

ENEE 646: Digital Computer Design

—

 The RiSC-16 Instruction-Set Architecture

1

1. RiSC-16 Instruction Set

This paper describes the instruction set of the 16-bit Ridiculously Simple Computer (RiSC-16), a
teaching ISA that is based on the Little Computer (LC-896) developed by Peter Chen at the Uni-
versity of Michigan. The RiSC-16 is an 8-register, 16-bit computer. All addresses are shortword-
addresses (i.e. address 0 corresponds to the first two bytes of main memory, address 1 corresponds
to the second two bytes of main memory, etc.). Like the MIPS instruction-set architecture, by
hardware convention, register 0 will always contain the value 0. The machine enforces this: reads
to register 0 always return 0, irrespective of what has been written there. The RiSC-16 is very sim-
ple, but it is general enough to solve complex problems. There are three machine-code instruction
formats and a total of 8 instructions. They are illustrated in the figure below.

opcode reg A reg B reg C0

4 bits 3 bits3 bits3 bits3 bits

RRR-type:

opcode reg A reg B signed immediate (-64 to 63)

7 bits3 bits3 bits3 bits

RRI-type:

opcode reg A immediate (0 to 0x3FF)

10 bits3 bits3 bits

RI-type:

23 1Bit: 067 5 41011 9 81415 13 12

23 1Bit: 067 5 41011 9 81415 13 12

000 reg A reg B reg C0

4 bits 3 bits3 bits3 bits3 bits

ADD:

101 reg A reg B signed immediate (-64 to 63)

7 bits3 bits3 bits3 bits

LW:

110 reg A reg B signed immediate (-64 to 63)

7 bits3 bits3 bits3 bits

BNE:

111

3 bits

JALR:

23 1Bit: 067 5 41011 9 81415 13 12

001 reg A reg B signed immediate (-64 to 63)

7 bits3 bits3 bits3 bits

ADDI:

011 reg A immediate (0 to 0x3FF)

10 bits3 bits3 bits

LUI:

010 reg A reg B reg C0

4 bits 3 bits3 bits3 bits3 bits

NAND:

100 reg A reg B signed immediate (-64 to 63)

7 bits3 bits3 bits3 bits

SW:

reg A reg B

3 bits3 bits

0

7 bits

FORMATS:

INSTRUCTIONS:

The RiSC-16 Instruction-Set Architecture

ENEE 646: Digital Computer Design, Fall 2002
Prof. Bruce Jacob

ENEE 646: Digital Computer Design

—

 The RiSC-16 Instruction-Set Architecture

2

The following table describes the different instruction operations.

2. RiSC-16 Assembly Language and Assembler

The distribution includes a simple assembler for the RiSC-16 (this is the first project assigned to
my students in the computer organization class). The assembler is called “a” and comes as a
SPARC executable. Also included is the assembler source code should you wish to recompile for
some other architecture (e.g. x86).

The format for a line of assembly code is:

label:

<whitespace>

opcode

<whitespace>

field0

,

field1

,

field2

<whitespace>#

comments

The leftmost field on a line is the label field. Valid RiSC labels are any combination of letters and
numbers followed by a colon. The colon at the end of the label is not optional—a label without a
colon is interpreted as an opcode. After the optional label is whitespace (space/s or tab/s). Then
follows the opcode field, where the opcode can be any of the assembly-language instruction mne-
monics listed in the above table. After more whitespace comes a series of fields separated by com-
mas and possibly whitespace (you need to have either whitespace or a comma or both in between
each field). All register-value fields are given as

decimal

 numbers, optionally preceded by the let-
ter ‘r’ ... as in r0, r1, r2, etc. Immediate-value fields are given in either decimal, octal, or hexadec-
imal form. Octal numbers are preceded by the character ‘0’ (zero). For example, 032 is interpreted
as the octal number ‘oh-three-two’ which corresponds to the decimal number 26. It is

not

 inter-

Mnemonic
Name and

Format
Opcode
(binary)

Assembly
Format

Action

add
Add
RRR-type

000 add rA, rB, rC
Add contents of

regB

with

regC

,
store result in

regA

.

addi
Add Immediate
RRI-type

001 addi rA, rB, imm
Add contents of

regB

with

imm

,
store result in

regA

.

nand
Nand
RRR-type

010 nand rA, rB, rC
Nand contents of

regB

with

regC

,
store results in

regA

.

lui
Load Upper
Immediate
RI-type

011 lui rA, imm
Place the 10 ten bits of the 16-bit

imm

into the 10 ten bits of

regA

, setting the
bottom 6 bits of

regA

 to zero.

sw
Store Word
RRI-type

101 sw rA, rB, imm
Store value from

regA

 into memory.
Memory address is formed by adding

imm

with contents of

regB

.

lw
Load Word
RRI-type

100 lw rA, rB, imm
Load value from memory into

regA

.
Memory address is formed by adding

imm

with contents of

regB

.

bne
Branch If
Not Equal
RRI-type

110 bne rA, rB, imm

If the contents of

regA

 and

regB

 are not
the same, branch to the address
PC+1+

imm

, where PC is the address of
the bne instruction.

jalr
Jump And Link
Register
RRI-type

111 jalr rA, rB
Branch to the address in

regB

.

Store PC+1 into

regA

, where PC is the
address of the jalr instruction.

ENEE 646: Digital Computer Design

—

 The RiSC-16 Instruction-Set Architecture

3

preted as the decimal number 32. Hexadecimal numbers are preceded by the string ‘0x’ (oh-x).
For example, 0x12 is ‘hex-one-two’ and corresponds to the decimal number 18, not decimal 12.
For those of you who know the C programming language, you should be perfectly at home.

