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The learning model of Valiant is extended to allow the number of examples required for 
learning to depend on the particular concept to be learned, instead of requiring a uniform 
bound for all concepts of a concept class. This extension, called nonuniform learning, enables 
learning many concept classes not learnable by the previous definitions. Nonuniformly 
learnable concept classes are characterized. Some examples (Boolean formulae, recursive, and 
r.e. sets) are shown to be nonuniformly learnable by a polynomial (in the size of the represen- 
tation of the concept and in the error parameters) number of examples, but not necessarily 
in polynomial time. Restricting the learning protocol such that the learner has to commit 
himself after a finite number of examples does not affect the concept classes which can be 
learned. An extension of nonuniform learnability to nonuniform learnability with respect to 
specific distributions is presented. © 1994 Academic Press, Inc. 

1. INTRODUCTION 

In his seminal paper [21], Valiant introduced the PAC model, 1 according to 
which the teacher selects a concept (Boolean formula) from a commonly known 
concept class and provides the student with examples selected at random by some 
distribution D unknown to the student. An example is one element of the domain 
and a label specifying whether it is contained in the concept. A concept class is 
learnable if there is an algorithm that, after receiving sufficiently many examples, 
finds, with high probability, an approximation to the concept. The success of 
the algorithm should be independent of the distribution used by the teacher. 
The learning algorithm is polynomial if the sample size and computation time 

* A Preliminary version appeared in "ICALP 1988." 
t This research was supported by the Fund for the Promotion of Research at the Technion. 
1 The exact definition appears in the next section. 
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are polynomial in the size of the representation of the concept and the error 
parameters. 

Blumer et aL [9] generalized the notion of learnability to arbitrary domains and 
concept classes. However, they discuss only the number of examples, not the com- 
putation time. This number is allowed to depend on the concept class and the error 
parameters but is required to be independent of the concept to be learned. 
Necessary and sufficient conditions for learnability using the Vapnik-Chervonenkis 
dimension [20] are given. This dimension depends only on the structure of the 
concept class (and is independent of the distribution). They show that a concept 
class is learnable if and only if it has finite dimension. 

In the next section we show intuitively learnable concept classes which are not 
learnable according to this definition. To broaden the definition of learnability we 
consider nonuniform learnability, i.e., we allow the number of examples to depend 
not only on the concept class and error parameters but also on the concept to be 
learned. We give a necessary and sufficient condition for this case: a concept class 
is nonuniformly learnable if and only if it is a countable union of subclasses each 
of finite dimension. 

This definition has the weakness that, even though by subsequently increasing the 
number of examples a "good" approximation of the concept can be found, there is 
no way to determine when to stop this process. A priori, it seems that to demand 
that the student "know" when he has succeeded in learning strengthens the defini- 
tion. We show that both definitions are equivalent. 

These general principles yield some interesting results about the learnability of 
recursive, r.e., context-free languages, and general Boolean formulae. In particular 
we give a partial solution to an open problem first raised by Valiant [21], i.e., "is 
the set of Boolean formulae polynomially learnable?" We show that Boolean for- 
mulae are learnable by polynomially many examples. However, the learning time of 
our algorithm is not polynomial. 

The papers [21-23, 17, 18, 15] deal with nonuniform learnability of Boolean for- 
mulae only. Their definition of polynomial learnability requires both the number of 
examples and the running time of the learning algorithm to be polynomial in the 
error parameters and in the length of the Boolean formula to be learned. 

Blumer et al. [10] investigate learning functions from a countable set into a finite 
domain. They define a class of algorithms Occam algorithms as algorithms that, 
when receiving a sample of a function f, produce a hypothesis subject to certain 
constraints. The complexity of the algorithm is polynomial in the number of exam- 
ples and the complexity o f f  The main result of [10] is that the existence of an 
Occam algorithm implies polynomial learnability. We discuss learnability of recur- 
sire functions whose range is infinite. Furthermore, by our results, some of the 
constraints on the Occam algorithm may be relaxed (e.g., we allow noncountable 
domains). None of the aforementioned papers refer to the question whether the 
student "knows" when to stop. 

