VIRTUAL-ADDRESS CACHES

Part 1. Problems and Solutions in Uniprocessors

Michel Cekleov
Sun Microsystems
Michel Dubois

University of Southern
California

To solve the virtual-to-

physical address

bottleneck, processors

may access caches

directly with virtual

addresses. This survey

d

introduces the
problems and

iscusses solutions in

the context of single-

64

processor systems.

IEEE Micro

Il modern general-purpose comput-

er systems need a cache memory to

reduce the average latency of mem-
ory accesses. This small, high-speed memo-
ry between the processor and the main
memory keeps the information (instructions
and data) currently in use.>? In a system with
virtual memory,® the processor issues virtu-
al memory addresses, which are dynamical-
ly translated into physical addresses.
Traditionally, processors have accessed the
cache in a computer system with physical
addresses. Although special-purpose hard-
ware generally supports the virtual-to-phys-
ical address translation, it tends to increase
the memory access time. So to remove this
performance bottleneck, address translation
and cache access must occur concurrently—
which either complicates and slows the
processor pipeline or limits the cache size.

The alternative is to access the cache
directly with virtual addresses, before the vir-
tual-to-physical address translation. We call
caches accessed with virtual addresses virtu-
al-address caches or simply virtual caches, as
opposed to physical-address caches or phys-
ical caches. The tags in the directory of a vir-
tual cache may be virtual or physical. In the
past, designers have avoided virtual caches
because they may not be totally transparent
to the software even in uniprocessors.

Consistency problems occur within the
same virtual cache whenever a virtual-to-
physical mapping is changed or when dif-
ferent virtual addresses map to the same
physical address. These problems seem even
more intractable in multiprocessors because
inconsistencies can occur in more than one
cache.

Nevertheless, driven by technology trade-
offs, more and more processor designers are
taking advantage of the attractive features of
virtual caches. First and foremost, accesses to
data and instructions are satisfied in one

cache cycle, and the cache size can be very
large without undue complexity. Second,
when the tags are virtual, virtual-to-physical
address translations are needed only on a
cache miss and are removed from the
processor’s critical path.

This survey exposes the problems related
to virtual caches in the context of uniproces-
sor (Part 1, this issue) and multiprocessor
(Part 2, Micro’s Nov.-Dec. issue) systems. We
review proposed solutions that have been
implemented or proposed in different con-
texts. The idea is to catalog all solutions, past
and present, and to identify technology
trends and attractive future approaches. We
first overview the relevant properties of vir-
tual memory and of physical caches. (All ref-
erences appear in Part 2.)

Virtual memory

In a typical virtual memory system, each
program is compiled in a virtual space,
which is dynamically mapped onto the
physical memory of the machine at runtime.
Thus all processes have separate virtual
spaces. A process context may host multiple
execution threads, which can be executed
concurrently on different processors. In this
case, the threads share the resources of the
context, including its virtual memory space.

Paging. At the lowest level, virtual mem-
ory is divided into equal chunks of consec-
utive memory locations called virtual pages
(or simply, pages). Pages are dynamically
mapped onto physical pages (or page
frames) in main memory through a set of
translation tables called page tables. Pages
are brought into page frames on demand
(demand-paging) as processes need them.
An access to a page not resident in memo-
ry triggers a page fault, which the processor
treats as an exception. A software page fault
handler swaps the missing page in memory
and validates the new virtual-to-physical

0272-1732/97/$10.00 © 1997 IEEE

Glossary

Cache indexing: First phase of the cache access in which
the least significant bits of the block address are
used to select and fetch the cache directory entries
in the accessed set

Page: Unit of memory allocation in a virtual memory sys-
tem

Page table: Dictionary of virtual-to-physical address trans-
lations accessed with the virtual page number and
yielding the physical page number

Virtual address: Processor-computed address used to
access the page tables

Physical address: Address in physical memory obtained
after translation of the virtual address in the page
tables

P/P cache: Physical cache indexed and tagged with bits
from the physical address

V/P cache: Cache indexed with virtual-address bits but
tagged with physical bits

P/V cache: Cache indexed with physical bits but tagged
with virtual bits

V/V cache: Cache indexed and tagged with virtual bits

Physical cache: P/P cache

Virtual cache: V/P, P/V, or V/V cache

Superset bits: Bits used to index the cache and which are
part of the page number

