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Notation and conventions

Throughout, we use R to denote the set of all real numbers, or equivalently, the
real line (�1,1). The set of all non-negative real numbers is denoted by R+.
The set of {0, 1, . . .} of all non-negative integers is denoted N. The notation N0

will be used for the set {1, 2, . . .} of all positive integers.

With p a positive integer, let Rp denote the pth cartesian product of R. An ele-
ment x in Rp, whose p components are denoted x1, . . . , xp, is always interpreted
as a column vector (x1, . . . , xp)0 (with 0 denoting transpose).
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Part I

DETECTION THEORY
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Chapter 1

Simple binary hypothesis testing

A decision has to be made as to which of two hypotheses (or states of nature) is
the correct one. The states of nature are encoded in a rv H and a decision has to
be made on the basis of an observation Y which is statistically related to H .

1.1 Motivating examples
Control process A machine produces circuit boards. It is either fully function-
ing (H = 1) or worn out (H = 0). Checking the state of the machine is not feasi-
ble as it would require that the production be stopped, incurring a loss of revenue
for the manufacturer if the machine were indeed shown to be fully functionally.
Instead, a batch of circuits is collected and tested for a number of performance
parameters, say Y1, . . . , Yk. It is known that

A simple communication example

Testing means

1.2 The probabilistic model
These examples can be cast as binary hypothesis testing problems: Nature is in
either of two states, say H = 0 or H = 1 for sake of concreteness, and the obser-
vations are organized into an Rk-valued rv Y . We assume given two probability
distribution functions F0, F1 : Rk

! [0, 1] on Rk; they will act as conditional
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probability distribution of Y given H = 0 and H = 1, respectively. This situation
is summarized by

H1 : Y ⇠ F1

H0 : Y ⇠ F0.
(1.1)

In the statistical literature the hypothesis H0 is called the null hypothesis and hy-
pothesis H1 is referred to as the non-null hypothesis or the alternative.

Probabilistically, the symbolic statement (1.1) is understood as follows: Given
some probability triple (⌦,F ,P) (whose existence is discussed shortly), consider
rvs H : ⌦ ! {0, 1} and Y : ⌦ ! Rk. The probability distribution functions F0

and F1 being interpreted as conditional probability distribution of Y given H = 0
and H = 1, respectively, we must have

Fh(y) = P [Y  y|H = h] ,
y 2 Rk

,

h = 0, 1.

The probability distribution of the rv H is specified by p in [0, 1] with

p = P [H = 1] = 1� P [H = 0] .

We refer to the pmf (1� p, p) on {0, 1}, or just to p, as the prior.
Because

P [Y  y, H = h] = P [Y  y|H = h]P [H = h]

=

8
<

:

(1� p)F0(y) if h = 0, y 2 Rk

pF1(y) if h = 1, y 2 Rk,
(1.2)

the law of total probability shows that

P [Y  y] =
1X

h=0

P [Y  y|H = h]P [H = h]

= pF1(y) + (1� p)F0(y), y 2 Rk
. (1.3)

In other words, the conditional probability distributions of the observations given
the hypothesis and the probability distribution of H completely specify the joint
distribution of the rvs H and Y .
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1.3 A construction
The existence of the model described in Section 1.2 can be guaranteed through the
following construction: Take ⌦ = {0, 1} ⇥ Rk with generic element ! = (h,y)
with h = 0, 1 and y an arbitrary element of Rk. We endow ⌦ with the �-field F

given by
F = �

�
P({0, 1})⇥ B(Rk)

�

where P({0, 1}) is the power set of {0, 1}, and B(Rk) is the Borel �-field on Rk.
We define the mappings H : ⌦ ! R and Y : ⌦ ! Rk by

H(!) = h and Y (!) = y, ! = (h,y) 2 ⌦.

Both projection mappings are Borel measurable, and therefore define rvs.
If P is any probability measure on the �-field F , then by construction of the

rvs H and Y just given, the joint probability distribution of the pair (H,Y ) is
necessarily given by

P [H = h,Y  y] = P [{! 2 ⌦ : H(!) = h,Y (!)  y}]

= P [{h}⇥ (�1,y]] ,
h = 0, 1
y 2 Rk

(1.4)

since
{! 2 ⌦ : H(!) = h,Y (!)  y} = {h}⇥ (�1,y].

On the way to identify a probability P on F under which the joint probability
distribution of the pair (H,Y ) satisfies (1.2), we readily conclude from (1.4) that
P is necessarily determined on certain rectangles, namely

P [{h}⇥ (�1,y]] =

8
<

:

(1� p)F0(y) if h = 0

pF1(y) if h = 1
(1.5)

for every y in Rk. At this point we recall the following fact from Measure Theory:
Any probability measure on the �-field F carried by the product space {0, 1}⇥Rk

is uniquely determined on the entire �-field F by its values on the rectangle sets
of the form

{h}⇥ (�1,y],
h = 0, 1
y 2 Rk

.
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Therefore, by virtue of (1.5) there exists a unique probability measure P on F

such that (1.4) holds. More generally, it is also the case that

P [{h}⇥ (�1,y]] =

8
<

:

(1� p)
R
B
dF0(y) if h = 0

p
R
B
dF1(y) if h = 1

(1.6)

for every Borel set B in Rk as a result of the fact that

�
�
(�1,y], y 2 Rk

�
= B(Rk).

Finally, under this probability measure P it is plain (1.5) immediately implies

P [H = h] = P [{h}] =

8
<

:

(1� p) if h = 0

p if h = 1
(1.7)

and

P [Y  y|H = h] =
P [H = h,Y  y]

P [H = h]

= Fh(y) (1.8)

for every y in Rk, as required.

1.4 Basic assumptions
During the discussion, several assumptions will be enforced on the probability
distributions F0 and F1. The assumptions that will be most often encountered are
denoted by (A.1) and (A.2) for sake of convenience. They are stated and discussed
in some details below.

Condition (A.1): The probability distributions F0 and F1 on Rk are both absolutely
continuous with respect to some distribution F on Rk – In general F may not be
a probability distribution.

Condition (A.1) is equivalent to saying that there exist Borel mappings f0, f1 :
Rk

! R+ such that

Fh(y) =

Z y

�1
fh(⌘)dF (⌘),

y 2 Rk
,

h = 0, 1.
(1.9)
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In some basic sense, this condition is hardly constraining since we can always
take F to be the average of the two probability distributions F0 and F1. i.e.,

F (y) ⌘
1

2
F0(y) +

1

2
F1(y), y 2 Rk

. (1.10)

in which case F is also a probability distribution. This choice for F is usually
not operationally convenient and therefore discarded. However, the most often
encountered situations arise when F is either Lebesgue measure on Rk or a count-
ing measure on some countable subset of Rk, in which case F is not a probability
distribution.

When F is Lebesgue measure on Rk, the Borel mappings f0, f1 : Rk
!

R+ are just the probability density functions induced by F0 and F1 in the usual
sense. When F is counting measure on a countable subset S ✓ Rk, then the Borel
mappings f0, f1 : Rk

! R+ are best thought as probability mass functions (pdfs)
f 0 = {f0(y), y 2 S} and f 1 = {f1(y), y 2 S}, i.e.,

0  fh(y)  1,
y 2 S,

h = 0, 1.

and X

y2S

fh(y) = 1, h = 0, 1.

The condition (1.9) now takes the form

P [Y 2 B|H = h] =
X

⌘2S\B

fh(⌘),
B 2 B(Rk)
h = 0, 1.

Condition (A.2): The probability distribution F1 is absolutely continuous with
respect to the probability distribution F0.

Under Condition (A.1), with the notation introduced earlier, this is equivalent to
requiring

f0(y) = 0 implies f1(y) = 0. (1.11)

1.5 Admissible tests
Decisions as to which state of nature occurred are taken on the basis of observa-
tions; this is formalized through the following definition.
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An admissible decision rule (or test) is any Borel mapping d : Rk
! {0, 1}. The

collection of all admissible rules is denoted by D.

The measurability requirement entering the definition of admissibility is im-
posed to guarantee that the mapping d(Y ) : ⌦ ! {0, 1} : ! ! d(Y (!)) is indeed
a rv, i. e., [! 2 ⌦ : d(Y (!)) = h] is an event in F for all h = 0, 1. The need for
this technical condition will become apparent in subsequent chapters.

The next fact will prove useful in some of the discussion

Lemma 1.5.1 The set D of admissible decision rules is in one-to-one correspon-
dence with B(Rk).

Proof. By definition of admissibility every test d in D is completely specified by
the Borel subset C(d) defined by

C(d) ⌘ {y 2 Rk : d(y) = 0}. (1.12)

Conversely, any Borel measurable subset C of Rk uniquely determines an admis-
sible rule dC in D through

dC(y) =

8
<

:

1 if y /2 C

0 if y 2 C.

We note that C(dC) = C as expected.

Any admissible rule d in D induces two types of error: Upon observing Y ,
either H = 0 is true and d(Y ) = 1 or H = 1 is true and d(Y ) = 0.

These two possibilities are the so–called errors of the first and second type asso-
ciated with the decision rule d; they are quantified by

↵(d) ⌘ P [d(Y ) = 1|H = 0] (1.13)

and
�(d) ⌘ P [d(Y ) = 0|H = 1] , (1.14)
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respectively.

The quantity ↵(d) is sometimes called the size of the test d. In radar par-
lance, these probabilities are referred to as probabilities of false alarm and miss,
respectively, with alternate notation

PF(d) ⌘ P [d(Y ) = 1|H = 0] (1.15)

and
PM(d) ⌘ P [d(Y ) = 0|H = 1] . (1.16)

Sometimes, it is convenient to consider the so–called probability of detection
given by

PD(d) ⌘ P [d(Y ) = 1|H = 1] = 1� PM(d). (1.17)

Throughout we shall use this terminology.

1.6 Likelihood ratio tests
In subsequent chapters we consider several formulations of the binary hypothe-
sis problem. In all cases the tests of interest are related to tests in the class of
admissible tests {d⌘, ⌘ � 0} which we now introduce.

For each ⌘ � 0, test d⌘ : Rk
! {0, 1} is defined by

d⌘(y) = 0 iff f1(y) < ⌘f0(y). (1.18)

Its admissibility is a simple consequence of the Borel measurability of the proba-
bility density functions f0, f1 : Rk

! R+.

It is plain from the definition (1.18) (with ⌘ = 0) that d0 is simply the test that
always selects the non-null hypothesis H = 1, i.e., d0(y) = 1 for every y in Rk.
On the other hand, formally substituting ⌘ = 1 in (1.18) will be problematic at
observation points where f0(y) = 0. However, by convention we shall interpret
d1 as the test that always selects the null hypothesis H = 0, i.e., d0(y) = 0 for
every y in Rk.

Such tests take an even simpler form under the additional Condition (A.2) as
will be seen shortly: Note that (1.18) can be rewritten as

d⌘(y) = 0 if
f1(y)

f0(y)
< ⌘ whenever f0(y) > 0.



14 CHAPTER 1. SIMPLE BINARY HYPOTHESIS TESTING

Taking our cue from this last statement, we define the likelihood ratio as any Borel
mapping L : Rk

! R of the form

L(y) ⌘

8
<

:

f1(y)
f0(y) if f0(y) > 0

⇤(y) if f0(y) = 0

(1.19)

for some arbitrary Borel mapping ⇤ : Rk
! R+. Different choices of this ar-

bitrary non-negative function produce different versions of the likelihood ratio
function.

Given a version of the likelihood ratio function in (1.19), we define the likelihood
ratio test with threshold ⌘ � 0 to be the admissible decision rule Lrt⌘ : Rk

!

{0, 1} given by

Lrt⌘(y) ⌘

8
<

:

1 if L(y) � ⌘

0 if L(y) < ⌘.
(1.20)

With
Bh =

�
y 2 Rk : fh(y) = 0

 
, h = 0, 1, (1.21)

we note that

P [f0(Y ) = 0|H = h] =

Z

B0

fh(y)dF (y), h = 0, 1. (1.22)

Under (A.2), the inclusion B0 ✓ B1 holds and we conclude that

P [f0(Y ) = 0|H = h] = 0, h = 0, 1.

For any value ⌘ of the threshold it is plain that the tests d⌘ and Lrt⌘ coincide
on the set {y 2 Rk : f0(y) > 0} (while possibly disagreeing on the complement
B0). Thus, for each h = 0, 1, we find that

P [d⌘(Y ) = 0|H = h]

= P [d⌘(Y ) = 0, f0(Y ) > 0|H = h] + P [d⌘(Y ) = 0, f0(Y ) = 0|H = h]

= P [Lrt⌘(Y ) = 0, f0(Y ) > 0|H = h]

= P [Lrt⌘(Y ) = 0, f0(Y ) > 0|H = h] + P [Lrt⌘(Y ) = 0, f0(Y ) = 0|H = h]

= P [Lrt⌘(Y ) = 0|H = h] .
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This discussion leads to the following fact.