In a recent paper [7] we have defined uniform learnability for an arbitrary 
distribution D and have given necessary and sufficient conditions for a concept 
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class C to be uniformly learnable with respect to D. Here we broaden this notion 
by considering nonuniform learnability with respect to D. We give necessary and 
sufficient conditions for this case also. 

After the preliminary version of this paper appeared [-8], Lineal et al. [16] 
investigated similar notions. They independently proved the "sufficient" direction of 
Theorem 2, while we also show that the condition is necessary. 

In [-6] Ben-David et al. parameterize learnability models according to sampling 
complexity issues. Among other problems they consider the cases where the number 
of examples may depend on the target concept or on the distribution or on both. 
They present a classification for families of learnable concept classes using results 
from the current paper and additional analysis. 

2. DEFINITIONS 

Following [9] ,  let X be a set, R~_2 x a a-algebra over X [12],  and D a 
probability measure over R. A concept class is a set C~_R of concepts. 
For x = ( x l  .... , x l ) E X  l, the labeled l-sample of c ~ C  is given by same(x)= 
((Xl ,  c(x , ) )  .... , (xl,  c(xt))),  where c(x) equals one if x E c and 0 otherwise. The 
sample space of C, denoted Sc, is the set of all labeled/-samples of c over all c ~ C, 
x e X  l (l~>1). For  a concept class C on X, Fc denotes the set of all functions 
f:  Sc ~ C. 

We use the following protocol ( [21]  and others) between two agents, T (teacher) 
and L (learner): T (who wants to teach L the concept c, called the target concept) 
repeatedly picks, at random according to some distribution D, an element x from 
the set X and sends the pair (x,  c(x))  to L. L, after receiving sufficiently many 
examples, returns a concept. We may view L as a f unc t ion feFc ,  and the set that 
L returns is f ( ( ( x l ,  c (x l ) )  ..... (xl ,  c(xl)))).  

Let Y1, Yze R. Y1 and Y2 are g-close with respect to the distribution D if 
D(YI(~ Y2)<e (O denotes the symmetric difference). Otherwise, Y1 and Y2 are 
g-far with respect to the distrubition D. 

Let x =  (x~ .... , xl) be a sequence of l independent randomly selected elements 
of X. For  f ~ F c  and c e  C we define the following probabilities r f (D,  c, l, e)= 
Probx(f(samc(x))  is a subset of X g-close to c with respect to D). This is the 
probability that f finds a "good" approximation for e using an/-sample  of c. We 
now follow [-9] and define PAC (probably approximately correct) learnability: 

Uniform learnability [9].  A function f s Fc uniformly learns a concept class C if 
for every e, 6 > 0 there is an l =  l(e, 6 ) >  0 such that for every distribution D over R 
and every c ~ C, r f (D,  c, l, e)> 1 -  6. C is uniformly learnable if there exists an 
f e  Fc that uniformly learns C. 

The definition above is quite stringent: 

EXAMPLE 1. Let X be the open segment (0, 1) and for every n let Cn be the set 
of all unions of n open segments over X. Cn is uniformly learnable, see [-9]. Let 

571/48/2-8 
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C=(3n°°=l C n then C is not uniformly learnable [9]  (for further details see 
Section 4). 

On the other hand, intuitively, since every c e C belongs to some Ci and since C; 
is uniformly learnable [93, e is also learnable by a finite number of examples. Note 
that here the number of examples depends on the concept. Thus, it is reasonable to 
expect that, the more complex the concept c e C, the more difficult it is to learn. 
This leads to the definition which allows the number of examples to depend on the 
concept to be learned. 

Nonuniform learnability. A function f e F c nonuniformly learns a concept class 
C_~ R if for every e, 6 > 0 and every c ~ C there is an lo = l(s, 5, c) > 0 such that 
for every D over R and l>~lo, r~(D, e, l, e ) > l - 6 .  Note that here lo depends 
also on c. C is nonuniformly learnable if there exists an f e Fc that nonuniformly 
learns C. We say that l(e, 6, e) is the sample complexity o f f  

The intuition behind this definition is that for a fixed target concept c e C, with 
high probability, the hypotheses output by f become closer to c as the number of 
examples increases. In Section 4 we show that the concept class of Example 1 is 
nonuniformly learnable. 

EXAMVLE 2. Let X = ( 0 ,  1) and CovEN the set of all open sets over Jr. In 
Section 4 we show that CovEN is not nonuniformly learnable. 

