output from one of the two LTI subsystems
(note: input and ouput have the same rate)

ENEE630 Lecture Part-1 37/38



6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

Eliminating Phase Distortions with FIR Filters

T(w) now becomes

Tao= % [ Ho'twy = Ro -]
=% [E:JWMRILM _ gl RLUMT)J also used here |Hp(w)| = |R(w)]
= é‘im [Rw) = () R (-]
= e T O etr )

2

and |Ho(w)| being even
symmetric

If N'is even, T(w)|w=2 =0, which brings severe amplitude
distortion around w = /2.

To avoid th-is,\’/ N should be odd so that
e v

T(w) = 5~ [|Ho(w)[ + |Ho(m — w)?]
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7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

Multi-rate Signal Processing
7. M-channel Maximally Decmiated Filter Banks

Electrical & Computer Engineering
University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by

Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by
Prof. Min Wu and Mr. Wei-Hong Chuang.

Contact: minwu@umd.edu. Updated: October 6, 2011.
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7.1 The Reconstructed Signal and Errors Created
7 M-channel Maximally Decimated Filter Bank ;g ¥:e él‘las hCompRonent (AC). Wit
Appendix: Detailed Derivations : O (D MM
PP 7.4 Perfect Reconstruction Filter Bank

7.5 Relation between Polyphase Matrix E(z) and AC Matrix H(z)

M-channel Maximally Decimated Filter Bank

To study more general conditions of alias-free and P.R., it becomes more
convenient to examine M-channel filter bank.

Xetn) Vel ke ["‘3

Ho®) E»\—H—> [TM]
WWF@H

X3

\HM.\ & \—?M—L*-—’m

e S — "
M”HS'S Dowle_ S}ww:sts banke

As each of the filter has passband of about 27/ M wide, the subband
signal output can be decimated up to M without substantial aliasing.

The filter bank is said to be “maximally decimated” if this maximal
decimation factor is used.
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7.1 The Reconstructed Signal and Errors Created
7 M-channel Maximally Decimated Filter Bank ;g ¥Ee /Slwlas hComprment (AC). Wit
Appendix: Detailed Derivations . O (D MM
PP 7.4 Perfect Reconstruction Filter Bank

7.5 Relation between Polyphase Matrix E(z) and AC Matrix H(z)

The Reconstructed Signal and Errors Created

[ Readings: PPV Book 5.4, 5.5; Tutorial Sec. VIII |

Relations between X(z) and X(z):

X(2) = X1 Al2) X (W'z)

A1 M—-1

(] Ag(Z) =M k=0 Hk(WeZ)Fk(Z), 0< l < M —1.
0 X(W*'z)|,—eo = X(w — 2££), i.e., shifted version from X (w).

@ X(W?*z): (-th aliasing term, Ay(z): gain for this aliasing term.
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7.1 The Reconstructed Signal and Errors Created

7.2 The Alias Component (AC) Matrix

7.3 The Polyphase Representation

7.4 Perfect Reconstruction Filter Bank

7.5 Relation between Polyphase Matrix E(z) and AC Matrix H(z)

Conditions for LPTV, LTI, and PR

7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

e In general, the M-channel filter bank is a LPTV system with
period M.

e The aliasing term can be eliminated for every possible input x[n]
iff Ag(z) =0 for 1 < ¢ < M — 1. When aliasing is eliminated, the
filter bank becomes an LTI system:

where T(z) £ Ao(z) = & Z(IZ\/:ol Hi(z)Fk(z) is the overall transfer
function, or distortion function.

o If T(z) =cz ™, it is a perfect reconstruction system (i.e., free
from aliasing, amplitude distortion, and phase distortion).
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7.1 The Reconstructed Signal and Errors Created

7.2 The Alias Component (AC) Matrix

7.3 The Polyphase Representation

7.4 Perfect Reconstruction Filter Bank

7.5 Relation between Polyphase Matrix E(z) and AC Matrix H(z)

The Alias Component (AC) Matrix

7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

From the definition of Ay(z), we have in matrix-vector form:

Pald) Blp)  HGE) - - He Y]] B
A@ Hol3w) HGm) = = Au(n)) | L&)

M : : . g
P B Holgn ) W) oo Haa R L 3
k/—\r—)

S
Ak Tt 2

H(z): M x M matrix called the “Alias Component matrix”