Page color: Number defined by the superset bits (either
physical or virtual)

Victim block: Block selected for replacement on a cache
miss

Cache coherence: Property of a shared-memory system
that all cached copies of the same memory block
contain the latest value of the block

Snooping: Monitoring the system bus in hardware to
enforce cache coherence

Dual directory: Cache directory through which the cache
can be accessed from the bus

TLB (translation look-aside buffer): Address cache storing
the page table entry to speed up dynamic address
translation

TLB consistency: Property of a shared-memory system that
all copies of the same page table entry in different
TLBs are identical

TLB shoot down: Algorithm to maintain TLB consistency

Synonyms: Several virtual addresses pointing to the same
physical location

Homonyms: Several physical addresses having the same
virtual address

Synonym alignment: Property of a system that all syn-
onyms of the same page have the same superset
bits or virtual color

V-P alignment: Property of a system that virtual and phys-
ical pages must have the same color

Page-mapping change: Page demapping or remapping

Page demapping: Action taken by the kernel to remove a
virtual-to-physical translation

Page remapping: Action taken by the kernel to allocate a
physical page to a virtual page

Aliases: Synonyms due to page-mapping changes

Paired eviction: The removal of two blocks on a cache
miss in a virtual cache with dual directory

Cache purge: Invalidation of part of a cache without updat-

address translation.®

Besides its primary role of trans-
parent memory management, the
virtual-address translation mecha-
nism conveniently supports protec-
tion because it is in the required path
of all memory accesses. Protection
enforces access rights of processes
to information, based on the
processes’ privilege level. Most archi-
tectures support only two privilege
levels: supervisor and user modes.

Figure 1 illustrates the address
translation process. The processor
uses the virtual page number to fetch
an entry in the page table, which is
stored in memory. Note that there
are many possible organizations for
the page table. The representation in
Figure 1 is conceptually closer to so-
called hierarchical page tables,* in

which each context has its own separate page table and
which is accessed through a cascade of pointer tables.

ing memory
Cache flush: Invalidation of part of a cache with a memo-
ry update
| S/U | |RWX| | Virtual page number Displacement
o
i i Page tabl
iiiiiii - age table]
Check E Page table ent'ry (PTE)
rights | [RWX [VIM]R][--] Physical page number
Y Y Y
[RWX [V [M[R][] | Physical page number | Displacement

Figure 1. Virtual-to-physical address translation.

Another organization is the inverted page table,® which is
common to all processes and is accessed by hashing the vir-

September/October 1997 65

Virtual-address caches

| p_id | Virtual page number

| Physical page number | \% | R | M | RWX | Misc. |

the translation look-aside buffer

(TLB), a separate cache. Figure 2

Figure 2. Entry of a direct-mapped TLB.

shows an entry of a direct-mapped
TLB. In a typical access, the hardware
fetches the TLB entry at the address
given by the least significant bits of
the virtual page number, compares
the process identifier (p_id)/virtual
page number field to the current p_id
and to the processor’s virtual address,

Access

and checks the V bit. On a hit, the

wa physical page number is returned, and

Y

cache

VPN Virtual page number
PPN Physical page number MEM
Disp Displacement]]
Z Search Z
- -0
g TLB a
IF = D = EX [-
g > 5
[} [a)
@
MEM
| Search o Z
Z -_— -_—
a TLB o
> L
IF = D 1+ EX | —
i &
I
FLel Access |
&) cache ol
L | ©
o
(b)

the other bit fields of the TLB entry
are checked. The TLB may also be
either set associative or fully associa-
tive on the p_id/virtual page number.

Since most accesses bypass the
page table through the TLB, access-
right bits must be copied in the TLB
entry. Additionally, a TLB entry may
contain copies of the R and M bits
obtained from the page table entry
at the TLB miss. In this case, an
access to a page with the R bit reset
in the TLB or a modification of a
page with the M bit reset must trig-
ger an update of the bit in the page
table in main memory. Copies of the
R and M bits are not necessary in the
TLB because their function can be
emulated by trapping on other bits
such as the access-right bits.®

Often, software manages the TLB

wB

Compare tags

Figure 3. Concurrent access to cache and TLB (physical caches): pipelining TLB and
cache accesses (a) and accessing TLB and cache in parallel (b).

tual address. In any case, the physical page number retrieved
from the table plus the page displacement bits form the phys-
ical address. (Note that the page displacement bits are not
translated.)