Lemma 1.6.1 Assume Conditions (A.1)–(A.2) to hold. For each ⌘ � 0, the tests
d⌘ and Lrt⌘ are equivalent in the sense that PM(d⌘) = PM(Lrt⌘) and PF (d⌘) =
PF (Lrt⌘).

1.7 Exercises

1.8 References
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Chapter 2

The Bayesian formulation

The Bayesian formulation assumes knowledge of the conditional distributions F1

and F0, and of the prior distribution p of the rv H . Two other formulations, namely
the Minimax formulation and the Neyman-Pearson formulation, will be studied in
Chapters 4 and 5, respectively.

2.1 The Bayesian optimization problem
The cost incurred for making decisions is quantified by the mapping C : {0, 1}⇥
{0, 1} ! R with the interpretation that

C(h, d) =
Cost incurred for deciding d

when H = h
, d, h = 0, 1.

As the sample ! in ⌦ is realized, the observation Y (!) is recorded and the
use of the admissible rule d in D incurs a cost C(H(!), d(Y (!))). Although it
is tempting to seek to minimize this quantity, this is not possible. Indeed, the rv
Y is observed, whence d(Y ) is known once the test d has been specified, but
the state of nature H is not directly observable. Consequently, the value of the
cost C(H, d(Y )) is not available. To remedy to this difficulty, we introduce the
expected cost function J : D ! R given by

J(d) ⌘ E [C(H, d(Y ))] , d 2 D.

The Bayesian Problem PB is the minimization problem

PB : Minimize J(d) over d in D.

17



18 CHAPTER 2. THE BAYESIAN FORMULATION

This amounts to finding an admissible test d? : Rk
! {0, 1, . . . ,M � 1} in D

such that
J(d?)  J(d), d 2 D. (2.1)

Any admissible test d? which satisfies (2.1) is called a Bayesian test, and the value

J(d?) = inf
d2D

J(d) = min
d2D

J(d) (2.2)

is known as the Bayesian cost.

The solution to the Bayesian problem PB is developed with the help of an auxiliary
result concerning the form of the Bayesian cost. This representation result will be
useful in several places and is given here for sake of easy reference: Introduce the
relative costs �0 and �1 given by

�h ⌘ C(h, 1� h)� C(h, h), h = 0, 1 (2.3)

and define the auxiliary expected cost function bJ : D ! R to be

bJ(d) = E [1 [d(Y ) 6= H]�H ] , d 2 D. (2.4)

Lemma 2.1.1 For any admissible rule d in D, the relation

J(d) = E [C(H,H)] + bJ(d) (2.5)

holds with

bJ(d) = �0(1� p) · PF (d) + �1p · PM(d). (2.6)

Proof. Fix d in D. Recall that the rvs H and d(Y ) are {0, 1}-valued rvs, and
that the events [d(Y ) = H] and [d(Y ) 6= H] form a partition of ⌦, i.e.,

1 [d(Y ) = H] + 1 [d(Y ) 6= H] = 1 [⌦] = 1.
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It readily follows that

C(H, d(Y )) = 1 [d(Y ) = H]C(H,H) + 1 [d(Y ) 6= H]C(H, 1�H)

= (1� 1 [d(Y ) 6= H])C(H,H) + 1 [d(Y ) 6= H]C(H, 1�H)

= C(H,H) + (C(H, 1�H)� C(H,H))1 [d(Y ) 6= H]

= C(H,H) + 1 [d(Y ) 6= H]�H (2.7)

with the relative costs �0 and �1 given by (2.3). Taking expectations on both sides
of (2.7) we obtain (2.5).

The law of total probabilities gives

bJ(d) = E [�01 [d(Y ) 6= 0]1 [H = 0] + �11 [d(Y ) 6= 1]1 [H = 1]]

= �0(1� p) · P [d(Y ) 6= 0|H = 0] + �1p · P [d(Y ) 6= 1|H = 1]

= �0(1� p) · P [d(Y ) = 1|H = 0] + �1p · P [d(Y ) = 0|H = 1] ,

and the desired expression (2.6) is obtained.

The Bayesian cost under a given decision rule is completely determined by its
probabilities of false alarm and of miss. We also note that

bJ(d) = �0(1� p) + �1p · P [d(Y ) = 0|H = 1]

��0(1� p) · P [d(Y ) = 0|H = 0] , d 2 D (2.8)

as an immediate consequence of (2.6).
Therefore, by Lemma 1.6.1 it follows from (2.5)-(2.6) that J(d⌘) = J(Lrt⌘)

regardless of the cost function C : {0, 1} ⇥ {0, 1} ! R. The same argument
also shows that any two versions of the likelihood ratio function will generate
likelihood ratio tests which are equivalent.

2.2 Solving the Bayesian problem PB

It follows from (2.6) that solving PB is equivalent to solving the auxiliary problem
bPB where

bPB : Minimize bJ(d) over d in D.

To do so, it will be necessary to assume that the probability distributions F0

and F1 satisfy the absolute continuity condition (A1) given earlier, namely that
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there exists a single distribution F on Rk with respect to which both F0 and F1

are absolutely continuous. For any test d in D, we get

P [d(Y ) = 0|H = h] =

Z

C(d)

dFh(y)

=

Z

C(d)

fh(y)dF (y), h = 0, 1 (2.9)

with C(d) defined at (1.12). It is now easy to see from (2.8) that

bJ(d) = �0(1� p) +

Z

C(d)

h(y)dF (y) (2.10)

where the mapping h : Rk
! R is given by

h(y) ⌘ �1p · f1(y)� �0(1� p) · f0(y), y 2 Rk
. (2.11)

Theorem 2.2.1 Assume the absolute continuity condition (A.1) to hold. Define
the Borel set C? by

C
?
⌘ {y 2 Rk : h(y) < 0} (2.12)

with h : Rk
! R given by (2.11). The decision rule d

? : Rk
! {0, 1} induced by

C
? is given by

d
?(y) =

8
<

:

1 if x /2 C
?

0 if x 2 C
?;

(2.13)

it is admissible and solves the Problem bPB, hence solves the Bayesian Problem
PB.

Proof. The set C? is a Borel subset of Rk due to the fact that the functions
f0, f1 : Rk

! R+ are themselves Borel measurable. The test d? is therefore an
admissible decision rule in D since C(d?) = C

?. We now show that d? satisfies

bJ(d?)  bJ(d), d 2 D. (2.14)

Indeed, for every test d in D, we see from (2.10) that

bJ(d) = �0(1� p) +

Z

C(d)\C?

h(y)dF (y) +

Z

C(d)\C?

h(y)dF (y)
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and

bJ(d?) = �0(1� p) +

Z

C?\C(d)

h(y)dF (y) +

Z

C(d)\C?

h(y)dF (y).

Therefore,

J(d)� J(d?)

= bJ(d)� bJ(d?)

=

Z

C(d)\C?

h(y)dF (y) +

Z

C?\C(d)

(�h(y)) dF (y) � 0 (2.15)

since
Z

C(d)\C?

h(y)dF (y) � 0 and
Z

C?\C(d)

h(y)dF (y)  0

by the very definition of C?. The problems bPB and PB are therefore simultane-
ously solved by the test d? defined at (2.13).

Uniqueness The solution to the Bayesian problem is not unique: It should be
plain that C? could be replaced by

C
??

⌘ {y 2 Rk : h(y)  0}

(with corresponding test d??) without affecting the conclusion of optimality since
Z

{y2Rk: h(y)=0}
h(y)dF (y) = 0.

While it is true that J(d?) = J(d??), it is not necessarily the case that the equalities
PF (d?) = PF (d??) or PM(d?) = PM(d??) hold.

Implementation using likelihood ratio test Assume that 0 < p < 1 to avoid
trivial situations, and that the relative costs satisfy the conditions

�h > 0, h = 0, 1, (2.16)
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i.e., the cost of making an incorrect decision is greater than the cost of making a
correct decision. This is of course a most reasonable assumption which always
holds in applications. Under this condition, the Bayesian decision rule d? given in
Theorem 2.2.1 takes the equivalent form

d
?(y) = 0 iff f1(y) <

�0(1� p)

�1p
f0(y). (2.17)

In view of the definition (1.18), the Bayesian test d? is indeed a test d⌘ with ⌘

given by

⌘ ⌘
�0(1� p)

�1p
.

Equipped with Lemma 1.6.1 we can now restate Theorem 2.2.1.

Theorem 2.2.2 Assume Conditions (A.1)–(A.2) to hold. Whenever �h > 0 for
h = 0, 1, the Bayesian decision rule d

? identified in Theorem 2.1 is equivalent to
the likelihood ratio test Lrt⌘? where

⌘
?
⌘

�0(1� p)

�1p
=

C(0, 1)� C(0, 0)

C(1, 0)� C(1, 1)
·
1� p

p
.

2.3 The probability of error criterion
A special case of great interest is obtained when the cost function C takes the
form

C(h, d) = 1 [h 6= d] , h, d = 0, 1.

The corresponding expected cost then reduces to the probability of making an
incorrect decision, namely the probability of error, and is given by

PE(d) ⌘ P [d(Y ) 6= H] , d 2 D.

We check that

�h = C(h, 1� h)� C(h, h) = 1, h = 0, 1,
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and the relations (2.5)-(2.6) yield

PE(d) = (1� p) · PF (d) + p · PM(d)

= p+ (1� p) · PF (d)� p · PD(d), d 2 D. (2.18)

For the probability of error criterion, the threshold ⌘
? appearing in Theorem 2.2.2

has the simpler form

⌘
? =

1� p

p
.

The optimal decision rule d
?, as described at (2.17), can now be rewritten as

d
?(y) = 0 iff f1(y) <

1� p

p
f0(y). (2.19)

The ML test In the uniform prior case, i.e., p = 1
2 , the Bayesian test (2.19)

becomes
d
?(y) = 0 iff f1(y) < f0(y). (2.20)

In other words, the optimal decision is to select that hypothesis whose likelihood
is largest given the observation y. We refer to this strategy as the Maximum Like-
lihood (ML) test.

The MAP computer Finally, (2.19) can also be rewritten as

d
?(y) = 0 iff P [H = 1|Y = y] < P [H = 0|Y = y] (2.21)

since for each y in Rk, we have

P [H = 1|Y = y] =
pf1(y)

pf1(y) + (1� p)f0(y)

and
P [H = 0|Y = y] =

(1� p)f0(y)

pf1(y) + (1� p)f0(y)

by Bayes’ Theorem. For each h = 0, 1, the conditional probability P [H = h|Y = y]
is known as the posterior probability that H = h occurs given the observation y.
Put differently, the optimal test (2.21) compares these posterior probabilities given
the observation y, and selects the hypothesis with the largest posterior probability,
hence the terminology Maximum A Posteriori (MAP) computer.
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2.4 The Gaussian case
Assume that the observation rv Y is conditionally Gaussian given H , i.e.,

H1 : Y ⇠ N(m1,R1)
H0 : Y ⇠ N(m0,R0)

where m1 and m0 are elements in Rk, and the k ⇥ k symmetric matrices R1

and R0 are positive definite (thus invertible). Throughout the pairs (m0,R0) and
(m1,R1) are distinct so that the probability density functions f0, f1 : Rk

! R+

are distinct since

fh(y) =
1p

(2⇡)k detRh

e
� 1

2 (y�mh)0R
�1
h (y�mh),

y 2 Rk

h = 0, 1.

Both conditions (A.1) and (A.2) obviously hold, and for each ⌘ > 0, the test d⌘
and Lrt⌘ coincide.

The likelihood ratio and the likelihood ratio tests For this example, the like-
lihood ratio function is given by

L(y) =

s
det(R0)

det(R1)
· e

1
2Q(y)

, y 2 Rk

where we have used the notation

Q(y) = (y �m0)
0R�1

0 (y �m0)� (y �m1)
0R�1

1 (y �m1).