The condition for alias cancellation is
MAo(z)
H(2)t(z) = t(z), where t(z) = 0
0
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7.1 The Reconstructed Signal and Errors Created

7.2 The Alias Component (AC) Matrix

7.3 The Polyphase Representation

7.4 Perfect Reconstruction Filter Bank

7.5 Relation between Polyphase Matrix E(z) and AC Matrix H(z)

The Alias Component (AC) Matrix

7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

Now express the reconstructed signal as
X(z) = AT(2)X(2) = LT (2)HT (2)X(2),
X(z)
where X(z) = X(Z_W)
X(zWM-1)

Given a set of analysis filters {Hx(z)}, if det H(z) # 0, we can
choose synthesis filters as f(z) = H~!(z)t(z) to cancel aliasing
and obtain P.R. by requiring
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7.1 The Reconstructed Signal and Errors Created

7.2 The Alias Component (AC) Matrix

7.3 The Polyphase Representation

7.4 Perfect Reconstruction Filter Bank

7.5 Relation between Polyphase Matrix E(z) and AC Matrix H(z)

7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

Difficulty with the Matrix Inversion Approach

e H~1(z) and thus the synthesis filters { Fx(z)} can be IIR even
if {Hk(z)} are all FIR.

e Difficult to ensure {Fx(z)} stability (all poles inside the unit
circle)

o {Fk(z)} may have high order even if the order of {Hk(z)} is
moderate

=- Take a different approach for P.R. design via polyphase
representation.
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7.1 The Reconstructed Signal and Errors Created
7.2 The Alias Component (AC) Matrix

7.3 The Polyphase Representation

7.4 Perfect Reconstruction Filter Bank

7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

7.5 Relation between Polyphase Matrix E(z) and AC Matrix H(z)

Type-1 PD for Hy(z)
Using Type-1 PD for Hi(z):

Hi(2) = Yitet 2 Ere(2M)

We have
Ho(d) Eoold™) Eol8™ - Coua@D ;-l

— \

Hut(8) EM_\IOU(M) - - - EM—(,UH(SM) S:/—(M—‘)

"

—
) E(&™) el
= k&) =EG") el

E(zM): M x M Type-1 polyphase component matrix for analysis bank
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7.1 The Reconstructed Signal and Errors Created

7.2 The Alias Component (AC) Matrix

7.3 The Polyphase Representation

7.4 Perfect Reconstruction Filter Bank

7.5 Relation between Polyphase Matrix E(z) and AC Matrix H(z)

7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

Type-2 PD for Fy(2)

Similarly, using Type-2 PD for Fi(z):
Fu(z) = 0l 2 MRy (2M)

We have in matrix form:

[Fotdh o B} =[50 500 ] §o°(}M)) é" :l‘gi
3™

R (3 "M(Ml

—_—

= ') = es®RE™

g(z) reversely ordered version of e(z)
R(zM): Type-2 polyphase component matrix for synthesis bank
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7.1 The Reconstructed Signal and Errors Created

7.2 The Alias Component (AC) Matrix

7.3 The Polyphase Representation

7.4 Perfect Reconstruction Filter Bank

7.5 Relation between Polyphase Matrix E(z) and AC Matrix H(z)

7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

Overall Polyphase Presentation

Xty
b [ E
: ' T |REBY g
s“ L»;/ﬁ@ﬁ@* ERZiNN
X n)

{y APPIY Noble Yentities

X
’zgr—;’lﬂlll"
S

PRt wQ -

Combine polyphase matrices into one matrix: P(z) = R(z)E(z)
——

note the order!
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7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

Simple FIR P.R. Systems

l__l 31

X Q«l\

>I_M—- @7*—>XCV§}

Extend to M channels:
Hi(z) = z
Fi(z) =

= X(z) =z~ (M— 1)X(z)

i.e. demultiplex then multiplex
again

7.1 The Reconstructed Signal and Errors Created

7.2 The Alias Component (AC) Matrix

7.3 The Polyphase Representation

7.4 Perfect Reconstruction Filter Bank

7.5 Relation between Polyphase Matrix E(z) and AC Matrix H(z)

X(z) = z7'X(2),
i.e., transfer function T(z) =z

_k .
7ML g < k< M—1 XTAd -(Lf’ﬁbD

-"‘7 'f\M —7\‘&—(

\
( ~

3 L,@ %@‘J
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7.1 The Reconstructed Signal and Errors Created

7.2 The Alias Component (AC) Matrix

7.3 The Polyphase Representation

7.4 Perfect Reconstruction Filter Bank

7.5 Relation between Polyphase Matrix E(z) and AC Matrix H(z)

7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

General P.R. Systems

Recall the polyphase implementation of M-channel filter bank:

X
p—

Wj S;l
; 1= E

[ e
N N ~
337 Xon]
P
Combine polyphase matrices into one matrix: P(z) = R(z)E(z)

;*:La, wllM —F

If P(z) = R(z)E(z) =1, then the system is equivalent to the
simple system = Hy(z) = z7%, Fx(z) = z7M+k+1

In practice, we can allow P(z) to have some constant delay, i.e.,
P(z) = cz—™I, thus T(z) = cz—(Mmo+M—1)
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7.1 The Reconstructed Signal and Errors Created

7.2 The Alias Component (AC) Matrix

7.3 The Polyphase Representation

7.4 Perfect Reconstruction Filter Bank

7.5 Relation between Polyphase Matrix E(z) and AC Matrix H(z)

7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

Dealing with Matrix Inversion

To satisfy P(z) = R(z)E(z) =1, it seems we have to do matrix inversion
for getting the synthesis filters R(z) = (E(z)) .

Question: Does this get back to the same inversion problem we have
with the viewpoint of the AC matrix f(z) = H~1(2)t(z)?
Solution:

@ [E(z) is a physical matrix that each entry can be controlled.
In contrast, for 7(z), only 1st row can be controlled (thus hard to
ensure desired Hi(z) responses and f(z) stability)

@ We can choose FIR E(z) s.t. detE(z) = az* thus R(z) can be
FIR (and has determinant of similar form).

Summary: With polyphase representation, we can choose E(z) to
produce desired Hi(z) and lead to simple R(z) s.t. P(z) = cz=*I.
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7.1 The Reconstructed Signal and Errors Created

7.2 The Alias Component (AC) Matrix

7.3 The Polyphase Representation

7.4 Perfect Reconstruction Filter Bank

7.5 Relation between Polyphase Matrix E(z) and AC Matrix H(z)

7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

Paraunitary

A more general way to simplify the need of matrix inversion:

Constrain E(z) to be paraunitary:  E(z2)E(z) = dI

Here E(z) = ET(z71), i.e. taking conjugate of the transfer function
coeff., replace z with z71 that corresponds to time reversely order the
filter coeff., and transpose.

For further exploration: PPV Book Chapter 6.
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7.1 The Reconstructed Signal and Errors Created

7.2 The Alias Component (AC) Matrix

7.3 The Polyphase Representation

7.4 Perfect Reconstruction Filter Bank

7.5 Relation between Polyphase Matrix E(z) and AC Matrix #(z)

Relation b/w Polyphase Matrix E(z) and AC Matrix #(z)

7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

The relation between E(z) and H(z) can be shown as:

H(z)=[W]"D(z) ET(z")

where W is the M x M DFT matrix, and a diagonal delay matrix

1

z—l

D(z) =
zf(Mfl)

See also the homework.
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7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

The Reconstructed Signal and Errors Created

YN
O Xey= HedXU sf\i*:““,“i\)

O W=t e (e 3%y X (md 3%
rshere Nm= eV

B Uelpr= Vel = He DA T Nl 3)
® TP =% Fev) Uetd)

12

EEE R ERTS
=¥ mm Xy

o Alz) & 4 k o H(WE2)Fi(2), 0< < M —1.
0 X(W*2)|,eiw = X(w — 22£), i.e., shifted version from X(w).
@ X(W*z): (-th aliasing term, Ay(z): gain for this aliasing term.
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7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

Review: Matrix Inversion

_ Adj[H(z
) = ]

Adjugate or classical adjoint of a matrix:
{Adj[H(2)]}y = (1) M;;

where Mj; is the (j, i) minor of #(z) defined as the determinant of
the matrix by deleting the j-th row and /-th column.
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7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

An Example of P.R. Systems

(z)—2+z ()—3+2z—1,
[ } 2) = AdEGE) g

detE(z)