Typically, the page table entry contains several bits to con-
trol accesses to the physical page:

= The RWX (Read, Write, Execute) bits check access rights
by matching them against the type of request (RWX)
submitted by the processor at the privilege level indi-
cated by the S/U (supervisor/user) bit.

= V (Valid) bit indicates whether the page is valid in main
memory (page fault detection).

< M (Modify) bit indicates whether the page has been
modified since it was swapped in. It is set at the first
modification to the page.

= The kernel uses the R (Reference) bit to implement a page
replacement algorithm. The kernel periodically clears this
bit. The bit is set at the first reference to the page.

Translation look-aside buffer. To speed up virtual address
translation, the system stores current address translations in

66 IEEE Micro

by trapping the processor. In some
cases, special microcode and hard-
ware exist in the TLB to reload
entries from the page tables or to
update the state bits. We call these units either table-walking
TLBs or MMUs (memory management units).”

Synonyms. Although the virtual spaces of different con-
texts are disjoint, processes need to share information. The
most common case is when a process creates another one;
then, usually, the parent and the child processes share the
same text segment. Another case is the sharing of data mem-
ory. To enable sharing, addresses in different contexts must
be used to access the same page. When different virtual
addresses map to the same physical address, we say that they
are synonyms. A programmer may also define synonyms in
the same context, for convenience. As shown later, synonyms
are at the root of many problems in virtual-address caches.

Physical caches in uniprocessors

In practice, all caches are either direct-mapped or set-asso-
ciative! and have two parts: directory and data memory. The
cache directory contains the physical addresses (tags) and
the state bits. The cache data memory contains the data
blocks. The least significant bits of the block address provide
the set number. On each processor access, a set’s directory
and data memory entries are first fetched in parallel (cache

indexing). Then, the tags of the

blocks in the set are compared in par- Disp Displacement

VPN Virtual page number
PPN Physical page number

MEM

allel with the tag field of the proces-
sor address. A cache access therefore

proceeds in two phases: cache index-
ing followed by tag comparison.

- | Access
cache

Y

EX WB

By definition, a physical cache is
only accessed with bits of the phys-
ical address. The simplest solution is
to access the TLB first and then the
cache. Then each data access and (a)
possibly each instruction access
takes one additional cycle. To avoid
this overhead, the cache and TLB
must be accessed concurrently either
by pipelining the accesses or by per-
forming the two accesses in parallel.

| Disp | VPN

MEM

Search
TLB

Y

Figure 3 illustrates these solutions for
a simple RISC pipeline with five
stages: instruction fetch (IF), instruc-

VPN

EX WB

tion decode (D), instruction execute
(EX), memory access (MEM), and
write back (WB).

When the TLB and cache are
accessed in two consecutive instruc-
tion pipeline stages, the additional (b)
stage increases the operation latency

Compare tags

Access | o
- cache

| Disp ‘

‘Data Tags H PPN ‘

of loads® and elongates the pipeline.
This produces a higher penalty for
mispredicted branches. For these
reasons, designers often favor paral-
lel access over pipelined access.

The parallel access to the TLB and cache is possible pro-
vided the bits selecting the set are within the page displace-
ment field. At the end of the first (cache indexing) phase,
the physical address from the TLB and the cache tags are
available for comparison. A miss occurs if no tag in the set
matches or if the TLB misses. A rapid calculation shows that
the restriction on the field selecting the set limits the possi-
ble cache sizes to one page per way of set associativity. For
example, the maximum size for a direct-mapped cache is
the size of one page.

Virtual caches in uniprocessors

Because of the cache size limitations imposed by physical
caches, the first-level cache of some high-performance
processors is indexed with virtual addresses. The tags in the
cache directory may be virtual or physical. If the tags are vir-
tual, the TLB is only accessed on a cache miss. If the tags
are physical, the TLB and the cache are accessed in parallel.
We call the first organization a virtually indexed, virtually
tagged (V/V) cache, and the second one a virtually indexed,
physically tagged (V/P) cache. Thus we also call a P/P cache
a physical cache. P/V caches are indexed with physical
addresses and are virtually tagged.