Fix ⌘ > 0. By direct substitution, we conclude that

Lrt⌘(y) = 0 iff e
1
2Q(y)

<

r
⌘2 ·

detR1

detR0
,

and a simple logarithmic transformation yields

Lrt⌘(y) = 0 iff Q(y) < log

✓
⌘
2detR1

detR0

◆
.
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The equal covariance case If the covariances are identical under both hypothe-
ses, i.e.,

R0 = R1 ⌘ R,

with m1 6= m0, then

Q(y) = (y �m0)
0R�1(y �m0)� (y �m1)

0R�1(y �m1)

= 2y0R�1(m1 �m0)�
�
m0

1R
�1m1 �m0

0R
�1m0

�
. (2.22)

The form of Lrt⌘ simplifies even further to read

Lrt⌘(y) = 0 iff y0R�1�m < ⌧(⌘)

where we have set

�m ⌘ m1 �m0 (2.23)

and

⌧(⌘) ⌘
1

2

�
m0

1R
�1m1 �m0

0R
�1m0

�
+ log ⌘. (2.24)

Evaluating probabilities We will now evaluate the probabilities of false alarm
and miss under Lrt⌘. It is plain that

PF (Lrt⌘) = P [Lrt⌘(Y ) = 1|H = 0]

= P [L(Y ) � ⌘|H = 0]

= P
⇥
Y 0R�1�m � ⌧(⌘) | H = 0

⇤
(2.25)

and

PM(Lrt⌘) = P [Lrt⌘(Y ) = 0|H = 1]

= P [L(Y ) < ⌘|H = 1]

= P
⇥
Y 0R�1�m < ⌧(⌘) | H = 1

⇤

= 1� P
⇥
Y 0R�1�m � ⌧(⌘) | H = 1

⇤
. (2.26)

To carry out the calculations further, recall that for each h = 0, 1, given H =
h, the rv Y is conditionally Gaussian with mean vector mh and covariance matrix
R. Therefore, the scalar rv Y 0R�1�m is also conditionally Gaussian with mean
and variance given by

E
⇥
Y 0R�1�m|H = h

⇤
= m0

h
R�1�m
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and

Var
⇥
Y 0R�1�m|H = h

⇤
=

�
R�1�m

�0
Cov [Y |H = h]

�
R�1�m

�

=
�
R�1�m

�0
R
�
R�1�m

�

= �m0R�1�m, (2.27)

respectively. In obtaining this last relation we have used the fact that

Y 0R�1�m = (R�1�m)0Y .

Consequently, for all h = 0, 1,

P
⇥
Y 0

R
�1�m � ⌧(⌘)|H = h

⇤

= P
h
m0

h
R�1�m+

p
�m0R�1�m · Z � ⌧(⌘)

i

= P

Z �

⌧(⌘)�m0
h
R�1�m

p

�m0R�1�m

�
(2.28)

where Z ⇠ N(0, 1).
For the sake of convenience, pose

d
2
⌘ �m0R�1�m, (2.29)

and note that

⌧(⌘)�m0
h
R�1�m =

8
<

:

log ⌘ � 1
2d

2 if h = 1

log ⌘ + 1
2d

2 if h = 0.

It is now clear that

PF (Lrt⌘) = 1� �

✓
log ⌘ + 1

2d
2

d

◆

and

PM(Lrt⌘) = �

✓
log ⌘ � 1

2d
2

d

◆
.

We finally obtain

PD(Lrt⌘) = 1� �

✓
log ⌘ � 1

2d
2

d

◆
.
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The ML test The ML test corresponds to ⌘ = 1, in which case these expressions
become

PF (dML) = 1� �

✓
d

2

◆
= Q

✓
d

2

◆

and

PM(dML) = �

✓
�
d

2

◆
= Q

✓
d

2

◆
,

whence

PE(dML) = (1� p)PF (dML) + pPM(dML) = Q

✓
d

2

◆

regardless of the prior p.

2.5 The Bernoulli case
Consider the binary hypothesis testing problem

H1 : Y ⇠ Ber(a1)
H0 : Y ⇠ Ber(a0)

with a1 < a0 in (0, 1). The case a0 < a1 is left as an exercise. Thus,

P [Y = 1|H = h] = ah = 1� P [Y = 0|H = h] , h = 0, 1

and Conditions (A.1) and (A.2) obviously hold with respect to counting measure
F on {0, 1}. The likelihood rate function is given by

L(y) =

✓
1� a1

1� a0

◆1�y ✓
a1

a0

◆y

, y 2 R.

For each ⌘ > 0, the test d⌘ takes the following form

d⌘(y) = 0 iff
✓
1� a1

1� a0

◆1�y

·

✓
a1

a0

◆y

< ⌘

iff
✓
1� a0

1� a1
·
a1

a0

◆y

< ⌘ ·
1� a0

1� a1
, y 2 R. (2.30)
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Therefore,

PF (d⌘) = P [d⌘(Y ) = 1|H = 0]

= P
"✓

1� a0

1� a1
·
a1

a0

◆Y

� ⌘ ·
1� a0

1� a1

���H = 0

#

= P
"
Y = 1,

✓
1� a0

1� a1
·
a1

a0

◆Y

� ⌘ ·
1� a0

1� a1

���H = 0

#

+ P
"
Y = 0,

✓
1� a0

1� a1
·
a1

a0

◆Y

� ⌘ ·
1� a0

1� a1

���H = 0

#

= a01


⌘ ·

1� a0

1� a1


1� a0

1� a1
·
a1

a0

�
+ (1� a0)1


⌘ ·

1� a0

1� a1
 1

�

= a01


⌘ 

a1

a0

�
+ (1� a0)1


⌘
1� a0

1� a1
 1

�

= a01


⌘ 

a1

a0

�
+ (1� a0)1


⌘ 

1� a1

1� a0

�
. (2.31)

Similarly, we get

PM(d⌘) = P [d⌘(Y ) = 0|H = 1]

= P
"✓

1� a0

1� a1
·
a1

a0

◆Y

< ⌘ ·
1� a0

1� a1

���H = 1

#

= P
"
Y = 1,

✓
1� a0

1� a1
·
a1

a0

◆Y

< ⌘ ·
1� a0

1� a1

���H = 1

#

+ P
"
Y = 0,

✓
1� a0

1� a1
·
a1

a0

◆Y

< ⌘ ·
1� a0

1� a1

���H = 1

#

= a11


1� a0

1� a1
·
a1

a0
< ⌘ ·

1� a0

1� a1

�
+ (1� a1)1


1 < ⌘ ·

1� a0

1� a1

�

= a11


a1

a0
< ⌘

�
+ (1� a1)1


1 < ⌘ ·

1� a0

1� a1

�

= a11


a1

a0
< ⌘

�
+ (1� a1)1


1� a1

1� a0
< ⌘

�
. (2.32)
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2.6 Additional examples
We now present several examples where Conditions (A.1) or (A.2) fail. In all
cases we assume �0 > 0 and �1 > 0.

An example where absolute continuity (A.2) fails Here, the observation is the
scalar rv Y with F0 and F0 admitting probability density functions f0, f1 : R !

R+ with respect to Lebesgue measure given by

f0(y) =

8
<

:

1� | y | if |y|  1

0 otherwise
and f1(y) =

8
<

:

1
3 if �1  y  2

0 otherwise.

Condition (A.1) holds (with Lebesgue measure) but the absolute continuity
condition (A.2) is clearly not satisfied. However, simple substitution reveals that

h(y) = �1p · f1(y)� �0(1� p) · f0(y)

=

8
>>>>>>>><

>>>>>>>>:

0 if y < �1

1
3�1p� �0(1� p)(1� |y|) if |y|  1

1
3�1p if 1 < y  2

0 if 2 < y.

(2.33)

The Bayesian test d? is simply

d
?(y) = 0 iff |y| < 1�

1
3�1p

�0(1� p)
.

Another example where absolute continuity (A.2) fails The observation is the
scalar rv Y with F0 and F0 admitting probability density functions f0, f1 : R !

R+ with respect to Lebesgue measure given by

f0(y) =

8
<

:

1� | y | if |y|  1

0 otherwise
and f1(y) =

8
<

:

1
3 if 0  y  3

0 otherwise.
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Condition (A.1) holds (with Lebesgue measure) but (A.2) fails. Simple substitu-
tion reveals that

h(y) = �1p · f1(y)� �0(1� p) · f0(y)

=

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

0 if y < �1

��0(1� p)(1 + y) if �1  y  0

1
3�1p� �0(1� p)(1� y) if 0 < y  1

1
3�1p if 1 < y  3

0 if 3 < y,

(2.34)

and it is straightforward to check that the Bayesian test d? is simply

d
?(y) = 0 iff

�1 < y  0
or

0 < y  1, y < 1�
1
3�1p

�0(1�p) .

Equivalently, d? can be described as

d
?(y) = 0 iff y 2

 
�1,

✓
1�

�1p

3�0(1� p)

◆+
!
.

A final example Consider the binary hypothesis testing problem

H1 : Y ⇠ F1

H0 : Y ⇠ F0

where F0 is the discrete uniform distribution on {0, 1}, and F1 is uniform on the
interval (0, 1). Thus, F1 admits a probability density function f1 : R ! R+ with
respect to Lebesgue measure given by

f1(y) =

8
<

:

1 if y 2 (0, 1)

0 otherwise

and
P [Y = 0|H = 0] = P [Y = 1|H = 0] =

1

2
.
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In this example F cannot be taken to be either the distribution associated with
Lebesgue measure on R or with the counting measure on {0, 1}. In principle we
could use F given by (1.10) but this would yield complicated expressions for the
density functions f0, f1 : R ! R+. Instead of applying Theorem 2.2.1 with that
choice, we provide a direct optimization of the auxiliary expected cost function
(2.4): For each test d in D we recall that we have

bJ(d)
= �0(1� p) + �1p · P [d(Y ) = 0|H = 1]� �0(1� p) · P [d(Y ) = 0|H = 0]

with

P [d(Y ) = 0|H = 0] =

8
>><

>>:

1
2 if 0 2 C(d), 1 /2 C(d)
1
2 if 1 2 C(d), 0 /2 C(d)
1 if 0 2 C(d), 1 2 C(d)
0 if 0 /2 C(d), 1 /2 C(d)

and
P [d(Y ) = 0|H = 1] =

Z

C(d)

f1(y)dy = |C(d) \ [0, 1]|.

Adding or deleting a finite number of points from C(d) will not affect the
value of P [d(Y ) = 0|H = 1], but it may change the value of P [d(Y ) = 0|H = 0].
Therefore, with C(d) given, modify it, if needed, by adding both points 0 and 1.
If C 0 denotes this Borel subset of R, then C

0 = C(d) [ {0, 1}; if d0 denotes the
corresponding test, then C(d0) = C

0. Obviously

P [d(Y ) = 0|H = 1] = P [d0(Y ) = 0|H = 1] = |C(d0) \ [0, 1]|

since |C(d0) \ [0, 1]| = |C(d) \ [0, 1]|, while

P [d(Y ) = 0|H = 0]  P [d0(Y ) = 0|H = 0] = 1.

We can now conclude that

bJ(d)
= �0(1� p) + �1p · P [d(Y ) = 0|H = 1]� �0(1� p) · P [d(Y ) = 0|H = 0]

� �0(1� p) + �1p · P [d0(Y ) = 0|H = 1]� �0(1� p) · P [d0(Y ) = 0|H = 0]

= �0(1� p) + �1p · |C(d0) \ [0, 1]|� �0(1� p)

= �1p · |C(d0) \ [0, 1]| � 0. (2.35)
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Consider the test d? : R ! {0, 1} given by

d
?(y) = 1 [{0, 1}] (y), y 2 R.

The arguments leading to (2.35) also show that

bJ(d?) = �1p · |C(d?) \ [0, 1]| = 0,

and the test d? is therefore a Bayesian decision rule.

2.7 Exercises

2.8 References



Chapter 3

Randomized tests

As we shall see shortly, a solution cannot always be found to the Minimax and
Neyman–Pearson formulations of the hypothesis testing problem if the search is
restricted to the class of decision rules D as done for the Bayesian set–up. In
some very real sense this class D of tests is not always large enough to guarantee
a solution; to remedy this difficulty we enlarge D by considering the class of
randomized tests or decision rules.

3.1 Randomized tests
We start with a definition.

A randomized test � is a Borel mapping � : Rk
! [0, 1] with the following in-

terpretation as conditional probability: Having observed Y = y, it is decided
that the state of nature is 1 (resp. 0) with probability �(y) (resp. 1 � �(y)). The
collection of all randomized tests will be denoted by D

?.

Obviously, any test d in D can be mechanized as a randomized test, say �d : Rk
!

[0, 1], given by
�d(y) ⌘ d(y), y 2 Rk

.

A test in D is often referred to as a pure strategy.
A natural question then arises as to how such randomization mechanisms can

be incorporated into the probabilistic framework introduced earlier in Section 1.2:
The model data is unchanged as we are given two probability distributions F0 and
F1 on Rk and a prior p in [0, 1]. We still consider a sample space ⌦ equipped with

33
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a �-field of events F , and on it we now define the three rvs H , Y and D which
take values in {0, 1}, Rk and {0, 1}, respectively. The rvs H and Y have the same
interpretation as before, as state of nature and observation, respectively, while the
rv D now encodes the decision to be taken on the basis of the observation Y .

With each decision rule � in D
? we associate a probability measure P� on F

such that the following constraints are satisfied: As before, this time under P�, we
still have

P� [Y  y|H = h] = Fh(y),
y 2 Rk

,

h = 0, 1

and
p = P� [H = 1] = 1� P� [H = 0] .