3. PREVIOUS RESULTS---UNIFORM LEARNABILITY 

In this section we quote the result presented in [93 (see also [203), which will 
be used in the next section. Let T be a subset of X, a concept class C c_ 2 x shatters 
T if for every subset T '  of T there is a concept c ~ C such that Tc~ c = T'. Also, C 
has Vapnik-Chervonenkis dimension d (VC-dimension) (dim(C) = d) if there is set 
of d elements of X shattered by C and there is no set of d +  1 elements shattered 
by C. If there is no such d then C has infinite VC-dimension. 

EXAMPLE 3. Let X =  (0, 1) and C be the set of all open intervals over X. It is 
easy to see that C shatters sets of two points but there is no set of three points 
shattered by C, thus dim(C) = 2. The concept class C defined in Example 1 shatters 
any finite set thus has infinite VC-dimension. 

The main result of [9]  is that C is learnable if and only if dim(C) is finite. 
A slightly stronger result appeared in E11 ]. 

THEOREM 1 [9, 11]. I fd im(C)=d>~2 then: 

1. For every e, 5 > 0  any function that receives max{(4/~)ln(2/6), 
(8d/e) ln(13/e)} examples and returns a concept in C consistent with the examples 
uniformly learns C. 
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1 2. For every 0 < s <<. ~ and 0 < ~ <~ ~6 there exists no function that can uniformly 
learn C using O((1/a) ln(1/6) + d/e) examples. 

In order for part 1 of the theorem to hold, the pair (C, D) of concept class and 
distribution, has to be well behaved. The precise definition and proofs appear in 

[5, 93. 

4. A NECESSARY AND SUFFICIENT CONDITION FOR NONUNIFORM LEARNABILITY 

THEOREM 2. C & nonuniformly learnable if and only if  there is an infinite 
sequence C1, C2, ... such that 

1. C= Ui~=l Ci, 
2. dim(Ci) < ~ for every i= 1, 2 ..... 

Proof If C is nonuniformly learnable then there is an f e Fc, such that every 
c e C is learnable by f with sample complexity l(e, 6, c). Let e = 6 = ~ then for 
i = 5, 6, 7, ... let Ce be the set of concepts c such that 1(~o~6, ~-6g,1 C) ~< i; i.e., f c a n  learn 
every c e C~ from i examples with accuracy and confidence lo~6. Let k be the implied 
constant in the lower bound of Theorem 1. Then i 1> k(~6 o In 1@6o + dim(C~)/100). 
Therefore, dim(C/) ~< lOOi/k + In 100. Since C is nonuniformly learnable, every c e C 
belongs to some Ce, i.e., C =  U~j Ci. 

For  the other direction, let C =  Ui°°__a C~ and dim(C~)< oo. Since the property of 
having finite VC-dimension is closed under finite union, we may assume that 
C;---U~-=I Cj, and therefore dim(Ce) is a nondecreasing series. Let K(e, 6, i)= 
max { (4/e) ln(2/6), (8 dim(C~ )/e) ln(13/s) }. From its definition K is nondecreasing in 
1/~, 1/6, and i. 

First we describe a function f that receives e, 6, and l examples and returns a 
hypothesis h ~ C: 

1. Let i be the largest integer i such that l>>. K(e, 6, i). 

2. Return a concept h e Ci consistent with the examples. If no such h exists 
then return a prespecified Co e C. 

Now we prove that f learns C. Let c be some concept in C. Then there exists an 
i 0 such that for all i~> io, c e  C~. G i v e n / , f u s e s  1 to compute i and returns a concept 
from C~ consistent with the sample. By part 1 of Theorem 1, if i >  i 0, f l e a r n s  e. 

We modify f so that it will not need to receive ~ and 6 as parameters: 

1'. Let i be the largest integer i such that l ~ K ( i  -1, i -a, i). 

Thus when l increases, i also increases and a and 6 monotonically decrease to 
zero. For  every 5, 6 > 0 and c ~ C there exists an integer i such that e ~> i -1, 6 i> i -1, 
and c ~ C~. It follows that, l = K ( i -  1, i -  1, i) examples are sufficient to learn c. | 

The equivalence of the models where f does not receive e and 6 as parameters 
(functional model)  and the case where it does was discussed also in [133. 
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COROLLARY 1. Any countable class of concepts is nonuniformly learnable. 