X
[ —
|
UJI\)
o
—
[

Choose R(z) = E71(z) s.t. P(z) = R(2)E(z) =1,
2 -1
S R(z) = [ 3 5 }
[ Fo(z) FA(2) =]zt 1|R(EZ)=[2z1-3, —z14+2]
Fo(z) = —3+2z71 S 3 _,@——
N {Fl(z)_2—z1 T_;@—’\D#@ ) .
Ll i
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7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

Relation b/w Polyphase Matrix E(z) and AC Matrix #(z)

From the definition of #(z) and h(z), we have

HT(z)=[h(z) hEW) - hw"?)]
=E(zM) [ e(z) e(zW) -+ e(zWM1) ]

Examine e(zWk), k =0,1,...,(M —1):

1 v 1
ky—1 z —k
O o B | v
(zwk)f(Mfl) Z*(Mfl) W*(Mfl)k

define as D(z),a diagonal delay matrix
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7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

Relation b/w Polyphase Matrix E(z) and AC Matrix #(z)

Put together: H'(z) = E(zM)D(z)W*

Thus we arrive at the relation between E(z) and H(z):

H(z) = [W*]" D(2)E7 ()

Note: [W*]T is equal to W* due to symmetry of M x M DFT
matrix W
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

Multi-rate Signal Processing
8. General Alias-Free Conditions for Filter Banks
9. Tree Structured Filter Banks and
Multiresolution Analysis

Electrical & Computer Engineering
University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by
Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by

Prof. Min Wu and Mr. Wei-Hong Chuang.

Contact: minwu@umd.edu. Updated: October 6, 2011.
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis
Appendix: Detailed Derivations

Recall: Simple Filter Bank Systems

If all Sk(z) are identical as S(z):

Xt
(et —f5ol) =t P(z) = S(2)I
\_%ma @_’W N )A((Z) = z7M-1)5(zM)X(2)

g L*C\—> hald HMXLW] Alias Free

xnJ w wm .
o T i

: Lo Xt
8 - s =
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis
Appendix: Detailed Derivations

General Alias-free Condition

Recall from Section 7: The condition for alias cancellation in terms of

H(z) and £(z) is

MAo(Z)

HE(2) =t(z)= | ©

Theorem

| o“

A M-channel maximally decimated filter bank is alias-free
iff the matrix P(z) = R(z)E(z) is pseudo circulant.

[ Readings: PPV Book 5.7 ]
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis
Appendix: Detailed Derivations

Circulant and Pseudo Circulant Matrix

(right-)circulant matrix
Po(z) Pu(z) Pa(2)
P2(Z) P()(Z) Pl(Z)
Pl(Z) P2(Z) Po(Z)

Each row is the right circular shift
of previous row.

pseudo circulant matrix
Po(2) Pi(z)  Pa(2)
z71Py(2) Po(2) P1(2)
z7IP(2) z71Py(z) Po(2)
Adding z7! to elements below the

diagonal line of the circulant
matrix.

@ Both types of matrices are determined by the 1st row.

@ Properties of pseudo circulant matrix (or as an alternative definition):
Each column as up-shift version of its right column with z~! to the wrapped

entry.

UMd ECE
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis
Appendix: Detailed Derivations

Proof of the Theorem

Denote P(z) = [Ps(2)].
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis
Appendix: Detailed Derivations

Overall Transfer Function

The overall transfer function T(z) after aliasing cancellation:

X(z) = T(2)X(z), where

T(Z) = Zi(Mil){Po’o(ZM) Sl 271P071(ZM) + -1 Zi(Mil)P()’M,l(ZM)}
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis
Appendix: Detailed Derivations

Most General P.R. Conditions

Necessary and Sufficient P.R. Conditions

_ 0 Iuy—,
— mo —
P(z) = cz [ 2 0 } for some r €0,...., M — 1.

When r =0, P(z) =1 cz=™, as the sufficient condition seen in
§1.7.3.
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

(Binary) Tree-Structured Filter Bank

A multi-stage way to build M-channel filter bank:

Split a signal into 2 subbands = further split one or both subband
signals into 2 = - --

0(1) WFIi) G
E\“ ol ) LD

- el

T S D) 2o A PR j

=) e =R oM
I

(B

inhere " @, e
S AT @4—» Hot)=Ho (&) Ho (37) (b& mbl_u_mﬁ%)
B

Hy 3) \—lval—

Question: Under what conditions is the overall system free from

aliasing? How about P.R.?
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis
Appendix: Detailed Derivations

(Binary) Tree-Structured Filter Bank

2)
Ho 3y i — | Fl$ @
. . _ Fe (3)
E“‘;"“ iw ) }

[ o oy A e 2 e PR B B P
e Her—=R—F e M
e Can analyze the equivalent filters by noble identities.

o If a 2-channel QMF bank with H\")(z), H)(2), F{")(2),
Fl(K)(z) is alias-free, the complete system above is also alias-free.

e If the 2-channel system has P.R., so does the complete system.