Therefore, under P� the probability distribution of the pair (H,Y ) does not de-
pendent on � with

P� [H = h,Y  y] = P� [H = h]Fh(y),
h = 0, 1,
y 2 Rk

(3.1)

as expected. In addition, for h = 0, 1 and y in Rk, we now require that

P� [D = d|H = h,Y = y] =

8
<

:

1� �(y) if d = 0

�(y) if d = 1

= d�(y) + (1� d) (1� �(y)) . (3.2)

The joint probability distribution of the rvs H , D and Y (under P�) can now
be completely specified: With h, d = 0, 1 and a Borel subset B of Rk, a precondi-
tioning argument gives

P� [H = h,D = d,Y 2 B]

= E� [1 [H = h,Y 2 B]P� [D = d|H,Y ]]

= E� [1 [H = h,Y 2 B] (d�(Y ) + (1� d) (1� �(Y )))]

= P� [H = h] ·

Z

B

(d�(y) + (1� d) (1� �(y))) dFh(y)

=

8
<

:

P� [H = h] ·
R
B
(1� �(y))dFh(y) if d = 0

P� [H = h] ·
R
B
�(y)dFh(y) if d = 1.

(3.3)
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3.2 An alternate framework
The class D

? of randomized strategies gives rise to a collection of probability
triples, namely

{(⌦,F ,P�) , � 2 D
?
} .

It is however possible to provide an equivalent probabilistic framework using a
single probability triple (⌦,F ,P). To see how this can be done, imagine that the
original probability triple (⌦,F ,P) is sufficiently rich that there exists on it a rv
U : ⌦ ! [0, 1] which is uniformly distributed on (0, 1), and independent of the
pair of rvs H and Y , This amounts to

P [U  t,H = h,Y  y] = P [U  t]P [H = h,Y  y] ,
t 2 R

h = 0, 1,
y 2 Rk

with

P [U  t] =

8
<

:

0 if t  0

min(t, 1) if t � 0,

P [H = h,Y  y] = P [H = h]Fh(y),
h = 0, 1,
y 2 Rk

and
P [H = 1] = p = 1� P [H = 0] .

Now, for each decision rule � in D
?, define the {0, 1}-valued rv D� given by

D� = 1 [U  �(Y )] .

Note that

P [D� = 1|H = h,Y = y] = E [1 [U  �(Y )] |H = h,Y = y]

= E [1 [U  �(y)] |H = h,Y = y]

= P [U  �(y)]

= �(y) (3.4)

under the enforced independence assumptions. Similarly it follows that

P [D� = 0|H = h,Y = y] = 1� P [D� = 1|H = h,Y = y]

= 1� �(y). (3.5)
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Therefore, the conditional distribution of D� (under P) given H and Y coincides
with the conditional distribution of D (under P�) given H and Y , and the two
formalisms are probabilistically equivalent.

3.3 Evaluating error probabilities
Evaluating error probabilities under randomized tests can be done rather easily:
Consider a randomized test � in D

?. In analogy with (1.15) and (1.16), we evaluate
the probabilities of false alarm and miss under � as

PF (�) ⌘ P� [D = 1|H = 0] (3.6)

and
PM(�) ⌘ P� [D = 0|H = 1] . (3.7)

It is also convenient to consider the so–called probability of detection given by

PD(�) ⌘ P� [D = 1|H = 1] = 1� PM(�). (3.8)

Because

P� [D = h|H] = E� [P� [D = h|H,Y ] |H] , h = 0, 1

we readily conclude that

PF (�) =

Z

Rk

�(y)dF0(y) (3.9)

and
PM(�) =

Z

Rk

(1� �(y)) dF1(y), (3.10)

so that
PD(�) =

Z

Rk

�(y)dF1(y), (3.11)

3.4 The Bayesian problem revisited
Assuming the cost function C : {0, 1} ⇥ {0, 1} ! R introduced in Section 2.1,
we define the expected cost function J

? : D?
! R given by

J
?(�) = E� [C(H,D)] , � 2 D

?
.
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When considering randomized decision rules, the original Bayesian Problem
PB is now reformulated as the minimization problem

P
?

B
: Minimize J

?(�) over � in D
?.

This amounts to finding an admissible test �? in D
? such that

J
?(�?)  J

?(�), � 2 D
?
. (3.12)

Any admissible test �? which satisfies (3.12) is called a randomized Bayesian test,
and the value

J
?(�?) = inf

�2D?
J
?(�)) (3.13)

is sometimes referred to as the randomized Bayesian cost.

Obviously, since D ⇢ D
? (with a slight abuse of notation) with

J
?(�d) = J(d), d 2 D,

it is plain that
inf
�2D?

J
?(�)  inf

d2D
J(d).

While in principle this last inequality could be strict, we now show that it is not
so and that the Bayesian problem is not affected by considering the larger set of
randomized decision rules; the proof is available in Section 3.6.

Theorem 3.4.1 Under the absolute continuity condition (A.1), it holds that

inf
�2D?

J
?(�) = inf

d2D
J(d). (3.14)

It follows from Theorem 2.13 that (3.14) is equivalent to

min
�2D?

J
?(�) = min

d2D
J(d) = J(d?) (3.15)

where the deterministic test d? : Rk
! {0, 1} is given by (2.13).

For easy reference we close with the following analog of Lemma 2.1.1 for
randomized tests; the proof is left as an exercise.
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Lemma 3.4.1 For any admissible rule � in D
?, the relation

J
?(�) = E [C(H,H)] + bJ?(�) (3.16)

holds with

bJ?(�) = �0(1� p) · PF (�) + �1p · PM(�). (3.17)

3.5 Randomizing between two pure decision rules
Consider two pure strategies d1 and d2 in D. With a in (0, 1), we introduce a
randomized policy �a in D

? which first selects the pure strategy d1 (resp. d2)
with probability a (resp. 1 � a), and then uses the pure policy that was selected.
Formally, this amounts to defining �a : Rk

! [0, 1] by

�a(y) = ad1(y) + (1� a)d2(y), y 2 Rk
.

Applying the expressions (3.9) and (3.10) with the randomized test �a we get

PF (�a) =

Z

Rk

�a(y)dF0(y)

=

Z

Rk

(ad1(y) + (1� a)d2(y)) dF0(y)

= a

Z

Rk

d1(y)dF0(y) + (1� a)

Z

Rk

d2(y)dF0(y)

= aPF (d1) + (1� a)PF (d2). (3.18)

Similarly we find that

PM(�a) =

Z

Rk

(1� �a(y)) dF1(y)

=

Z

Rk

(1� ad1(y)� (1� a)d2(y)) dF1(y)

= a

Z

Rk

(1� d1(y))dF1(y) + (1� a)

Z

Rk

(1� d2(y))dF1(y)

= aPM(d1) + (1� a)PM(d2). (3.19)
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It immediately follows from (3.16) and (3.17) that

J
?

p
(�a) = aJp(d1) + (1� a)Jp(d2). (3.20)

as we use the relations (3.18) and (3.19).
One very concrete way to implement the randomized policy �a on the original

triple (⌦,F ,P) proceeds as follows: Consider the original probabilistic frame-
work introduced in Section 1.2 and assume it to be sufficiently rich to carry an
additional R-valued rv V which is independent of the rvs H and Y (under P), and
is uniformly distributed on the interval [0, 1]. Define the {0, 1}-valued rv Ba given
by

Ba = 1 [V  a] .

It is plain that the rv Ba is independent of the rvs H and Y (under P), with

P [Ba = 1] = a = 1� P [Ba = 0] .

Define the decision rv Da given by

Da = Bad1(Y ) + (1� Ba)d2(Y ).

It is easy to check that

P [Da = 1|H = h,Y = y]

= P [Bad1(Y ) + (1� Ba)d2(Y ) = 1|H = h,Y = y]

= P [Bad1(y) + (1� Ba)d2(y) = 1|H = h,Y = y]

= P [Ba = 1, d1(y) = 1|H = h,Y = y] + P [Ba = 0, d2(y) = 1|H = h,Y = y]

= d1(y)P [Ba = 1|H = h,Y = y] + d2(y)P [Ba = 0|H = h,Y = y]

= d1(y)P [Ba = 1] + d2(y)P [Ba = 0]

= ad1(y) + (1� a)d2(y),
y 2 Rk

,

h = 0, 1
(3.21)

as desired.

3.6 A proof of Theorem 3.4.1
Pick an arbitrary test � in D

?. A simple preconditioning argument shows that

J
?(�) = E� [C(H,D)]
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= E� [E� [C(H,D)|H,Y ]]

= E� [C(H, 1)P� [D = 1|H,Y ] + C(H, 0)P� [D = 0|H,Y ]]

= E� [C(H, 1) · �(Y ) + C(H, 0) · (1� �(Y ))]

= E� [C(H, 0)] + E� [(C(H, 1)� C(H, 0)) · �(Y )] (3.22)

with

E� [(C(H, 1)� C(H, 0)) · �(Y )]

= E� [(C(H, 1)� C(H, 0)) · E� [�(Y )|H]]

= (C(1, 1)� C(1, 0))E� [�(Y )|H = 1]P� [H = 1]

+ (C(0, 1)� C(0, 0))E� [�(Y )|H = 0]P� [H = 0]

= ��1p · E� [�(Y )|H = 1] + �0(1� p) · E� [�(Y )|H = 0] . (3.23)

Using the absolute continuity condition (A.1) we can now write

E� [�(Y )|H = h] =

Z

Rk

�(y)dFh(y) =

Z

Rk

�(y)fh(y)dF (y), h = 0, 1

so that

J
?(�)� E� [C(H, 0)]

= ��1p ·

Z

Rk

�(y)f1(y)dF (y) + �0(1� p) ·

Z

Rk

�(y)f0(y)dF (y)

=

Z

Rk

(��1pf1(y) + �0(1� p)f0(y)) �(y)dF (y)

= �

Z

Rk

h(y)�(y)dF (y) (3.24)

where the mapping h : Rk
! R is given by (2.11). Note that the term E� [C(H, 0)]

does not depend on the randomized test � being used.
From Theorem 2.2.1 recall that the Bayesian rule which solves Problem PB is

the test d? : Rk
! {0, 1} in D given by (2.13). Note that d? can also be interpreted

as the randomized rule �
? : Rk

! [0, 1] given by

�
?(y) =

8
<

:

0 if h(y) < 0

1 if h(y) � 0
=

8
<

:

0 if y 2 C
?

1 if y 62 C
?

where C
? is the Borel subset of Rk given by (2.12).
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The desired result will be established if we show that

J
?(�?)  J

?(�), � 2 D
?
.

The approach we take is reminiscent of the one used in the proof of Theorem
2.2.1: For an arbitrary � in D

?, earlier calculations (3.24) show that

J
?(�)� J

?(�?) = �

Z

Rk

h(y)�(y)dF (y) +

Z

Rk

h(y)�?(y)dF (y)

=

Z

Rk

h(y) (�?(y)� �(y)) dF (y)

=

Z

C?

(�h(y))�(y)dF (y) +

Z

Rk\C?

(1� �(y))h(y)dF (y)

� 0

as desired since
Z

C?

(�h(y))dF (y) � 0 and
Z

Rk\C?

(1� �(y))h(y)dF (y) � 0

by the very definition of the set C? and of the mapping h : Rk
! R.

3.7 Exercises

3.8 References
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Chapter 4

The Minimax formulation

The Bayesian formulation implicitly assumes knowledge of the prior distribution
on the hypothesis rv H . In many situations, this assumption cannot be adequately
justified, and the Bayesian formulation has to abandoned for the so–called Mini-
max formulation discussed in this chapter.

4.1 Keeping track of the prior
To facilitate the discussion, we augment the notation introduced in Chapter 1 and
Chapter 3 by explicitly indicating the dependence on the prior probability dis-
tribution: As before we are given two distinct probability distributions F0, F1 :
Rk

! [0, 1] which act as conditional probability distributions for the observation
given the state of nature. As in Chapter 1, we can always construct a collection
{(⌦,F ,Pp), p 2 [0, 1]} of probability triples, and rvs H and Y defined on ⌦
which take values in {0, 1} and Rk, respectively, such that for each p in [0, 1],

Fh(y) = Pp [Y  y|H = h] ,
y 2 Rk

,

h = 0, 1

and
p = Pp [H = 1] = 1� Pp [H = 0] .

One possible construction was given in Section 1.3: Take ⌦ = {0, 1} ⇥ Rk with
generic element ! = (h,y) with h = 0, 1 and y an arbitrary element of Rk. We
endow ⌦ with the �-field F given by

F = �
�
P({0, 1})⇥ B(Rk)

�

43
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where P({0, 1}) is the power set of {0, 1}, and B(Rk) is the Borel �-field on Rk.
We define the mappings H : ⌦ ! R and Y : ⌦ ! Rk by

H(!) = h and Y (!) = y, ! = (h,y) 2 ⌦.

Both projection mappings are Borel measurable, and therefore define rvs.
As before, it is plain that

Pp [Y  y,H = h] = Pp [Y  y|H = h]Pp [H = h]

=

8
<

:

(1� p)F0(y) if h = 0, y 2 Rk

pF1(y) if h = 1, y 2 Rk.
(4.1)

Let Ep [·] denote expectation under Pp.
When dealing with randomized strategies we further augment the notation P�

to read P�,p when using the randomized strategy � in D
? with prior p; see Section

3.1 for details on the probabilistic framework to be used.. In that case let E�,p [·]
denote expectation under P�,p.