EXAMPLE 4. Consider X and C n of Example 1. We have d im(C~)=  2n and 
C = U`.~ 1 C`.; thus C is nonuniformly learnable. 

CLAIM 1. The concept class CopEN of Example 2 is not nonuniformly learnable. 

Proof First note that the set { 1/n: n e N } is shattered by CopEN. The following 
lemma implies the claim. 

LEMMA 1. I f  a concept class C shatters an infinite set then there is no sequence 
C1, C2 .... such that 

1. c=uci°=l C i 

2. dim(Ci)< oo for every i = 1 , 2 , . . . .  

Proof (Shai Ben-David). Let C =  Ù .~__ 1 C; such that di = dim(C,.)< oe for every 
i = 1, 2 ..... We show that every infinite set T~_ X has a subset B such that for every 
c~C, cc~ T ¢ B  and thus C does not shatter T. For  every n let An be a set o f d n +  1 
elements of T - I I  n-  ~ A`.. Since d im(Cn)=  d~, there exists a set B n - A n ,  such that k)` .=  1 

for every c e Cn, c c~ An v s Bn. B is defined as [_J̀ °°_ a B`.. F rom the definitions 
C B , = B ~ A n .  Let c s  C, we now show that c n  T # B .  Since = [J`.=l C .̀ let ceCn 

and consider the two sets A n ~ (c ~ T) and A n ~ B: Since An ~ T, An c~ (c c~ T) = 
Ant ic .  If c c ~ T = B  then A , c ~ ( c c ~ T ) = B c ~ A n  implying that A n c ~ c = B , - -  
a contradiction. | 

Shelah 1-19] showed that the converse of Lemma 1 does not holds. 
The definition of nonuniform learnability has a considerable practical disadvan- 

tage. A user does not know how many examples to give f She might be tempted 
to search for better and better hypotheses (ask for more examples) even though she 
has already reached a sufficiently close approximation to c. In other words, an algo- 
rithm that uses such a function to learn a concept has no indication when to stop. 
Thus our definition of (nonuniform) learning, resembles learning in the limit of 
inductive inference [3].  To overcome this difficulty we give the following definition. 

DEFINITION. A concept class C _  R is nonuniformly strongly learnable if there 
exists a function f ~ F c  and an algorithm Af(~, 6) which has access to a source of 
random examples and to f,  such that for all e, 6 > 0 and every c e C there is an 1 > 0 
such that for every distribution D over R, with probability at least 1 -  6 the algo- 
rithm requires at most  l many examples and returns a hypothesis e-close to c (with 
respect to D). 

THEOREM 3. A concept class C is nonuniformly strongly learnable if and only if 
it is nonuniformly learnable. 

Proof Suppose C is nonuniformly strongly learnable by Af. Construct a func- 
tion g ~ F c  as follows: Let the examples be ( ( x l ,  C(Xl)) ..... (xl ,  c(xl))).  For  
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i =  1, 2, ... evaluate Az(i-2, i-1) while providing the examples (Xl, c(xl)} .... to get 
a hypothesis hi. Stop when Af asks for more than l examples, and return the last 
hypothesis produced by A z. (If Af has already asked for more than l examples then 
return some prespecified concept Co.) It is easy to see that g learns C nonuniformly. 

For the other direction, we use the "generate and test" paradigm as in Angluin 
et al. [1, 2]. 

Let C be a nonuniformly learnable concept class, and f a learning function for C. 
Thus, by Theorem 2, C = U i~__a Ci, where d im(Ci )<  oe for every i. As before, we 
may assume that Ci=U~. lCj, thus dim(Ci) is nondecreasing. Let L o =  
[-(32/e)((ln(3/5))-ln(1-e-~)52))-]. The algorithm consists of iterations; the ith 
iteration is 

1. Let xi consist of 2 i examples. 

2. Let h i = f ( x i )  be the hypothesis of this iteration. 

3. Let Yi consist of L i = L o -}- i additional examples. 

4. Let ni equal the number of yk's in Yi on which c and hi disagree. 

5. If n i~< L3eLiJ then return h i. Otherwise continue to the next iteration. 

Since C is nonuniformly learnable, for each target concept c, and e, 5 > 0 there 
exists an l = l(e/2, (5/3, c) such that when f is given l random examples it produces 
a concept e/2-close to c with probability at least 1 -5 /3 .  Let Cj be the first Ci that 
contains c. Let lj = max{(12/e) ln(6/6), (16 dim(Cj)/e) ln(26/e)}. By Theorem 1, lj 
examples are sufficient to learn any concept of Cj with accuracy e/2 and confidence 
5/3. 