Processor accesses to a V/V cache are very simple since
no translation is required as long as the cache hits (see Figure
4a). The V/P cache organization of Figure 4b looks very sim-
ilar to the physical cache of Figure 3b. The only difference

Figure 4. Virtual-address cache configurations: pipelining the TLB and cache
accesses (a); accessing the TLB and cache in parallel (b).

is that the most significant bits of the field indexing the V/P
cache are part of the virtual page number. These bits, called
the superset bits, generally differ from the corresponding bits
in the physical address. By generating all the possible values
for the superset bits, we obtain the superset containing the
accessed set. Thus, if we need s superset bits to index the
cache, the superset contains 2° cache sets. All synonyms as
well as the physical address always map into the superset.
Note that when the number of superset bits is zero, a V/P
cache is indistinguishable from a P/P cache.

The only example we know of a P/V cache is the cache of
the Mips R6000.° In this design a small memory called the TLB
slice contains the physical superset bits of recently accessed
pages. The TLB slice is accessed with the least significant bits
of the virtual page number before indexing the cache. P/V
caches have properties similar to those of V/V caches.

In general, consistency problems in virtual-address caches
are due to synonyms and to address-mapping changes.

Synonym problem. Unless synonyms are checked, mul-
tiple copies of the same block could end up in the virtual
cache. In the case of read-only blocks, all the copies are iden-
tical and the multiple copies pollute the cache. In the case
of read/write blocks, the processor may access a stale copy.

For example, say variable X at address p_3 is writable and
is read successively with virtual address v_2 and then with
virtual address v_3. Then two incoherent copies are present
in the cache after the processor modifies the copy with vir-

September/October 1997 67

Virtual-address caches

onyms cannot exist within the

Y
ke
|

=

same page because displacement
bits are not translated. Thus two
synonyms must share the same
p_2 least significant d bits, where 29 is
the page size. We can further
restrict synonyms so that syn-
onyms are not permitted within a
certain range of virtual addresses.

| v_ 1

| v_2
(b)

Let s be the number of superset
bits for a given cache organization
and size. If all synonyms share the
same least significant s+d bits,
they all map to the same cache set
and are said to be aligned.

Figure 5. Virtual-to-physical mapping changes. Physical address change: v_1/p_1 is
broken, and v_1 is remapped to p_2 (a); Virtual address change: v_1/p_1 is broken,

and v_2 is remapped to p_1 (b).

tual address v_3. It is impossible to keep track of the latest
copy, unless the copies are time stamped; even then, search-
ing for the latest copy in the whole superset on each load is
out of the question. Therefore multiple, modifiable copies
of a block must never coexist in the cache under different
addresses. To enforce this condition at all times is the syn-
onym problem.

Virtual-to-physical address-mapping changes. At times,
the processor may need to break the mapping between a page
and its page frame and then remap the page to a new page
frame as well as the page frame to a new page. In a P/P cache,
invalidating the TLB entry efficiently handles page demapping
by preventing the processor from accessing any cache block
with that translation. When the page frame is remapped to a
new page, the blocks in the page frame become accessible
again with the new virtual address. Remapping takes place
after it is safe to do so and after a new TLB entry has been
allocated for that page frame. Thus demapping and remap-
ping areas of virtual memory are very simple in a physical
cache. This is not the case for many virtual caches.

Consider the scenario illustrated in Figure 5. Virtual address
v_1is first mapped to physical address p_1. Then, the oper-
ating system decides to demap v_1 from p_1 and later
remaps v_1 to p_2 (see Figure 5a). Since the same virtual
address points to two different physical addresses, we call
these translations homonyms. New virtual address v_2 may
then be mapped to p_1 (see Figure 5b). In the following, we
refer to synonyms due to mapping changes—such as v_1
and v_2—as aliases. Because of homonyms and aliases,
invalidating the TLB on a page demap is not sufficient.

Mapping changes occur constantly in a system where dif-
ferent programs run concurrently. The most obvious cause
of mapping changes is the deallocation and reallocation of
page frames; in this case, the memory management software
dynamically creates aliases. Mapping changes are also an
efficient mechanism for communicating safely among
processes without copying.