4.2 The Bayesian problems
Fix p in [0, 1]. Let Jp(d) denote the expected cost associated with the admissible
decision rule d in D when the prior on H is p, i.e.,

Jp(d) ⌘ Ep [C(H, d(Y ))] .

Similarly, let J?

p
(�) denote the expected cost associated under the randomized

decision rule � in D
? when the prior on H is p, i.e.,

J
?

p
(�) ⌘ E�,p [C(H,D)] .

The Bayesian problems introduced in Chapters 2 and 3 now read

Pp,B : Minimize Jp(d) over d in D

and
P

?

p,B : Minimize J
?

p
(�) over � in D

?.

The corresponding Bayesian costs will be denoted by

V (p) ⌘ inf
d2D

Jp(d) (4.2)
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and
V

?(p) ⌘ inf
�2D?

J
?

p
(�). (4.3)

As shown in Chapter 2, under Condition (A.1), for each p in [0, 1] the problem
Pp,B has a solution which we denote d

?(p) to indicate its dependence on the prior
p. Clearly, any such solution satisfies

Jp(d
?(p))  Jp(d), d 2 D (4.4)

and the equality
V (p) = Jp(d

?(p)) (4.5)

holds. Under the same condition, Theorem 3.4.1 further shows that

J
?

p
(�d?(p))  Jp(�), � 2 D

?

so that
V

?(p) = V (p). (4.6)

The following properties of the value function V : [0, 1] ! R will be useful
in the forthcoming discussion. Conditions (A.1) and (A.2) are not needed for the
results to hold.

Lemma 4.2.1 Assume �h > 0 for h = 0, 1. The value function V : [0, 1] ! R is
concave and continuous on the closed interval [0, 1] with boundary values V (0) =
C(0, 0) and V (1) = C(1, 1). Moreover, its right-derivative (resp. left-derivative)
exists and is finite on [0, 1) (resp. (0, 1]))

The proof can be omitted in a first reading, and can be found in Section 4.10. For
easy reference, recall that for each p in [0, 1] the expressions

Jp(d) = pC(1, 1) + (1� p)C(0, 0) (4.7)
+ �0(1� p) · PF (d) + �1p · PM(d), d 2 D

and

J
?

p
(�) = pC(1, 1) + (1� p)C(0, 0) (4.8)

+ �0(1� p) · PF (�) + �1p · PM(�), � 2 D
?

hold. The relationships were given in Lemma 2.1.1 and Lemma 3.4.1, respec-
tively.
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4.3 The minimax formulation
Since the exact value of the prior p is not available, the Bayesian criterion has to
be modified. Two different approaches are possible; each in its own way seeks to
compensate for the uncertainty in the modeling assumptions.

Minmax On possible approach is to introduce a worst-case cost associated with
the original cost, and then use it as the new criterion to be minimized. With this
in mind, define

JMax(d) ⌘ sup
p2[0,1]

Jp(d), d 2 D. (4.9)

We are then lead to consider the minimization problem

PMax : Minimize JMax(d) over d in D.

Solving PMax amounts to finding an admissible test d?m in D such that

JMax(d
?

m)  JMax(d), d 2 D. (4.10)

When it exists, the test d?m is known as a minimax test.

A priori there is no guarantee that a test in D exists which satisfies (4.10) (even
under Condition (A.1)) – It is not clear that a cost eC : {0, 1}⇥ {0, 1} ! R (likely
related to the original cost C : {0, 1} ⇥ {0, 1} ! R) and p̃ in [0, 1] can be found
such that

JMax(d) = Ep̃

h
eC(H, d(Y ))

i
, d 2 D.

If that were indeed the case, then Theorem 2.2.1 would guarantee the existence of
a minimizer.

For technical reasons to become shortly apparent we also introduce the worst-
case cost under randomized strategies, namely

J
?

Max(�) ⌘ sup
p2[0,1]

J
?

p
(�), � 2 D

?
. (4.11)

The minimization problem of interest here is now defined as

P
?

Max : Minimize J
?

Max(�) over � in D
?.
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Solving P
?

Max amounts to finding a randomized strategy �
?

m in D
? such that

J
?

Max(�
?

m)  J
?

Max(�), � 2 D
?
. (4.12)

Again a priori there is no guarantee that there exists a test in D
? satisfying (4.12)

(even under Condition (A.1)). When it exists, the test �?m is also known as a
minimax test.

It is natural to wonder whether the tests d?m and �
?

m exist, (possibly under additional
conditions), whether they are different, and if not, whether J?

Max(�
?

m
) = JMax(d?m).

Maxmin Another reasonable way to proceed consists in using the Bayesian test
for that value of p which yields the largest Bayesian cost (4.2): With the notation
introduced earlier, let pm in [0, 1] such that

V (pm) = max
p2[0,1]

V (p), (4.13)

and use the Bayesian rule d
?(pm) – The existence of pm is guaranteed by the fact

that the mapping V : [0, 1] ! R is continuous on the closed bounded interval
[0, 1] by Lemma 4.2.1, hence achieves its maximum value on [0, 1].

The value pm satisfying (4.13) is known as the least favorable prior. Although the
terminology is not standard, we shall refer to d

?(pm) as a maximin test.

4.4 Preliminary facts
In view of the two competing approaches outlined in Section 4.3, several questions
arise: (i) How does one characterize the minimax strategy d

?

m and develop ways
find it; (ii) How does one characterize the least-favorable prior pm and develop
ways find it; (iii) Is there a simple relationship between the solutions proposed by
two approaches, and in particular, whether is d?(pm) is a candidate for d?m.

To frame the discussion of these issues we start with a couple of preliminary
remarks.
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The minimax inequalities As a first step towards understanding how the two
approaches may be related to each other, consider the following arguments: From
the definitions it always holds that

V (p)  Jp(d)  JMax(d),
p 2 [0, 1]
d 2 D.

(4.14)

It is now immediate that

V (p)  inf
d2D

JMax(d), p 2 [0, 1]

since V (p) does not depend on d, whence

sup
p2[0,1]

V (p)  inf
d2D

JMax(d).

This last inequality can be rewritten as the minimax inequality

sup
p2[0,1]

✓
inf
d2D

Jp(d)

◆
 inf

d2D

 
sup
p2[0,1]

Jp(d)

!
(4.15)

(in pure policies)
If we were to consider randomized strategies, it is also the case that

V
?(p)  J

?

p
(�)  J

?

Max(�),
p 2 [0, 1]
� 2 D

?
(4.16)

and arguments similar to the ones leading to (4.15) yield the minimax inequality

sup
p2[0,1]

✓
inf
�2D?

J
?

p
(�)

◆
 inf

�2D?

 
sup
p2[0,1]

J
?

p
(�)

!
(4.17)

in randomized strategies.

Toward minimax equalities As we contrast the inequalities (4.15) and (4.17),
it is natural to wonder whether these inequalities ever hold as equalities, namely

sup
p2[0,1]

✓
inf
d2D

Jp(d)

◆
= inf

d2D

 
sup
p2[0,1]

Jp(d)

!
(4.18)
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and

sup
p2[0,1]

✓
inf
�2D?

J
?

p
(�)

◆
= inf

�2D?

 
sup
p2[0,1]

J
?

p
(�)

!
. (4.19)

When this occurs we shall then say that the minimax property holds in pure and
randomized policies, respectively.

It is worth pointing out that the equalities

inf
�2D?

 
sup
p2[0,1]

J
?

p
(�)

!
 inf

d2D

 
sup
p2[0,1]

Jp(d)

!
(4.20)

and

sup
p2[0,1]

✓
inf
�2D?

J
?

p
(�)

◆
= sup

p2[0,1]

✓
inf
d2D

Jp(d)

◆
(4.21)

always hold; the latter is a rewrite of (4.6) and is a simple consequence of Theorem
3.4.1. As we combine these observations with (4.17) we conclude that

sup
p2[0,1]

✓
inf
d2D

Jp(d)

◆
 inf

�2D?

 
sup
p2[0,1]

J
?

p
(�)

!
 inf

d2D

 
sup
p2[0,1]

Jp(d)

!
. (4.22)

Thus, if (4.18) happens to be true, then (4.19) necessarily holds – Put differently,
the minimax property in pure policies is more difficult to achieve than the minimax
property in randomized strategies. This disparity will become apparent in the
discussion of the Minimax Theorem given in Section 4.5, opening the possibility
that we may have to resort to randomized tests (at least in some situations) in order
to achieve the minimax equality.

The structure of the worst-case costs (4.9) and (4.11) A little more can be said
concerning the auxiliary costs (4.9) and (4.11): For each test d in D, we note from
(4.7) and (4.8) that

sup
p2[0,1]

Jp(d) = max
p2[0,1]

Jp(d) = max{J0(d), J1(d)} (4.23)

with the supremum achieved at either p = 0 or p = 1. Also, J0(d) and J1(d) can
be given probabilistic interpretations as the conditional interpretations

J0(d) = Ep [C(H, d(Y )|H = 0] (4.24)
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and
J1(d) = Ep [C(H, d(Y )|H = 1] (4.25)

with p arbitrary in [0, 1]. Similarly, for each randomized strategy � in D
?, we have

sup
p2[0,1]

J
?

p
(�) = max

p2[0,1]
J
?

p
(�) = max{J?

0 (�), J
?

1 (�)} (4.26)

with the supremum achieved at either p = 0 or p = 1 with probabilistic interpre-
tations

J
?

0 (�) = E�,p [C(H,D)|H = 0] (4.27)

and
J
?

1 (�) = E�,p [C(H,D)|H = 1] (4.28)

with p arbitrary in [0, 1].

4.5 The minimax equality
The main result concerning the minimax formulation for the binary hypothesis
testing problem is summarized in the following special case of the Minimax The-
orem from Statistical Decision Theory; see [?, Thm. 1, p. 82] for a discussion in
a more general setting.

Theorem 4.5.1 Assume �h > 0 for all h = 0, 1. Under Condition (A.1), the
minimax equality

sup
p2[0,1]

✓
inf
�2D?

J
?

p
(�)

◆
= inf

�2D?

 
sup
p2[0,1]

J
?

p
(�)

!
(4.29)

holds in randomized strategies.

In Section 4.6 we present an analysis of the minimax equality which exploits
the specific structure of the binary hypothesis problem as reflected through the
properties of the value function: As pointed out earlier, there always exists pm in
[0, 1] such that (4.13) holds. From the concavity of the value function it follows
that the set of maximizers

Im ⌘

⇢
pm 2 [0, 1] : V (pm) = max

p2[0,1]
V (p)

�
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is a closed interval in [0, 1]. The set Im will often be reduced to a singleton, in
which case the value function admits a unique (isolated) maximizer. Four sit-
uations can occur depending on the location of Im and on the smoothness of
p ! V (p) at the maximum. In each case we establish a minimax equality and
identify the minimax strategy. Throughout we still use d

?(pm) to denote the
Bayesian test for the selected value pm in Im, so that

V (pm) = Jpm(d
?(pm)) = min

d2D
Jpm(d). (4.30)

From the discussion of Section 4.4 we see that (4.29) will hold if we can
establish the reverse inequality to (4.17), namely

inf
�2D?

 
sup
p2[0,1]

J
?

p
(�)

!
 sup

p2[0,1]

✓
inf
�2D?

J
?

p
(�)

◆
. (4.31)

Recall that (4.31) will automatically hold if we show the stronger inequality

inf
d2D

 
sup
p2[0,1]

Jp(d)

!
 sup

p2[0,1]

✓
inf
d2D

Jp(d)

◆
. (4.32)

In the first three cases we show in effect that

inf
d2D

✓
max
p2[0,1]

Jp(d)

◆
 max

p2[0,1]

✓
min
d2D

Jp(d)

◆
. (4.33)

4.6 A proof of Theorem 4.5.1
We start with the boundary cases pm = 0 and pm = 1.

Case 1: Assume pm = 0 – Thus, maxp2[0,1] V (p) = V (0) = J0(d?(0)). By
concavity we have d

+

dp
V (p)

���
p=0

 0 with the mapping V : [0, 1] ! R being de-

creasing. But the straight line p ! Jp(d?(0)) is tangent to the value function
V : [0, 1] ! R at p = 0, whence

d
+

dp
V (p)

���
p=0

=
d

dp
Jp(d

?(0))
���
p=0

 0.

The mapping p ! Jp(d?(0)) being affine, its derivative is therefore constant with

d

dp
Jp(d

?(0)) =
d

dp
Jp(d

?(0))
���
p=0

 0, p 2 [0, 1]
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and the mapping p ! Jp(d?(0)) is also decreasing on [0, 1]. This leads to

J0(d
?(0)) = max

p2[0,1]
Jp(d

?(0)).

