Answer to Q.2:

Pipelining -

Slicing the instruction execution into multiple stages so as to increase the throughput is known as pipelining. The instruction execution can be split into a series of stages which reduces the clock time. The clock time is limited by the time required for the largest stage. This increase cycles per instruction but yields a superior performance over sequential implementation.

Implementation Issues –

Pipelining involves splitting into multiple stages (example shown in the figure below).

[image: image1]
· Pipeline registers latch the value at the end of the clock cycle. In any given clock cycle, every stage reads from a previous pipeline register and writes to the following pipeline register.

· Pipelining allows data to be read from pipeline registers instead of waiting till the end of the previous instruction execution (i.e. until data is written back to register file). This may result in “hazards”. We need to account for data and control hazards.

Data Hazards –

Data hazards produce erroneous results silently unless design takes care to avoid those. Few ways of doing that are –

1. Writing your own architecture that does not allow consecutive dependent instructions.

2. Detecting a hazard (Read-After-Write), for example:
add r1, r2, r3

add r4, r1, r5

Here, register r1 is being read before the previous instruction writes to r1.

This can be avoided by inserting deliberate “stall” instructions.

3. Or we can use data forwarding – data forwarding allows data from next stages (closest in time) to be used in a previous pipeline stage. Still, this may give rise to Load-penalty use, for example:

lw r1,…

add r2, r1, r1

lw instruction does not write to r1 until the “M” (Memory access) stage and hence we need to introduce a bubble (“nop”) in the pipeline.

Control Hazards –

Control Hazards result due to branch instructions that change control flow. These can be taken care of by “stall” or branch prediction.
Performance –

Sequential implementation of I instructions with clock time as T, gives throughput of I/T instructions per unit time. N-stage pipeline has clock time reduced to approximately T/N and hence throughput is N*I/T instructions per unit time. Thus, pipelining gives reduced clock time, with higher throughput.

--

Answer to Q.3:
· Caches
· Caches are smaller copies of memory near processor added to overcome the bottleneck in Von Neumann model.
· Caches are smaller in size but have fastest access time. They tend to be costlier compared to backing store.
· Client uses cache as an intermediate level before backing store.
[image: image2]
· Caches exploit any locality of reference (temporal, spatial, algorithmic locality) so as to allow faster access to the most frequently used data (and/or instruction) in the memory.
· Examples of cache – register file, TLB, cache, Disk cache, buffer cache.
· Cache basically consist of –
· Content management heuristics - that manages what data should be cached and what should be discarded.
· Logical organization/ structure – where to put the data in a cache

· Consistency management heuristics – how to maintain consistency w.r.t. the cache itself, backing store, and other caches.

· Cache entry consists of two parts “tag” and “data”. Cache memory address consists of a tag, status bits, and a block byte. Depending upon the addressing (transparent, non-transparent) and management (implicit, explicit) schemes we can have various types of cache.
· Logical organization involves comparing tag for specified set number and finding corresponding block specified by the block byte, for a general set-associative cache.

[image: image3]
· Performance Parameters:

· Graphs show the variation in cache miss-rate as a function of cache size, cache associativity, and block-size.

[image: image4]
· Cache miss-rate reduces by 30% when cache size is doubled.
· Cache miss-rate behaves roughly the same way as the associativity increases.
· For a constant cache size, miss-rate is a convex function of block-size as shown in the figure.
· Graphs below show variation in cache-miss rate as a function of block-size for various cache sizes; and miss-rate as a function of cache-size for various associativity values.

[image: image5]
Write - Back

Memory Access

Execution

Instruction Decode

Instruction Fetch

M/WB

EX/M

ID/EX

IF/ID

PC

WB

M

EX

ID

IF

Cache Memory address

Status

Block byte

Tag

Cache Entry

Data

Tag

.

.

.

.

.

.

Cache

Backing store

Client

M

m’

P

Pipeline register

Cache miss-rate

Cache size

Cache associativity

Cache miss-rate

Block - size

Cache miss-rate

Increasing cache size

Decreasing associativity

Cache size

Cache miss-rate

Block - size

Cache miss-rate

Tag Set Block

TLB

Tag

Data

=

Hit?

Output word