Aligning virtual and physical addresses. Two syn-

68 IEEE Micro

A stricter address-mapping con-
straint is V-P alignment.® Pages are
V-P aligned if the physical address
and the virtual addresses of the same
page index the same set of the cache.
This means that their superset bits are
identical. When the physical and virtual addresses are V-P
aligned, a /P cache behaves like a physical cache.'

The superset bits in a virtual or a physical address define
the page’s virtual or physical color. With V-P alignment, all
synonyms are automatically aligned—that is, they have the
same virtual color. Additionally, the page’s physical color is
the same as the virtual color, a memory allocation strategy
called page coloring.'?

Page coloring imposes constraints on memory allocation.
When a new physical page is allocated on a page fault, the
memory management algorithm must pick a page with the
same color as the virtual color from the free list. Because sys-
tems allocate virtual space systematically, the pages of dif-
ferent programs tend to have the same colors, and thus some
physical colors may be more frequent than others. Thus page
coloring may impact the page fault rate. Moreover, the pre-
dominance of some physical colors may create mapping con-
flicts between programs in a second-level cache accessed
with physical addresses.

Solutions to the synonym problem

To solve the synonym problem, we can consider two
approaches: having the software prevent or avoid syn-
onyms—in which case no hardware support is needed for
synonyms—or tolerating synonyms and having the hardware
detect them dynamically.

Synonym prevention. By eliminating the need for syn-
onyms, we prevent the problems they cause. The simplest
way to do this is to implement sharing at the segment level.®
Typically, a processor address contains several bits pointing
to a segment register, which contains a segment’s identifier.
The virtual address is then built by concatenating the seg-
ment identifier with the rest of the processor address for use
in accessing the page table. Software manages the segment
registers, and processors can share a segment by simply load-
ing the segment identifier in one of their segment registers.
Thus a page has only one systemwide virtual number, and
all protection problems can be resolved at the segment level.

The prospect of single-address-space operating systems
(SASOSs) offers another opportunity to eliminate the need for
synonyms.** In these operating systems, all processes share
a single, global virtual address space, taking advantage of
the advent of 64-bit microprocessors. Because the virtual
space is shared, different processes sharing information use
the same virtual address, and synonyms are useless.

In both cases, a single virtual space common to all process-
es is created and is accessed through a shared page table.
Because the virtual space is so large, the page tables are often
inverted and accessed by hashing the virtual address.®

Synonym avoidance. When the software (kernel or user)
exploits synonyms, we can still avoid the synonym problem
without hardware support. In this case, the software invali-
dates all or part of the cache when needed so that synonyms
are never present in the cache at the same time. These cache
invalidations are either purges or flushes. A cache purge is a
simple invalidation of cache blocks with no memory update.
A cache flush is an invalidation of cache blocks with write-
back of dirty blocks to memory and is often required in vir-
tual write-back caches. A cache flush is a costly operation,
which typically takes place one block at a time. To simplify
the wording, we say “to purge or flush the cache” instead of
“to purge or flush a block/page/segment in the cache,” pro-
vided the unit to flush or purge is obvious from the context.

There are two systematic synonym avoidance strategies in
uniprocessors. One relies on the page table and page-fault-
ing mechanism, and the other relies on context switching.
The page allocation software may enforce a rule that only
one virtual page can map to a physical page at a time in the
page tables. When a different virtual name is used for the
same page, a false page fault is triggered, the previous trans-
lation demapped, and the new translation loaded in the page
table. Unfortunately, demapping and remapping of transla-
tions entail costly cache purges or flushes, as we will see. In
some machines, such as the Intel i860,* the entire content of
the V/V cache is flushed on every context switch; addition-
ally, synonyms are disallowed within the same context. This
solution is practical only if the cache is small and the fre-
quency of context switches is low.

Other synonym avoidance solutions are ad hoc approach-
es and can only alleviate the problem without really solving
it. For example, the kernel could tag all pages known under
several virtual addresses as noncacheable, unless they are
read only. This solution is viable only if the use of synonyms
is very limited, because accesses to noncacheable pages are
usually very slow. If access rights change dynamically and a
read-only page becomes writable or if a writable page
becomes accessible under a different synonym, the virtual
cache must be purged or flushed because the page must
become noncacheable. Another ad hoc solution is to flush
the cache to guarantee data consistency when the access pat-
tern to the synonyms is totally predictable. Whenever a dif-
ferent synonym may be used, the cache is purged or flushed,
as is done in some implementations of the SunOS kernel for
some /O operations.’® This solution has a large overhead
and applies only to the kernel.