With this in mind we get

max
p2[0,1]

✓
min
d2D

Jp(d)

◆
= max

p2[0,1]
V (p)

= V (0)

= J0(d
?(0))

= max
p2[0,1]

Jp(d
?(0)). (4.34)

The desired inequality (4.32) (hence (4.31)) is now immediate from (4.34) as we
note that

max
p2[0,1]

Jp(d
?(0)) � inf

d2D

✓
max
p2[0,1]

Jp(d)

◆
.

But the minimax equality being now established in pure strategies, we conclude
from the discussion that

max
p2[0,1]

Jp(d
?(0)) = inf

d2D

✓
max
p2[0,1]

Jp(d)

◆
.

This shows that d?m can be taken to be d
?(0).

Case 2: Assume pm = 1 – The proof is as in Case 1 mutatis mutandis, and is
left as an exercise. Again, the minimax equality holds in pure strategies and d

?

m

can be taken to be d
?(1).

We now turn to cases when pm is selected in (0, 1).

Case 3: Assume that pm in an element of (0, 1) and p ! V (p) is differentiable
at p = pm – It is plain that d

dp
V (p)

���
p=pm

= 0 since pm is an interior point by

assumption. By concavity the mapping p ! Jp(d?(pm)) is tangent to the value
function V : [0, 1] ! R at p = pm, whence

d

dp
V (p)

���
p=pm

=
d

dp
Jp(d

?(pm))
���
p=pm

= 0.
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The mapping p ! Jp(d?(pm)) being affine, its derivative is constant and given by

d

dp
Jp(d

?(pm)) =
d

dp
Jp(d

?(pm))
���
p=0

= 0, p 2 [0, 1].

Therefore, the mapping p ! Jp(d?(pm)) is constant on [0, 1], and the equality
J0(d?(pm)) = J1(d?(pm)) holds. It follows from the first equality in (4.30) that

V (pm) = Jp(d
?(pm)) = max

p2[0,1]
Jp(d

?(pm)), p 2 [0, 1]. (4.35)

On the other hand, it is plain that

inf
d2D

✓
max
p2[0,1]

Jp(d)

◆
 max

p2[0,1]
Jp(d

?(pm))

= Jpm(d
?(pm))

= min
d2D

Jpm(d)

 inf
d2D

✓
max
p2[0,1]

Jp(d)

◆
(4.36)

as we use the second equality in (4.35) with p = pm, and then apply the second
equality in (4.30). The inequality (4.32) (hence (4.31)) is now a straightforward
consequence of (4.36).

Leveraging the fact that the minimax equality is now known to hold in pure
strategies, we conclude from the discussion that

max
p2[0,1]

Jp(d
?(pm)) = inf

d2D

✓
max
p2[0,1]

Jp(d)

◆
,

and d
?

m can therefore be taken to be d
?(pm).

Case 4: Assume that Im = {pm} ✓ (0, 1) but p ! V (p) is not differentiable
at p = pm – Under such assumptions we must have

a+ ⌘
d
+

dp
V (p)

���
p=pm

<
d
�

dp
V (p)

���
p=pm

⌘ a�

by concavity with either a+ < 0  a� or a+  0 < a�. We continue the
discussion under the assumption a+ < 0  a�; the case a+  0 < a� proceeds
along similar lines, and is therefore omitted.
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Recall that p ! V (p) is defined as the envelope of a family of affine functions.
Thus, under the non-differentiability assumption at p = pm, concavity guarantees
that there exist two pure strategies, say d�, d+ : Rk

! {0, 1}, such that V (pm) =
Jpm(d�) and V (pm) = Jpm(d+) (because pm is a maximum) while the straight
lines p ! Jp(d�) and p ! Jp(d+) are both tangent to the value function at
p = pm – These two strategies are distinct. Hence, as discussed in earlier cases,
the function p ! Jp(d�) (resp. p ! Jp(d+)) is an affine function with constant
derivative a� � 0 (resp. a+ < 0), hence non-decreasing (resp. decreasing). It
follows that J0(d�)  J1(d�) and J1(d+) < J0(d+).

Next we introduce randomized policies {�a, a 2 [0, 1]} obtained by random-
izing two pure strategies d� and d+. Thus, with each a in [0, 1] consider the
randomized policy �a : Rk

! [0, 1] given by

�a = ad+ + (1� a)d�.

The relation (3.20) discussed in Section 3.5 applies, yielding

J
?

p
(�a) = aJp(d+) + (1� a)Jp(d�), p 2 [0, 1].

By construction we also note that

V (pm) = J
?

pm
(�a), a 2 [0, 1]. (4.37)

If a suitable of a, we were to have p ! J
?

p
(�a) constant over [0, 1], then the

test �a would a performance insensitive to the value of p. This requirement (on a)
is equivalent to the equality J

?

0 (�a) = J
?

1 (�a), i.e.,

aJ0(d+) + (1� a)J0(d�) = aJ1(d+) + (1� a)J1(d�).

Thus,

a ((J0(d+)� J1(d+)) + (J1(d�)� J0(d�))) = J1(d�)� J0(d�)

and solving for a we get

a
? =

J1(d�)� J0(d�)

(J0(d+)� J1(d+)) + (J1(d�)� J0(d�))
.

It is a simple matter to check that a? lies in [0, ) since J1(d�) � J0(d�) � 0 and
J0(d+)� J1(d+) > 0 as discussed earlier.
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It is now plain that

V (pm) = J
?

p
(�a?) = max

p2[0,1]
J
?

p
(�a?), p 2 [0, 1]. (4.38)

Therefore, as in the discussion for Case 3, we have

inf
�2D?

✓
max
p2[0,1]

J
?

p
(�)

◆
 max

p2[0,1]
J
?

p
(�a?)

= V (pm)

= inf
�2D?

J
?

p
(�)

 max
p2[0,1]

✓
inf
�2D?

J
?

p
(�)

◆
(4.39)

and the desired inequality (4.31) is established.
The minimax equality now holds in mixed strategies, whence

max
p2[0,1]

J
?

p
(�a?) = inf

�2D?

✓
max
p2[0,1]

J
?

p
(�)

◆

by virtue of (4.39). The minimax strategy is a randomized strategy �
?

m which is
identified as �?(pm). Note that �?(pm) is also a (randomized) Bayesian policy for
the least favorable prior.

We summarize these findings in the following corollary to Theorem 4.5.1.

Corollary 4.6.1 Assume �h > 0 for all h = 0, 1. Under Condition (A.1), the
minimax equality (4.29) holds in randomized strategies. Moreover, the minimax
strategy always exists and can be interpreted as a (possibly randomized) Bayesian
test under the least favorable prior pm.

4.7 The minimax equation
The discussion of Section 4.5 shows that finding minimax tests passes through
the evaluation of the value function p ! V (p) and its maximizing set Im. As
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simple examples already suggest in later sections, this evaluation may not always
be straightforward to carry. Moreover, once an expression for the value function
becomes available, finding its maximizers may turn out to be rather cumbersome.
However, this two-step approach can be bypassed when Im contains an interior
point pm at which the value function is differentiable, in which case the minimax
test is given by the Bayesian test d?(pm). Instead a simple characterization of pm
is achieved through the so-called Minimax Equation.

Lemma 4.7.1 Assume �h > 0 for all h = 0, 1, and that pm is an element of (0, 1)
and p ! V (p) is differentiable at p = pm. Under Condition (A.1), pm can be
characterized through the Minimax Equation

C(1, 1)� C(0, 0) = �0 · PF (d
?(pm))� �1 · PM(d?(pm)). (4.40)

For the probability of error criterion, the Minimax Equation takes the simpler form

PF (d
?(pm)) = PM(d?(pm)). (4.41)

Proof. Fix p in [0, 1]. Upon specializing (4.7) to the test d?(p), we get

J↵(d
?(p)) = ↵C(1, 1) + (1� ↵)C(0, 0)

+�0(1� ↵) · PF (d
?(p)) + �1↵ · PM(d?(p)) (4.42)

with ↵ in [0, 1] and the mapping ↵ ! J↵(d?(p)) is therefore affine in the variable
↵ on the interval [0, 1] Therefore, the graph of the mapping ↵ ! J↵(d?(p)) is a
straight line; its slope is given by

d

d↵
J↵(d

?(p)) = C(1, 1)� C(0, 0) + �1 · PM(d?(p))� �0 · PF (d
?(p)). (4.43)

By its definition, the Bayesian cost satisfies

V (↵)  J↵(d),
d 2 D

↵ 2 [0,

with strict inequality for most tests. With d = d
?(p) this inequality becomes an

equality when ↵ = p, namely

V (p) = Jp(d
?(p))
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while
V (↵)  J↵(d

?(p)), ↵ 2 [0, 1].

With p in (0, 1), if the concave mapping ↵ ! V (↵) is differentiable at ↵ = p,
then the straight line ↵ ! J↵(d?(p)) will be a tangent to the mapping ↵ ! V (↵)
at ↵ = p – This is a consequence of the concavity established in Lemma 4.2.1.
Thus,

d

d↵
V (↵)

���
↵=p

=
d

d↵
J↵(d

?(p))
���
↵=p

. (4.44)

In particular, if pm is an element of (0, 1) and the mapping ↵ ! V (↵) is
differentiable at ↵ = pm, then

d

d↵
V (↵)

���
↵=pm

=
d

d↵
J↵(d

?(pm))
���
↵=pm

. (4.45)

But the interior point pm being a maximum for the function ↵ ! V (↵), we must
have

d

d↵
V (↵)

���
↵=pm

= 0,

whence
d

d↵
J↵(d

?(pm))
���
↵=pm

= 0.

The equation (4.40) now follows from (4.43).

Obviously this analysis does not cover the cases when (i) pm = 0, (ii) pm = 1
and (iii) pm is an element of (0, 1) but the mapping ↵ ! V (↵) is not differentiable
at ↵ = pm.

4.8 The Gaussian Case
The setting is that of Section 2.4 to which we refer the reader for the notation. As
shown there, for every ⌘ > 0 we have

PF (Lrt⌘) = 1� �

✓
log ⌘ + 1

2d
2

d

◆

and

PM(Lrt⌘) = �

✓
log ⌘ � 1

2d
2

d

◆
.
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For each p in (0, 1], with

⌘(p) =
1� p

p
·
�0

�1
,

we have d
?(p) = Lrt⌘(p) and the expression (4.7) yields

V (p) = Jp(d
?(p))

= pC(1, 1) + (1� p)C(0, 0)

+ �0(1� p) ·

✓
1� �

✓
log ⌘(p) + 1

2d
2

d

◆◆

+ �1p · �

✓
log ⌘(p)� 1

2d
2

d

◆
. (4.46)

The boundary cases p = 0 is easily recovered upon formally substituting this
value in the expression (4.46). The Minimax Equation (4.40) takes the form

C(1, 1)� C(0, 0)

= �1�

✓
log ⌘(pm)�

1
2d

2

d

◆
� �0

✓
1� �

✓
log ⌘(pm) +

1
2d

2

d

◆◆
.(4.47)

Probability of error – Simplifications occur since C(0, 0) = C(1, 1) = 0 and
�0 = �1 = 1: The expression (4.46) becomes

V (p) = (1� p) ·

 
1� �

 
1�p

p
+ 1

2d
2

d

!!
+ p · �

 
log 1�p

p
�

1
2d

2

d

!
,

and the Minimax Equation (4.47) reduces to

�

✓
log ⌘(pm)�

1
2d

2

d

◆
+ �

✓
log ⌘(pm) +

1
2d

2

d

◆
= 1.

It is easy to see that this requires log ⌘(pm) = 0 so that pm = 1
2 (indeed in (0, 1)),

an intuitively satisfying conclusion! Moreover, the minimax test is given by d
?

m =
d
( 1
2).
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4.9 The Bernoulli case
The setting is that of Section 2.5 to which we refer the reader for the notation. We
discuss only the case a1 < a0, and leave the case a0 < a1 as an exercise for the
interested reader.

Note that the condition a1 < a0 is equivalent to 1 <
1�a1
1�a0

, so that the expres-
sions (2.31) and (2.32) for the probabilities PF (d⌘) and PM(d⌘), respectively, are
piecewise constant functions of ⌘ with different constant values on the intervals
(0, a1

a0
], (a1

a0
,
1�a1
1�a0

] and (1�a1
1�a0

,1): Direct inspection of the expression (2.31) yields

PF (d⌘) =

8
>>>><

>>>>:

1 if 0 < ⌘ 
a1
a0

1� a0 if a1
a0

< ⌘ 
1�a1
1�a0

0 if 1�a1
1�a0

< ⌘.

(4.48)

Similarly, using (2.32) we find

PM(d⌘) =

8
>>>><

>>>>:

0 if 0 < ⌘ 
a1
a0

a1 if a1
a0

< ⌘ 
1�a1
1�a0

1 if 1�a1
1�a0

< ⌘.

