What are caches for? How are they implemented? What are some of their performance characteristics (i.e., what happens if you change the cache size, associativity, or block size?

Caches are basically required to make our system get the maximum performance at the minimum cost. They exploit the principle of locality of reference. Programs tend to use data non-uniformly.

A datum that is used once will most likely be used again (Temporal Locality)

Data or Instructions surrounding the one just accessed will most likely be accessed again (Spatial Locality)

A cache only needs to be large enough to hold the application's working set i.e the instuctions and data it needs immediately.

[image: image1.wmf]

V

alid

 tag

[image: image2.wmf]

V

alid

 tag

Increasing

Increasing

size

 speed and cost

Implementation

Caches can be

1) Directly mapped

2) Fully associative.

3) Set associative.

Diagram for Direct Mapped Cache

Diagram for Fully Associative Cache

Diagram for 2 way set associative cache.

Performance Charecteristics.

1) Increasing associativity

reduces miss rate (reduced contention from data that hash to the same set)

increases hit time (no of tag comparisons are increased)

increases dynamic power dissipation

2) Increasing Block Size.

reduces miss rate to a certain extent (greater spatial locality) but beyond a certain point you hold unnecessary data

increases miss penalty (for each miss you have to fetch a larger block)

3) increasing Cache size

reduces miss rate in general

but tends to increase access time.

Discuss Branch Prediction. Why is it important? How does it work? What are the most important issues? Include thoughts on Aliasing and Correlation.

15% of the code on an average is branches. The costs of a branch penalty are typically very large and hence in order to minimize branch overheads we need to be able to predict branches.

The result of a branch outcome is known only in the execute stage(s). But we can’t wait that long before fetching the subsequent instructions if we want the pipeline to be full. This requires us to be able to predict branches.

The only information that is available to us is the Program Counter of the Branch. We need to predict based on that the following

· Branch Direction (taken / not taken)

· Branch Target address

Static Prediction Techniques

· predict branch always taken/ not taken

· predict branches of certain opcodes taken

· predict backward branches to be taken (mainly targeting loops)

Dynamic Prediction

Jim Smith’s Adaptive Branch Prediction

The PC or a subset of its bits index into a table of state machines.

(Diagrams)

If MSB of machine’s 2 bit output is 1 then predict taken. If it is 0 predict not taken

Lee + Smith’s Static Training Branch Prediction

They had a shift register of dynamically predicted values that was updated during program execution. Obtained from Profiling Analysis

(Diagrams)

Yeh + Patt 2 level adaptive training branch prediction.

History register (from Lee+Smith)

And Pattern Table (from Jim Smith)

3 schemes. (include diagrams)

GaG: Global HR adaptive Global Pattern Table

PaG: Per PC HR adaptive Global Pattern Table

PaP: Per PC HR adaptive per PC pattern Table

ALIASING:

Refers to the problem of 2 branches or more being able to affect the dynamic branch predictors. It was considered bad and hence GaP was not suggested.

CORRELATION

But it was later realized that branch behavior is affected by the outcomes of surrounding branches and hence we should have a global HR being written to by all the branches in the vicinity. This could then be allowed to index into a per PC pattern table.

(Dharma Teja)

cache

DRAM

Disk

Data

Data

Valid tag

�

�

Tag set offset

 =

 =

mux

mux