Dynamic synonym detection—basic approach.
Hardware support can relieve the software of all or most of

the task of maintaining consistency in the presence of syn-
onyms. These solutions enforce the rule that only one copy
of a block is present in a cache at any one time, even if the
block is read only. To achieve this, the hardware removes
synonyms from the cache on a miss. The basic approach
does not rely on any special-purpose hardware.

At the time of a cache miss, the cache controller must search
for a synonym in every set in the superset (including the
indexed set). The controller visits the sets one by one until it
finds a synonym or until it has visited all the sets. In a V/P
cache this search is efficient. It exploits the hardware avail-
able for normal cache accesses: all the physical tags in one
set are matched against the TLB entry in one cache cycle. In
contrast, in a V/V cache every virtual tag in each set of the
superset must be translated one by one in the TLB, and the
tag’s physical address must be compared to the physical
address of the processor. If, during this search, the controller
finds the block in the cache under a synonym, we say that the
cache miss is a short miss. The controller simply retags and/or
moves the block within the cache, and aborts the memory
fetch.

The operating system kernel should strive to align as many
synonyms as possible to lessen the miss penalty. In fact, an
access to a block present in a V/P cache under a different
(but aligned) synonym always hits, and the presence of a
synonym is transparent to the hardware. In a V/V cache,
when the controller finds an aligned synonym in the indexed
set, it simply retags the block. In the ideal case, when all syn-
onyms are constrained to be aligned, the miss penalty is fur-
ther cut, as the search for synonyms is limited to the indexed
set. In particular, in a V/P cache, the hardware can simply
ignore synonyms altogether when they are all aligned.

Dynamic synonym detection—reverse maps. The
basic approach to detect synonyms may be very slow, espe-
cially when some synonyms are not aligned and the super-
set and the cache are large. In practical terms, the size of the
cache is still limited because the search through the super-
set must be completed before the memory block is retrieved.
Thus, researchers have proposed many ways to find syn-
onyms fast, independently of the cache size. They all rely
on a reverse map indexed with physical addresses.

One solution is based on a copy of the main cache direc-
tory called the dual directory and accessed with physical
addresses. Ideally, we can imagine a fully associative dual
directory with as many entries as there are block frames in the
virtual cache. Each entry of the dual directory contains a back-
pointer to the block frame in the cache where the block is
stored. On a miss in the cache, the dual directory is accessed
with the physical address obtained from the TLB. A valid
backpointer to the main cache points to the location of a syn-
onym. Overall this solution is very expensive in uniprocessor
systems, but may make sense in bus-based multiprocessors
with snooping protocols,'” where a dual directory is present
to maintain coherence. We will therefore examine this solu-
tion more closely in the context of multiprocessors.

A second organization for the reverse map is an unaligned-
synonym cache. We have seen that the miss penalty is
reduced or even eliminated when all synonyms are aligned.
However, it may not be possible nor desirable to align all

September/October 1997 69

Virtual-address caches

synonyms. A cost-effective solution is to keep a pointer to
every unaligned synonym residing in the main cache in a
small unaligned-synonym cache. The unaligned-synonym
cache is accessed with the physical address obtained from
the TLB on a miss in the main cache, and its entries contain
a backpointer to the main cache.

The major problem is detecting when to load a new entry
in the unaligned-synonym cache. One solution is to include
in the TLB entry one state bit indicating whether unaligned
synonyms exist for the page. Another solution? consists of
V-P aligning most pages (by page coloring) and loading an
entry in the unaligned-synonym cache (called the U cache)
for every cached block that is not V-P aligned. (We can check
this by comparing the colors of the virtual and physical
pages.) Simulations have shown that an eight-entry U cache
may be as good as a full dual directory, provided more than
90% of all pages are V-P aligned. The U cache is a very sim-
ple and efficient addition to a direct-mapped V-V cache or
to a set-associative V/P cache when all synonyms cannot be
aligned and when page coloring is imperfect.