(4.49)

Thus, for each p in [0, 1], we see from (4.7) that the cost Jp(d⌘) takes a different
value on each of the intervals (0, a1

a0
], (a1

a0
,
1�a1
1�a0

] and (1�a1
1�a0

,1): Specifically, we
have:

On (0, a1
a0
],

Jp(d⌘) = pC(1, 1) + (1� p)C(0, 0) + �0(1� p)

= pC(1, 1) + (1� p)C(0, 1). (4.50)

On (a1
a0
,
1�a1
1�a0

],

Jp(d⌘)

= pC(1, 1) + (1� p)C(0, 0) + �0(1� p) · (1� a0) + �1p · a1

= pC(1, 1) + (1� p)C(0, 1) + �1p · a1 � �0(1� p) · a0
= p (C(1, 1) + �1a1) + (1� p) (C(0, 1)� �0a0) . (4.51)
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On (1�a1
1�a0

,1),

Jp(d⌘) = pC(1, 1) + (1� p)C(0, 0) + �1p

= pC(1, 0) + (1� p)C(0, 0). (4.52)

Recall that

V (p) = Jp(d⌘(p)) with ⌘(p) = �0(1�p)
�1p

, 0 < p  1.

As the mapping p : (0, 1] ! R+ : p ! ⌘(p) is strictly decreasing, each of the
equations

⌘(p) =
1� a1

1� a0
, 0 < p  1

and
⌘(p) =

a1

a0
, 0 < p  1

has a unique solution in (0, 1). These solutions, denoted p� and p+, respectively,
are given by

p� =
�0(1� a0)

�1(1� a1) + �0(1� a0)

and
p+ =

�0a0

�1a1 + �0a0
.

As expected p� <
1
2 < p+.

Earlier expressions can now be used, and yield

V (p)

=

8
>>>><

>>>>:

pC(1, 0) + (1� p)C(0, 0) if p 2 (0, p�]

p (C(1, 1) + �1a1) + (1� p) (C(0, 1)� �0a0) if p 2 (p�, p+]

pC(1, 1) + (1� p)C(0, 1) if p 2 (p+, 1).

It is plain that the function V : [0, 1] ! R is piecewise linear with three distinct
segments, namely (0, p�], (p�, p+] and (p+, 1]. There are two kinks at p = p�
and p = p+, respectively. That the function is concave can be seen by computing
the left and right-derivatives at these points. The function V : [0, 1] ! R is
differentiable everywhere except at these kinks. However the maximum occurs at
one of these points so that pm 2 {p�, p+}.
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Probability of error – In that case we find that

V (p) =

8
>>>><

>>>>:

p if p 2 (0, p�]

pa1 + (1� p) (1� a0) if p 2 (p�, p+]

1� p if p 2 (p+, 1)

(4.53)

with
p� =

1� a0

(1� a1) + (1� a0)

and
p+ =

a0

a1 + a0
.

It is a simple matter to check that V (p±�) = V (p±+), establishing continuity
at the kink points. As we compare V (p�) and V (p+), we readily conclude that
pm = p� (resp. pm = p+) iff 1 � p+ < p� (resp. p� < 1 � p+) iff a0 + a1 < 1
(resp. 1 < a0 + a1). The minimax cost is then given by

Vm =

8
<

:

p� = 1�a0
(1�a1)+(1�a0)

if a0 + a1 < 1

1� p+ = a1
a1+a0

if 1 < a0 + a1

Minimax strategy is necessarily randomized and is given by

�a = ad+ + (1� a)d�

with the pure tests d�, d+ : R ! {0, 1} given by

4.10 A proof of Lemma 4.2.1
The proof proceeds in several stages. We start with the fact that

V (p) = inf
d2D

Jp(d), p 2 [0, 1].

Values at the boundary points – Consider a test d in D. With p = 0 and p = 1
in (4.7) we get

J0(d) = C(0, 0) + �0PF (d)
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and
J1(d) = C(1, 1) + �1PM(d).

Using the conditions �0 > 0 and �1 > 0, we conclude that

V (0) = inf
d2D

J0(d) = C(0, 0) + �0 · inf
d2D

PF (d)

and
V (1) = inf

d2D
J0(d) = C(1, 1) + �1 · inf

d2D
PM(d).

However, PF (d1) = 0 for the test d1 : Rk
! {0, 1} which always selects the null

hypothesis (H = 0) while PM(d0) = 0 for the test d0 : Rk
! {0, 1} which always

selects the alternative (H = 1); see Section 1.6. It follows that infd2D PF (d) = 0
and infd2D PM(d) = 0, whence V (0) = C(0, 0) and V (1) = C(1, 1).

Concavity on [0, 1] and continuity on (0, 1) – Once the test d is selected, the
probabilities PF (d) and PM(d) appearing in (4.7) do not depend on p, and are
determined only through F0 and F1. Thus, the mapping p ! Jp(d) is affine,
hence concave in p. As a result, the mapping V : [0, 1] ! R is concave on the
closed interval [0, 1], being the infimum of the family {Jp(d), d 2 D} of concave
functions. Because a concave function defined on an open interval is necessarily
continuous on that open interval, the mapping V : [0, 1] ! R is continuous on
(0, 1) by virtue of Fact 9.4.2.

Continuity at the boundary points – We now turn to showing that the mapping
V : [0, 1] ! R is also continuous at the boundary points p = 0 and p = 1. We
discuss only the case p = 0; the case p = 1 can be handled mutatis mutandis and
is left to the interested reader as an exercise.

For notational convenience here and below we write

�(p) ⌘ inf
d2D

(�0(1� p) · PF (d) + �1p · PM(d)) , p 2 (0, 1].

Recall that V (0) = C(0, 0) by the first part of the proof. Thus, for each p in (0, 1]
we get from the definition of V (p) that

V (p)� V (0) = p (C(1, 1)� C(0, 0)) +�(p) (4.54)



4.10. A PROOF OF LEMMA 4.2.1 63

by virtue of (4.7). The continuity of the mapping V : [0, 1] ! R at p = 0 is
therefore equivalent to

lim
p!0

�(p) = 0. (4.55)

For any fixed p in (0, 1], the conditions �0 > 0 and �1 > 0 yield the inequali-
ties

0  �(p)  �1p (4.56)

since under the test d1 (introduced earlier in the proof) we have PF (d1) = 0 and
PM(d1 = 1. The conclusion (4.55) is now immediate.

Differentiability – The existence and finiteness of the right-derivative and left-
derivative on the open interval (0, 1) are simple consequences of Fact 9.4.4. The
same argument also shows that the right-derivative (resp. left-derivative) does
exist at p = 0 (resp. p = 1); however it may not necessarily be finite.

Instead, we provide a direct argument to show the existence and finiteness of
the right-derivative (resp. left-derivative) at p = 0 (resp. p = 1). We carry out the
discussion only for p = 0 as the case p = 1 is similar: For each p in (0, 1], we
note that

V (p)� V (0)

p
= C(1, 1)� C(0, 0) +

�(p)

p
(4.57)

with
�(p)

p
= inf

d2D

✓
�0

✓
1

p
� 1

◆
· PF (d) + �1 · PM(d)

◆
.

This last expression shows that p !
�(p)
p

is decreasing on (0, 1], whence the limit
limp#0

�(p)
p

always exists. This limit is finite by virtue of the bounds

0 
�(p)

p
 �1, p 2 (0, 1]

which are inherited from the earlier bounds (4.56). This shows the existence of a
finite right-derivative at p = 0.
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4.11 Exercises
4.1.
Let I denote an interval of R, not necessarily finite, closed or open, and let A be
an arbitrary index set. For each ↵ in A, let f↵ : I ! R be a concave function.
With the function g : I ! R defined by

g(x) = inf (f↵(x) : ↵ 2 A) , x 2 I

show that the mapping g : I ! R is concave.
4.2.
With h > 0 show that the equation

�(x� h) + �(x+ h) = 1, x 2 R

has a unique solution x = 0.
4.3.

4.12 References



Chapter 5

The Neyman-Pearson formulation

In many situations, not only is the prior probability p not available but it is quite
difficult to make meaningful cost assignments. This is typically the case in radar
applications – After all, what is the real cost of failing to detect an incoming
missile? While it is tempting to seek to minimize both the probabilities of miss
and false alarm, these are (usually) conflicting objectives and a constrained op-
timization problem is considered instead. The Neyman-Pearson formulation of
the binary hypothesis problem given next constitutes an approach to handle such
situations.

5.1 A constrained optimization problem
Fix ↵ in (0, 1) (the limiting case ↵ = 0 being of little practical interest). Let D↵

denote the collection of admissible tests in D of size at most ↵, namely

D↵ = {d 2 D : PF(d)  ↵}.

The Neyman-Pearson formulation is based on solving the constrained optimiza-
tion problem NP↵ where

NP↵ : Maximize PD(d) over d in D↵.

Solving NP↵ amounts to finding a test dNP(↵) in D↵ with the property that

PD(d)  PD(dNP(↵)), d 2 D↵.

Such a test dNP(↵), when it exists, is called a Neyman–Pearson test of size ↵, or

65
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alternatively, an ↵-level Neyman–Pearson decision rule. Such decision rules may
not be unique. Following the accepted terminology, its power �(↵) is given by

�(↵) ⌘ PD(dNP(↵)) = sup
d2D↵

PD(d).

When reformulated as

NP↵ : Minimize PM(d) over d in D↵,

the constrained optimization problem NP↵ can be solved by standard Lagrangian
arguments which are outlined in the next section. Throughout we assume that
Condition (A.1) holds.

5.2 The Lagrangian arguments
Fix ↵ in (0, 1). For each � � 0 consider the Lagrangian functional J� : D ! R
given by

J�(d) = PM(d) + � (PF(d)� ↵) , d 2 D.

The Lagrangian problem LP� is now defined as the unconstrained minimization
problem

LP� : Minimize J�(d) over d in D.

Solving LP� amounts to finding a test d?
�

in D such that

J�(d
?

�
)  J�(d), d 2 D.

Solving the Lagrangian problem LP� Fix � > 0. For any test d in D, we note
that

J�(d) = P [d(Y ) = 0|H = 1] + � (P [d(Y ) = 1|H = 0]� ↵)

= P [d(Y ) = 0|H = 1] + � (1� P [d(Y ) = 0|H = 0]� ↵)

= �(1� ↵) + P [d(Y ) = 0|H = 1]� �P [d(Y ) = 0|H = 0]

= �(1� ↵) +

Z

C(d)

h�(y)dF (y) (5.1)

with h� : Rk
! R given by

h�(y) = f1(y)� �f0(y), y 2 Rk
.
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By the comparison arguments used in the proof of Theorem 2.2.1, the La-
grangian problem LP� is easily seen to be solved by the test d?

�
: Rk

! {0, 1}
given by

d
?

�
(y) = 0 iff h�(y) < 0, (5.2)

or equivalently,

d
?

�
(y) = 0 iff f1(y) < �f0(y). (5.3)

Note that in the notation associated with the definition (??) we have d
?

�
= d�.

Meeting the constraint The next step consists in finding some value �(↵) > 0
of the Lagrangian multiplier such that the test d�(↵) meets the constraint, i.e.,

PF(d�(↵)) = ↵. (5.4)

If such value �(↵) were to exist, then the optimality d�(↵) implies

J�(↵)(d�(↵))  J�(↵)(d), d 2 D,

or equivalently,

PM(d�(↵))  PM(d) + �(↵) (PF(d)� ↵) , d 2 D.

Consequently, for every test d in D↵ (and not merely in D), it follows that

PM(d�(↵))  PM(d)

since then PM(d)  ↵. The test d�(↵) is a test in D↵ by virtue of (5.4), hence it
solves NP↵ – In other words, dNP(↵) can be taken to be d�(↵).

A difficulty The Lagrangian argument hinges upon the possibility of finding a
value �(↵) of the Lagrange multiplier such that PF(d�(↵)) = ↵. Unfortunately,
this may not be always possible, unless additional assumptions are imposed. To
see how this may indeed happen, note that

PF(d�) = P [d�(Y ) = 1|H = 0]

= P [f1(Y ) � �f0(Y )|H = 0] , � > 0. (5.5)
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The mapping R+ ! [0, 1] : � ! PF(d�) is clearly monotone non-increasing.
However, the constraint PF(d�) = ↵ may fail to hold for some ↵ in (0, 1] because
the set of values {PF(d�), � � 0} need not contain ↵. This will occur if the
mapping � ! PF(d�) is not continuous at some point, say �

?
> 0, with

lim
�"�?

PF(d�) < ↵ < lim
�#�?

PF(d�).

In Section ?? we illustrate such situations on simple examples that involve dis-
crete rvs. Randomized policies are introduced to solve this difficulty. There are
however situations where this can be avoided because each one of the problems
NP↵ (properly defined over randomized strategies) has a solution within the set
of non-randomized policies D.

5.3 The Neyman-Pearson Lemma
The discussion of Section 5.2 suggests the need to consider an extended version
of the Neyman-Pearson formulation where randomized strategies are allowed.