The algorithm may fail to learn for the following reasons: 

1. It stopped with an hl which is e-far from c. 

2. It did not halt. 

We will use the following Chernoff inequalities (see [4, Proposition 2.4]): 
For all n,p, fl with 0~<p~< 1, 0~<fl~< 1, 

L(1 fl)npj (~)  
k~--o pk(1 --p)"-k<~e-~2"P/2, (1) 

i ( ; ) P k ( 1 - P )  "k<-e-~2",/3. (2) 
k = [-(1 +fl)np] 

1. Let Pi be the probability that ni < ¼eLi given that hi is e-far from c. From 
(1) we obtain 

L(3/4)eLiJ (L ) 
P i ~  Z i e j (1  _ g ) L , - j  

j=O 

e--(1/42)Li(e/2) ~ e -Lie~32 
= e ( L0-i)~/32 = e L°e/32(e-e/32 ) i  
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Thus the probability of failure in this ease is 

~ P ~  ~< e-L°g/32 ~, (e-~/32)i 
i = 0  i=O 

1 
~ -  e - Log~32 

1 - e-~/32 

e -  r (32/~)[(ln(3/a))- l n ( 1 -  e-~/32) ] 3(e/32) 

e - (32/Q[(ln(3fis))--ln(1 -- e-~/32)] (e/32) 

6 

3 

1 ~ e--e/32 

1 
1 - e-~/32 

2. Consider iteration r = I-log2 li7, By Theorem 1, there is probability at most 
6/3 that h r is e/2-far from c. Thus it remains to consider only the case that hr is 
e/2-close and the algorithm did not halt. Let Q be the probability that n~ > L3eL~_]. 
From (2) we obtain 

k = k ( 3 / 4 ) e L r J  + 1 k = [ ' ( 3 / 4 ) e L r ]  

e - 2  eLre/6 = e - L r a / 2 4  ~ e - L o e / 2 4  < 

3" 

Thus the  probability of this event is less than ~6. | 

Remark 1. The number of examples needed is 

(T  + L;) < 2 ~+~ + rLo  + l r 2  = O ( U  + rLo)  = O ( U  + rlj ) = 0( l  i log lj ), 
i=1 

where lj was defined in the proof. 

Remark 2. If f is computable then so is the algorithm. 

5. CLASSES OF LANGUAGES LEARNABLE BY POLYNOMIALLY MANY EXAMPLES 

THEOREM 4. Let X =  {0, 1}* (the set of all finite bit-strings) and C be any set of 
recursive languages. Then C is nonuniformly strongly learnable. Moreover, for every 
target concept c ~ C if M is a Turing machine with j states that recognizes c, then c 
is learnable with accuracy e and confidence 6 by O((1/e) 10g2(1/6) + (,fie) log3(j/e)) 
many examples. 
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Proof Let Ck be the set of recursive languages recognizable by Turing machines 
with k states or less. Clearly C = 0 i ~ l  Ci and since Ck is finite so is its 
VC-dimension. Thus C is nonuniformly learnable. 

To show that the number of examples needed is polynomial we find the 
VC-dimension of Cj. The number of languages in Cj is bounded by the number of 
Turing machines with j states or less. Using the standard model for Turing 
machines [14] (the head can move to the left, right, or remain stationary) over the 
alphabet S = {0, 1 } there are at most (6j) 2j Turing machines with j states or less. 
(Note that any Turing machine with less than j states is equivalent to one with 
exactly j states and a transition function that never reaches some of the states.) 
Since for any finite class C, dim(C)~<log2(IC]), dim(Cj)~<2jlog2 6j. 