Finally, in systems with second-level caches, the reverse
map can be implemented in the directory of the second-level
cache. In this case, the first-level (on-chip) cache may be vir-
tual (for speed), whereas the second-level cache is physi-
cal.® The inclusion property must be maintained. If a block
is present and valid in the first-level cache, it is also present
and valid in the second-level cache.’® On a miss in the first-
level cache, the physical address is obtained from the TLB.
Each entry of the second-level cache may contain a valid
backpointer to an entry in the virtual cache. Mips proces-
sors? support this approach. To support unaligned synonyms
in the first-level V/P cache, the second-level cache is physi-
cal. In addition, each tag contains the virtual color of the
block in the first-level cache, which acts as the backpointer.
The virtual coherency exception is raised whenever a first-
level cache miss hits in the second-level cache and the vir-
tual color in the second-level cache does not match the color
of the virtual address. In response, the processor removes
the block in the first-level cache using the virtual color from
the second-level cache and updates the virtual color in the
second-level cache.

Page-mapping changes

Since these changes create homonyms and aliases in vir-
tual caches, we need to clarify the consistency issues and
the possible solutions.

V/P caches. In a V/P cache, homonyms created by map-
ping changes are not a problem since the TLB is checked on
every access. When pages are not V-P aligned, the hardware
must take care of unaligned aliases by dynamic synonym
detection. Consider the example of Figure 5b. If v_1and v_2
index in different sets, stale copies of some blocks of p_1
may exist. These stale copies may overwrite page frame p_1
on replacement when they are written back later. Moreover,
if p_1 is eventually remapped to a page indexing in the same
set as v_1, accesses to p_1 could hit on a stale copy.

Say that no hardware support exists for unaligned syn-
onyms and pages are not V-P aligned. Then the software
must flush (write-back cache) or purge (write-through cache)

70 IEEE Micro

the /P cache when addresses are demapped. In some cases,
the cache flush or purge may be delayed until the page
remapping, at which time they may become unnecessary.?"%

Clearly, synonym prevention per se does not eliminate
purges or flushes due to mapping changes in V/P caches,
unless pages are also V-P aligned.

V/V caches. In a V/V cache, aliases can be treated as other
synonyms, as well: either the hardware detects unaligned syn-
onyms or it detects aligned synonyms only and pages are V-
P aligned. Synonym prevention per se does not eliminate
purges or flushes due to mapping changes in this cache either.

Homonyms create a unique problem in V/V caches. In
Figure 5a, the old memory block at physical address p_1 may
remain accessible in the cache under virtual address v_1 after
the remapping of v_1 to p_2. Synonym detection hardware
or V-P alignment cannot alleviate this consistency problem.
All blocks in the cache known under the old mapping must
be purged (write-through cache) or flushed (write-back
cache) at the demapping or at the remapping of v_1.

Problems specific to V/V caches

The most attractive feature of a V/V cache is that it works
well with a slow TLB, allocated outside the processor chip.®®
Such a TLB can be huge and have a very high hit rate with-
out slowing down the processor. However, this advantage is
the source of additional problems, which are specific to V/V
caches. First, access-right bits must migrate to the cache
because the TLB is bypassed most of the time. Furthermore
the cache controller must access the TLB to check for syn-
onyms, to update the M bit, or to propagate buffered writes
or write-backs.

Access-right bits and page state bits. In a V/V cache,
the cache directory must hold a copy of the access-right field
found in the TLB entry to support protection. Consistency
between these copies must be enforced by flushing the cache
if the access right to a page by a process is dynamically
restricted.

Generally, access-right bits can emulate the functions of the
R and M bits in the TLB and in the cache, thus simplifying the
hardware. Even when these bits are copied in the TLB, they
need not be present in the cache directory. The R bit in the
TLB can be set at the time of a miss for a block in the page,
with some loss in precision. In a write-through cache, the TLB
is accessed on each processor write, and the M bit in the TLB
is managed as in a physical cache. In a write-back cache, each
cache entry has a dirty bit. Whenever the processor modifies
a block in the page for the first time, as indicated by the dirty
bit, the M bit of the TLB entry must be set.