Fix ↵ in (0, 1]. Let D?

↵
denote the collection of all randomized tests in D

? of
size at most ↵, namely

D
?

↵
= {� 2 D

? : PF(�)  ↵} .

The constrained optimization problem NP? is now replaced by the following con-
strained optimization problem NP?

↵
where

NP?

↵
: Maximize PD(�) over � in D

?

↵
.

Solving NP?

↵
amounts to finding a test �NP(↵) in D

?

↵
with the property that

PD(�)  PD(�NP(↵)), � 2 D
?

↵
.

Such a test �NP(↵), when it exists, is also called a Neyman–Pearson test of size ↵,
or alternatively, an ↵-level Neyman–Pearson decision rule. It may not be unique.

The existence of the Neyman–Pearson test �NP(↵) of size ↵, its characteriza-
tion and uniqueness are discussed below through three separate lemmas, known
collectively as the Neyman-Pearson Lemma. Proofs are delayed until Section 5.4.
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First a definition: With ⌘ � 0 and Borel mapping � : Rk
! [0, 1] (to be selected

shortly), define the randomized test �? : Rk
! [0, 1] in D

? given by

�
?(y) =

8
>>>><

>>>>:

1 if ⌘f0(y) < f1(y)

�(y) if f1(y) = ⌘f0(y)

0 if f1(y) < ⌘f0(y).

(5.6)

The inequality discussed next lays the groundwork for identifying the Neyman–
Pearson test �NP(↵).

Lemma 5.3.1 For any test � : Rk
! [0, 1] in D

?, the inequality

PD(�
?)� PD(�) � ⌘ (PF(�

?)� PF(�)) (5.7)

holds where the randomized test �? : Rk
! [0, 1] in D

? is given by (5.7).

If we select ⌘ � 0 and � : Rk
! [0, 1] so that �? satisfies the equality

PF(�
?) = ↵, (5.8)

then the inequality (5.7) reads

PD(�
?)� PD(�) � ⌘ (↵� PF(�)) , � 2 D

?
. (5.9)

For any test � : Rk
! [0, 1] in D

?

↵
, we then conclude that

PD(�
?)� PD(�) � ⌘ (↵� PF(�)) � 0 (5.10)

since PF(�)  ↵. In other words,

PD(�)  PD(�
?), � 2 D

?

↵

and the test �? solves the constrained problem NP?

↵
.

We now show that the parameter ⌘ � 0 and the Borel mapping � : Rk
! [0, 1]

can indeed be selected so that a test �? of the form (5.7) indeed satisfies (5.8).

Lemma 5.3.2 For every ↵ in (0, 1] it is always possible to select ⌘ � 0 and a
Borel mapping � : Rk

! [0, 1] in (5.6) so that (5.8) holds.

Finally uniqueness is shown to hold in the following sense.

Lemma 5.3.3 For every ↵ in (0, 1], if �NP(↵) is a Neyman–Pearson test (possibly
in D

?) of size ↵, then it necessarily holds that

P [�NP(↵)(Y ) = �
?(Y )|H = h] = 1, h = 0, 1 (5.11)

where the test �? is given by (5.6) with ⌘ � 0 and Borel mapping � : Rk
! [0, 1]

selected so that (5.8) holds.
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5.4 Proofs
Throughout the discussion ↵ is given in (0, 1] and held fixed.

A proof of Lemma 5.3.1 Let � : Rk
! [0, 1] be an arbitrary test in D

?. As
discussed in Section 3.3 recall that

PF(�) =

Z

Rk

�(y)f0(y)dF (y) and PF(�
?) =

Z

Rk

�
?(y)f0(y)dF (y),

while

PD(�) =

Z

Rk

�(y)f1(y)dF (y) and PD(�
?) =

Z

Rk

�
?(y)f1(y)dF (y).

It follows that

PD(�
?)� PD(�)� ⌘ (PF(�

?)� PF(�))

=

Z

Rk

(�?(y)� �(y)) f1(y)dF (y)� ⌘

Z

Rk

(�?(y)� �(y)) f0(y)dF (y)

=

Z

Rk

(�?(y)� �(y)) (f1(y)� ⌘f0(y)) dF (y)

=

Z

Rk

P⌘(y)dF (y) (5.12)

where we have set

P⌘(y) ⌘ (�?(y)� �(y)) (f1(y)� ⌘f0(y)) , y 2 Rk
.

Direct inspection shows that we always have

P⌘(y) � 0, y 2 Rk
. (5.13)

Obviously, we have P⌘(y) = 0 when f1(y) = ⌘f0(y). When ⌘f0(y) < f1(y),
then

P⌘(y) = (1� �(y)) (f1(y)� ⌘f0(y)) � 0,

while when f1(y) < ⌘f0(y), then

P⌘(y) = ��(y) (f1(y)� ⌘f0(y)) � 0.

It is now plain from (5.12) and (5.13) that

PD(�
?)� PD(�)� ⌘ (PF(�

?)� PF(�)) � 0 (5.14)

and the inequality (5.7) follows.
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A proof of Lemma 5.3.2 Using the definition (5.6) of the randomized test �?,
we note that

PF(�
?)

=

Z

Rk

�
?(y)f0(y)dF (y)

=

Z

{y2Rk:f1(y)=⌘f0(y)}

�(y)f0(y)dF (y) +

Z

{y2Rk:f1(y)>⌘f0(y)}

f0(y)dF (y)

=

Z

{y2Rk:f1(y)=⌘f0(y)}

�(y)f0(y)dF (y) + P [f1(Y ) > ⌘f0(Y )|H = 0] .

As we seek to satisfy (5.8), we need to select ⌘ � 0 and a Borel mapping
� : Rk

! [0, 1] such that

↵� P [f1(Y ) > ⌘f0(Y )|H = 0] =

Z

{y2Rk:f1(y)=⌘f0(y)}

�(y)f0(y)dF (y).

This last relation suggests introducing the quantity ⌘(↵) defined by

⌘(↵) = inf {⌘ � 0 : P [f1(Y ) > ⌘f0(Y )|H = 0] < ↵} .

The definition of ⌘(↵) is well posed since ⌘ ! P [f1(Y ) > ⌘f0(Y )|H = 0] is
non-increasing (and right-continuous) on (0,1).

Two cases are possible: If

P [f1(Y ) > ⌘(↵)f0(Y )|H = 0] < ↵,

then take � : Rk
! [0, 1] to be constant, say

�(y) = �(↵), y 2 Rk
.

In that case, the constant �(↵) satisfies

↵�P [f1(Y ) > ⌘(↵)f0(Y )|H = 0] = �(↵)

Z

{y2Rk:f1(y)=⌘(↵)f0(y)}

f0(y)dF (y),

whence
�(↵) =

↵� P [f1(Y ) > ⌘(↵)f0(Y )|H = 0]

P [f1(Y ) = ⌘(↵)f0(Y )|H = 0]
. (5.15)
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If
P [f1(Y ) > ⌘(↵)f0(Y )|H = 0] = ↵,

then the mapping � : Rk
! [0, 1] must selected so that

Z

{y2Rk:f1(y)=⌘f0(y)}

�(y)f0(y)dF (y) = 0.

This can be achieved by taking the constant mapping given by

�(y) = 0, y 2 Rk
.

A proof of Lemma 5.3.3 The test �NP(↵) being a Neyman–Pearson test of size
↵, the equality

PD(�NP(↵)) = PD(�
?)

must hold where the test �? is given by (5.6) with ⌘ > 0 and Borel mapping
� : Rk

! [0, 1] selected so that (5.8) holds. This a consequence of the fact that
both �NP(↵) and �

? solve the problem NP?

↵
.

It then follows from (5.7) that

0 = PD(�
?)� PD(�NP(↵)) � ⌘ (↵� PF(�NP(↵))) � 0 (5.16)

since PF(�?) = ↵ under the choice of ⌘ > 0 and the Borel mapping � : Rk
!

[0, 1], whence PF(�NP(↵)) = ↵.
In other words, PD(�NP(↵)) = PD(�?) and PF(�NP(↵)) = PF(�?). Using

these facts in the expression (5.12) (with the strategy �NP(↵)) we find that

0 = PD(�
?)� PD(�NP(↵))� ⌘ (PF(�

?)� PF(�NP(↵)))

=

Z

Rk

(�?(y)� �NP(↵)(y)) (f1(y)� ⌘f0(y)) dF (y) (5.17)

with
(�?(y)� �NP(↵)(y)) (f1(y)� ⌘f0(y)) � 0, y 2 Rk

by virtue of (5.13). It immediately follows that

(�?(y)� �NP(↵)(y)) (f1(y)� ⌘f0(y)) = 0 F � a.e. (5.18)
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on Rk. Therefore,
�NP(↵)(y) = �

?(y) F � a.e. (5.19)

on {y 2 Rk : f1(y) 6= ⌘f0(y)}.

5.5 Examples
The Gaussian case Consider again the situation discussed in Section 2.6 where
the observation rv Y is conditionally Gaussian given H , i.e.,

H1 : Y ⇠ N(m1,R)
H0 : Y ⇠ N(m0,R)

where m1 and m0 are distinct elements in Rk, and the k⇥ k symmetric matrix R
is positive definite (thus invertible). From the discussion given in Section 2.6, it
follows for each � > 0 the test d� takes the form

d�(y) = 0 iff y0R�1�m > �(�)

with �m and �(�) given by (2.23) and (2.24), respectively. We also have

PF(d�) = 1� �

✓
log �+ 1

2d
2

d

◆
.

where d2 is given by (2.29) – It is plain that the function � ! PF(d�) is continuous
on R+ with {PF(d�), � > 0} = (0, 1). Given ↵ in the unit interval (0, 1), the
value �(↵) is uniquely determined through the relation

1� ↵ = �

✓
log �+ 1

2d
2

d

◆
.

This is equivalent to
�(↵) = e

d·x1�↵� 1
2d

2
.

where for t in (0, 1), let xt denote the only solution to the equation

�(x) = t, x 2 R.
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Discontinuity with Bernoulli rvs The setting is that of Section 2.5 to which we
refer the reader for the notation. We discuss only the case a1 < a0, and leave the
case a0 < a1 as an exercise for the interested reader. We have shown that

PF(d�) =

8
>>>><

>>>>:

1 if 0 < � 
a1
a0

1� a0 if a1
a0

< � 
1�a1
1�a0

0 if 1�a1
1�a0

< �

(5.20)

as � ranges over (0,1).
Note that � ! PF(d�) is left-continuous but not continuous with

{PF(d�), � > 0} = {0, 1� a0, 1} .

Discontinuity with Poisson rvs With P(m) denoting the Poisson pmf on N
with parameter m > 0, consider the following simple binary hypothesis testing
problem

H1 : Y ⇠ P(m1)
H0 : Y ⇠ P(m0)

where m1 6= m0 in (0,1), Thus,

P [Y = k|H = h] =
(mh)k

k!
e
�mh ,

h = 0, 1
k = 0, 1, . . .

In this example, we take F to be the counting measure on N, and for every
� � 0, the definition of d� reduces to

d�(k) = 0 iff
(m1)k

k!
e
�m1 < �

(m0)k

k!
e
�m0

iff
✓
m1

m0

◆k

< �e
�(m0�m1) (5.21)

with k = 0, 1, . . ..
If m0 < m1, then

d�(k) = 0 iff
(m1)k

k!
e
�m1 < �

(m0)k

k!
e
�m0

iff
✓
m1

m0

◆k

< �e
�(m0�m1)

iff k < ⌘(�) (5.22)
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with k = 0, 1, . . ., where

⌘(�) =
log �e�(m0�m1)

log
⇣

m1
m0

⌘ .

It follows that

PF(d�) = P [d�(Y ) = 1|H = 0]

= P [Y � ⌘(�)|H = 0]

=
1X

k=0: ⌘(�)k

(m0)k

k!
e
�m0 . (5.23)

In this last expression only the integer ceiling d⌘(�)e of ⌘(�) matters, where
d⌘(�)e = inf {k 2 N : ⌘(�)  k}, whence

PF(d�) =
1X

k=d⌘(�)e

(m0)k

k!
e
�m0 .

As a result, the mapping � ! PF(d�) is easily seen to be a left-continuous piece-
wise constant mapping with

PF(d�) = PF(d�n),
�n < �  �n+1

n = 0, 1, . . .

where {�n, n = 1, 2, . . .} is a strictly monotone increasing sequence determined
by the relation

n =
log �ne

�(m0�m1)

log
⇣

m1
m0

⌘ . n = 1, 2, . . .

or equivalently,

�n =

✓
m1

m0

◆n

e
�(m1�m0), n = 1, 2, . . .

It is now plain that whenever ↵ is chosen in [0, 1] such that

for some integer n = 0, 1, . . . then the requirement that PF(d�(↵)) = ↵ cannot be
met. This difficulty is circumvented by enlarging D with randomized policies; see
Section ??.