By Remark 1, O(lj log lj) examples suffice. Where 

( {~ ! } )  ( { ~  1 J ( l ° g j ) l ° g ~ } )  dim(Cj) log = 0  max l°ga' 7 lj = 0 max log ~, e 

Case 1. log(1/a)>>-jlogjlog(1/e). 

1 1 1 1 1 
O(lj log lj) = O ( ~ l°g ~ II°g ( ~ l°g ~ ) l )  = O (71°g -~ [l°g T + l°g l°g ~] ) 

1 [log 1 ~ + log log ~ ] )  = 0 (~ log2 ~) 

Case 2. log(1/a)<jlogjlog(1/g).  

({ I l ] )  
= O  l o g j l o g l  log + l o g j  

£ 8 

If 1/5 ~< j then O(lj log lj) = O((j/e) logS j). Otherwise, O(/j log lj) = O((j/e) logS(l/z)). 
Therefore, in this case O(ljloglj)= O((j/e)log3(j/e)). | 

As defined, learnability does not require computability. In the above proof we use 
a function f that, given lj examples, returns a Turing machine with j or less states 
consistent with the examples. This function is related to the Kolmogorov com- 
plexity and is not recursive. 

THEOREM 5. For words x, y let K2(x, y) denote the minimum k such that there 
exists a k state Turing machine that halts on both x and y, accepts x, and rejects y. 
Then K2(x , y) is not recursive. 

Proof Assume, for the sake of contradiction, that K2 is recursive. Let z be a 
binary word of length L Define z°= [zl, ..., zLt/2 j] and z t=  [ZLl/2j+l,  ..., Zl]. Let 
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K*(z) be the miminum k such that there exists a Turing machine with k states that 
for z ° ¢ z 1 accepts z ° and rejects z 1. The assumption that K2 is recursive implies that 
K* is also recursive. 

Let Zn be the lexicographically first word z such that K*(z)>n.  (Zn is well 
defined since for all n there exists a word z for which K*(z )> n.) For  every n we 
can construct a Turing machine, Tn, to produce Z n: 

1. Write the binary representation of n on the working tape. 

2. Consider all strings z in lexicographic order. 

3. If z ° ¢  z I compute K*(z) and if K*(z )> n copy z to the output  tape. 

Let k* be the number  of states of K*. There exists a constant c' such that for all 
n T~ has at most  k* + c' + log n states. 

Let K(z) be the minimum k such that there is a Turing machine with k states that 
produces z. F rom the definition of K, 

K(Z,)  <. k* + c' + log n. 

We now show that there exists a constant c such that 

K*(z) <~ K(z) + e. 

Let c be the number  of states of a Turing machine MI(u ,  z) that accepts if u = z  ° 
and rejects if u - - z  1. Let M z be the Turing machine with K(z) states that produces 
z and M*,  the Turing machine that on input u first applies M z to produce z then 
applies Ml(u, z). M* accepts z °, rejects z ~, and has K(z) + c states. However, from 
the definition of Zn, n < K*(Zn), from which we obtain that there exist constants c 
and c' such that for infinitely many  n, 

n<~logn+c+c'  +k*, 

a contradiction. | 

The previous theorem does not imply that it is undecidable to learn, only that 
our proof  of Theorem 4 does not yield a recursive algorithm. 

Remark 3. Results similar to Theorem 4 may be proved for other concept 
classes, e.g., the class of r.e. languages. 

A set C of recursive languages for which one of the following conditions holds is 
learnable with polynomially many  examples by a computable function: 

1. There exists a recursive set S of (encodings of) total Turing machines such 
that for every L e C there exists a Turing machine T in S whose language is L. 

2. C has bounded complexity; i.e., there is a recursive function g such that for 
every L ~ C there exists a Turing machine T that recognizes L and for every word 
w, T stops after at most g([w[) steps, where [w[ is the length of w. 
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COROLLARY 2. There is a computable function that learns Boolean formulae by a 
polynomial number of examples. 