[ Readings: PPV Book 5.8 ]
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis
Appendix: Detailed Derivations

Multi-resolution Analysis: Analysis Bank

Consider the variation of the tree structured filter bank
(i.e., only split one subband signals)

| evel=3
Level-L leved-2 - > Yoln
b RN e i b
(6 IRl b= Yl

E GG =2 H) = f———— Y]
xcn] jH(% _@7 V[0

(iRl L .
YLDV\.—\AV\NW>
(0 =8 —=Ylx) s Bt
R = f3t—=Yyws Topealhy (663, K31 5 o
— W y.ea (vwpass | Wghpass poir it
=) —=lve— 1300t T (s tn 2o QY .

Xn)
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8 General Alias-Free Conditions for Filter Banks

9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

Multi-resolution Analysis: Synthesis Bank

gqmwsjwm

Y5

iy oy o1y W e

——{hs )} D) o

oy G i)

el =frei—|Hs@)

YoM j—ﬂ@%t) 5dmw>?s Bowk—

W VL

MO —fra—=FE ) * e} have T Same sampling ke s KT amd KD
P R —[F3)
Bea D_, Ko They orecalled TR multinesolutlon Components.
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis
Appendix: Detailed Derivations

Discussions

(1) The typical frequency response of the equivalent analysis and
synthesis filters are:

H[|F—I

Hofs Ha Fo H3

| 1 L . N
e Ta e ™

(2) The multiresolution components vi[n] at the output of Fi(z):

@ v[n] is a lowpass version of x[n] or a “coarse” approximation;

@ vi[n] adds some high frequency details so that vo[n] + v1[n] is
a finer approximation of x[n];

@ v3[n] adds the finest ultimate details.
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis
Appendix: Detailed Derivations

Discussions

(3) If 2-ch QMF with G(z), F(z), Gs(z), Fs(z) has P.R. with
unit-gain and zero-delay, we have x[n] = x[n].

(4) For compression applications: can assign more bits to represent
the coarse info, and the remaining bits (if available) to finer details
by quantizing the refinement signals accordingly.
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis
Appendix: Detailed Derivations

Brief Note on Subband vs Wavelet Coding

e The octave (dyadic) frequency partition can reflect the
logarithmic characteristics in human perception.

@ Wavelet coding and subband coding have many similarities
(e.g. from filter bank perspectives)

e Traditionally subband coding uses filters that have little
overlap to isolate different bands

o Wavelet transform imposes smoothness conditions on the
filters that usually represent a set of basis generated by shifting
and scaling (dilation) of a mother wavelet function

o Wavelet can be motivated from overcoming the poor
time-domain localization of short-time FT

= Explore more in Proj#1. See PPV Book Chapter 11
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis
Appendix: Detailed Derivations

Details of the Proof (1)

Denote P(z) = [Ps(2)].

UMd ECE ENEE630 Lecture Part-1 16 /23



8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

Details of the Proof (2)
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis
Appendix: Detailed Derivations

Details of the Proof (3)
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

Details of the Proof (4)
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis
Appendix: Detailed Derivations

Concluding the Proof

The same relation can be found for other columns.

Thus P(z) is pseudo circulant for an alias-free system as a
necessary and sufficient condition.

We've done with the proof of the theorem.

UMd ECE ENEE630 Lecture Part-1 20/23



8 General Alias-Free Conditions for Filter Banks

9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

Overall Transfer Function

The overall transfer function T(z) after aliasing cancellation:

X(z) = T(2)X(z), where
T(2) = § Xiko Vel2) = Xito Xoohet 2 (M) Py (2M)

We can represent entries of pseudo-circulant matrix in terms of the
0-th row entries:
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Overall Transfer Function
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis
Appendix: Detailed Derivations

Most General P.R. Conditions (necessary and sufficient)

Recall §1.7.3: sufficient condition for P.R. is P(z) = cz—™L.
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