Special accesses to the TLB. Virtual-tag translation in the
TLB is a basic mechanism to detect synonyms. Moreover, in
systems with write-through V/V caches, the stores are often
buffered in a write buffer, and their virtual addresses must
eventually be translated. In systems with write-back V/V
caches, a dirty block selected for replacement is buffered
locally while the missing block is fetched first on a cache
miss. Later on, the physical address of the block to write back
must be found in the TLB.

These special accesses to the TLB may create TLB misses if
cache entries are allowed to exist without valid translation in

Table 1. Hardware support for synonyms and mapping changes.
Synonyms Mapping change
Cache types Cache types
Software restrictions PIP V/P PIV VIV P/P VIP PIV VIV
No synonym + V-P
alignment Ignore Ignore Ignore Ignore Ignore Ignore Flush Flush
No synonym Ignore Ignore Ignore Ignore Flush or Flush Flush
detect
V-P alignment Ignore Ignore Flush or Flush or Ignore Ignore Flush Flush
detect detect
Aligned synonyms Ignore Ignore Flush or Flush or Ignore Flush or Flush Flush
detect detect detect
Unaligned synonyms Ignore Flush or Flush or Flush or Ignore Flush or Flush Flush
detect detect detect detect

the TLB. Because this type of TLB miss is asynchronous to the
processor’s activity, the hardware accessing the TLB must be
designed carefully and may have to handle multiple TLB miss-
es concurrently. Alternatively, inclusion may be maintained
between the TLB and the cache. Whenever a translation is
invalidated or displaced by the replacement algorithm in the
TLB, the cache is purged or flushed. The TLB hit ratio must be
very high to limit the performance degradations. The Sun 3
and the first-generation Sun 4 architectures*? with write-back
caches adopted this solution.

Hardware support

Table 1 summarizes the hardware support needed in the
cache for synonyms under several software restrictions on
synonyms and page mappings. The table also shows the sup-
port needed for mapping changes. “Ignore” means that no
hardware support is needed, and “detect” that the hardware
must dynamically detect synonyms (or aliases). “Flush”
means that hardware support is needed to flush (write-back)
or purge (write-through) the cache.

P/P caches and V/P caches with V-P page alignment can
ignore synonyms and mapping changes. P/V and V/V caches
need the same level of hardware support because V-P align-
ment per se does not help V/V caches. Even when synonyms
are prevented, caches with virtual tags must be flushed at
times to avoid problems with homonyms and aliases. A V/P
cache may need extra flushes as well to process aliases when
pages are not V-P aligned and the hardware does not detect
unaligned synonyms. (In some cases such flushes may be
avoided in software.) Neither synonym alignment nor V-P
alignment of pages completely solves the synonym problem
for caches with virtual tags.

WE RESTRICTED THIS FIRST PART of our two-part
survey on virtual caches to uniprocessor systems. In part 2
in the next issue of IEEE Micro, we will address multi-
processor issues.

In multiprocessors, cache coherence and TLBs must be main-
tained. Whereas this requirement adds to system complexity, vir-
tual caches can take advantage of the mechanisms needed to

enforce coherence. Therefore some solutions will make more
sense than others in the context of multiprocessors.

Michel Cekleov is a system architect in
the Sun Microsystems Desktop Systems
Group, where he works on the next-
generation high-performance worksta-
tions. Earlier, he was one of the
architects of the company’s Sparccenter
2000 and Sparcserver 1000 multiproces-

Sor servers.
Cekleov received his engineering degree from Ecole

Supérieure d’Ingénieurs de Marseille and his doctorate from

Ecole Nationale Supérieure des Télécommunications.

Michel Dubois is a professor in the
Department of Electrical Engineering at

\ 53 N =3 the University of Southern California. His
u\ = % main interests are computer architecture
\ and parallel processing.
\; A Dubois holds a PhD from Purdue

o University, an MS from the University of
Minnesota, and an engineering degree from the Faculte
Polytechnique de Mons in Belgium, all in electrical engi-
neering. He is a member of the ACM and a senior member
of the IEEE Computer Society.

Direct questions regarding this article to Michel Dubois,
University of Southern California, School of Engineering, EE
Systems, Los Angeles, CA 90089-2562; dubois@paris.usc.edu.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number of the Reader Service Card.
Medium 165

Low164 High 166

September/October 1997 71