Proof Let f be a Boolean formula with v variables such that f can be encoded 
by n bits. For  a word b~ {0, 1}* we define the value o f f ( b )  as follows: if [b[ ~>v 
then assign the first v bits of b to the respective variables; otherwise assign 0 for the 
unassigned variables. We build a Turing machine Mj~ that on input b e  {0, 1}* 
accepts b if and only if f (b )=  true. For  every f there is such an My with n + O(1) 
states. (Simply write on the input tape the description o f f ( b )  (n states) and then 
activate a Turing machine that given a v-variable Boolean formula and a Boolean 
vector of length v evaluates the value of the formula applied to the vector.) Further- 
more, the time complexity of the above My is bounded. Thus, by condition (2) 
above, Boolean formulae are learnable by a computable function. | 

Note that we do not address Valiant's problem concerning the computation time. 
However, Pitt and Valiant [18] showed several classes of Boolean formulae for 
which there is no polynomial algorithm that finds a bounded function in that class 
that is consistent with a set of examples unless R P = P .  In particular: 
k-TERM-DNF,  k-CLAUSE-CNF (and their monotonic forms) and p-expressions. 
Thus even though the number of examples is polynomial, the computation time 
needed for learning is not necessarily polynomial. 

6. NONUNIFORM LEARNABILITY FOR A GIVEN DISTRIBUTION 

In order to extend the notion of learnability Benedek and Itai [7]  have defined: 

Uniform learnability for a given distribution D. C is learnable with respect to D 
if there is a f u n c t i o n f e  Fc such that for every e, 6 > 0 there is an I =  l(e, 6 ) >  0 such 
that for every c~ C, rT(D, e, l, e ) >  1 - 6 .  

Finite and countable covers. A subset C, of 2 x is an e-cover of C with respect to 
D if for every c e C there is a { s C~ e-close to it. C is finitely coverable (with respect 
to D) if for every e > 0 there is a finite e-cover C~ of C. C is countably coverable (with 
respect to D) if for every e > 0 there is a countable e-cover C~ of C. In the sequel 
we omit D when understood from the context. 

The main result of [-7] is: 

THEOREM 6. C is finitely coverable (with respect to D) if and only if C is 
learnable (with respect to D). 

Similarly to distribution-free learnability, learnability for a given distribution can 
also be extended to the nonuniform form. 

Nonuniform learnability for a given distribution D. C is nonuniformly learnable 
with respect to distribution D if there is a function f ~ Fc such that for every e, 6 > 0 
and every c ~ C there is an l = l(c, e, 6) > 0 such that r7  (D, c, l, e) > 1 - 6. 
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THEOREM 7. C is nonuniformly learnable with respect to D if and only if  C is 
countably coverable with respect to D. 

The next lemma follows directly form the definition of countable coverable. 

LEMMA 2. C is countably covetable with respect to D if  and only if  there exists 
a countable class C* such that for all e > O, C* is an e-cover of C. 

The proof of Theorem 7 is similar to that of Theorem 2. In the same manner we 
define: 

Nonuniform strong learnability for a given distribution D. C is nonuniformly 
strongly learnable with respect to D if there is a function f ~ F c such that for every 
e, 6 > 0  and every c ~ C  there is an l=l(c,  e, 6 ) > 0  such that ~12_~ r f  (D, c, i, e)<~5 
and r~(D, c, l, e ) >  1 - 6 .  

The following theorem is analogous to Theorem 3. 

THEOREM 8. A concept class is nonuniformly strongly with respect to D learnable 
i f  and only if  it is nonuniformly learnable with respect to D. 

EXAMPLE 5. Let COPEN be as in Example 2 and C be the set of all finite unions 
of rational intervals. Let D be the uniform distribution over (0, 1). It can be shown 
that for every e > 0, C is a countable e-cover of Coven with respect to D. Thus 
COVEN is nonuniformly learnable with respect to D. (The above is true for every 
continuous distribution.) 

Remark 4. In [7]  the authors prove that for every given distribution D over 
{0, 1}* every concept class over {0, 1}* is uniformly learnable with respect to D. 
Thus any concept class of recursive or even r.e. concepts is learnable. 

Remark 5. The definition of learnability may be extended to allow random 
algorithms and random functions. All the theorems mentioned hold also for this 
case. 

7. CONCLUSIONS 

The notion of PAC learnability has been extended to the case where the sample 
size may depend on the target concept. We have shown that a concept class can be 
learned under this definition if and only if it is a countable union of classes with 
finite VC-dimension. The problem of characterizing concept classes whose learning 
time is a fixed polynomial of the size of the target concept and the error parameters 
still remains open. 
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