The number of fields depends on the instruction. The following table describes the instructions.

Anything after a pound sign (‘#’) is considered a

comment

 and is ignored. The comment field ends
at the end of the line. Comments are vital to creating understandable assembly-language pro-
grams, because the instructions themselves are rather cryptic.

In addition to RiSC-16 instructions, an assembly-language program may contain directives for the
assembler. These are often called

pseudo-instructions

. The six assembler directives we will use
are

nop

,

halt

,

lli

,

movi

,

.fill

, and

.space

 (note the leading periods for

.fill

 and

.space

, which sim-
ply signifies that these represent data values, not executable instructions).

The following paragraphs describe these pseudo-instructions in more detail:

•

The

nop

 pseudo-instruction means “do not do anything this cycle” and is replaced by the
instruction

add 0,0,0

 (which clearly does nothing).

•

The

halt

 pseudo-instruction means “stop executing instructions and print current machine
state” and is replaced by

jalr 0, 0

 with a non-zero immediate field. This is described in
more detail in the documents

The Pipelined RiSC-16

 and

An Out-ofOrder RiSC-16

, in

Assembly-Code Format Meaning

add regA, regB, regC

R[regA] <- R[regB] + R[regC]

addi regA, regB, immed

R[regA] <- R[regB] + immed

nand regA, regB, regC

R[regA] <- ~(R[regB] & R[regC])

lui regA, immed

R[regA] <- immed & 0xffc0

sw regA, regB, immed

R[regA] -> Mem[R[regB] + immed]

lw regA, regB, immed

R[regA] <- Mem[R[regB] + immed]

bne regA, regB, immed

if (R[regA] != R[regB]) {
 PC <- PC + 1 + immed
 (if label, PC <- label)
}

jalr regA, regB

PC <- R[regB], R[regA] <- PC + 1

Assembly-Code Format Meaning

nop

do nothing

halt

stop machine & print state

lli regA, immed

R[regA] <- R[regA] + (immed & 0x3f)

movi regA, immed

R[regA] <- immed

.fill immed

initialized data with value

immed

.space immed

zero-filled data array of size

immed

ENEE 646: Digital Computer Design

—

 The RiSC-16 Instruction-Set Architecture

4

which HALT is a subset of syscall instructions for the purposes of handling interrupts and
exceptions: any JALR instruction with a non-zero immediate value uses that immediate as
a syscall opcode. This allows such instructions as syscall, halt, return-from-exception, etc.

•

The

lli

 pseudo-instruction (

load-lower-immediate

) means “OR the bottom six bits of this
number into the indicated register” and is replaced by

addi X,X,imm6

, where

X

 is the reg-
ister specified, and

imm6

 is equal to

imm & 0x3f

. This instruction can be used in conjunc-
tion with

lui

: the lui first moves the top ten bits of a given number (or address, if a label is
specified) into the register, setting the bottom six bits to zero; the lli moves the bottom six
bits in. The six-bit number is guaranteed to be interpreted as positive and thus avoids sign-
extension; therefore, the resulting addi is essentially a concatenation of the two bitfields.

• The movi pseudo-instruction is just shorthand for the lui+lli combination. Note, however,
that the movi instruction looks like it only represents a single instruction, whereas in fact it
represents two. This can throw off your counting if you are expecting a certain distance
between instructions. Thus, it is always a good idea to use labels wherever possible.

• The .fill directive tells the assembler to put a number into the place where the instruction
would normally be stored. The .fill directive uses one field, which can be either a numeric
value or a symbolic address. For example, “.fill 32” puts the value 32 where the instruction
would normally be stored. Using .fill with a symbolic address will store the address of the
label. In the example below, the line “.fill start” will store the value 2, because the label
“start” refers to address 2.

• The .space directive takes one integer n as an argument and is replaced by n copies of
“.fill 0” in the code; i.e., it results in the creation of n 16-bit words all initialized to zero.

The following is an assembly-language program that counts down from 5, stopping when it hits 0.

lw 1,0,count # load reg1 with 5 (uses symbolic address)
lw 2,1,1 # load reg2 with -1 (uses numeric address)

start: add 1,1,2 # decrement reg1 -- could have been addi 1,1,-1
bne 0,1,start # loop again if reg1!= 0

done: halt # end of program
count: .fill 5
neg1: .fill -1
startAddr: .fill start # will contain the address of start (2)

In general, acceptable RiSC assembly code is one-instruction-per-line. It is okay to have a line
that is blank, whether it is commented out (i.e., the line begins with a pound sign) or not (i.e., just
a blank line). However, a label cannot appear on a line by itself; it must be followed by a valid
instruction on the same line (a .fill directive or halt/nop/etc counts as an instruction).

Note that the 8 basic instructions of the RiSC-16 architecture form a complete ISA that can per-
form arbitrary computation. For example:

• Moving constant values into registers. The number 0 can be moved into any register in
one cycle (add rX r0 r0). Any number between -64 and 63 can be placed into a regis-
ter in one operation using the ADDI instruction (addi rX r0 number). And, as men-
tioned, any 16-bit number can be moved into a register in two operations (lui+lli).

• Subtracting numbers. Subtracting is simply adding the negative value. Any number can
be made negative in two instructions by flipping its bits and adding 1. Bit-flipping can be
done by NANDing the value with itself; adding 1 is done with the ADDI instruction.
Therefore, subtraction is a three-instruction process. Note that without an extra register, it
is a destructive process.

• Multiplying numbers. Multiplication is easily done by repeated addition, bit-testing, and
left-shifting a bitmask by one bit (which is the same as an addition with itself).

