ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

Project 3: Precise Interrupts (15%)

ENEE 646: Digital Computer Design, Fall 2008
Assigned: Thursday, October 24; Due: Thursday, November 20

1. Purpose

This project is intended to help you understand in detail how a modern microprocessor operates in con-
cert with an operating system. You will build a precise-interrupt facility into your pipeline, you will add
support for memory management via a translation lookaside buffer (TLB), and, using RiSC-16 assembly
code, you will write a software TLB-miss handler—the heart of a typical virtual memory system, which
happens to be one of the most fundamental services that a modern operating system provides. Therefore,
you will see the interaction between OS-level software and specialized control hardware (e.g. control reg-
isters and TLBs, as opposed to simple instruction-execution hardware), and you will see how the OS uses
and responds to interrupts—arguably the fundamental building block of today’s multitasking systems.

2. Precise Interrupts in Pipelined Computers

The new & improved RiSC-16 pipeline is shown in Fig. 1 on the next page. In the figure, shaded boxes
represent clocked registers; thick lines represent 16-bit buses; thin lines represent smaller data paths; and
dotted lines represent control paths. The pipeline is slightly different from the one illustrated and
described in the previous project, reflecting the following changes:

1. The TLB is added; it has two ports: one for instruction fetch, and one for data-memory access.

2. Support for detecting and handling precise interrupts has been added by the creation of a 7-bit
exception register (labeled £XC in the figure) in pipeline registers IF/ID through MEM/WB. Also,
the instruction’s PC is maintained all the way to the MEM/WB register. If a stage’s EXC register is
non-zero, the corresponding instruction is interpreted as having raised an exception. The pipeline
uses these values to ensure that all instructions following an exceptional instruction become NOPs:
if there is an exception in the writeback stage, all other instructions in the pipe should be squashed.

3. CTL; now represents control logic for handling exceptions and interrupts in the writeback stage.
When a non-zero value is present in the MEMWB_exc register, all pipeline registers except for the
program counter are reset, and the program counter latches the value coming from memory port 2,
which corresponds to the contents of the corresponding entry in the interrupt-vector table.

4. CTLg is new in the memory-access stage; it handles the interaction of exceptional instructions and
memory access. For instance, MEMWB_exc should get a non-zero value if either EXMEM _exc is
non-zero or the data access (assuming LW or SW) raises an exception. In addition, it should set the
new pipeline register MEMWB _ifx (which stands for instruction-fetch exception, indicating that
the TLB-miss exception, if present, was generated in the fetch stage and not the memory stage.

5. CTLg is new in the memory-access stage; it handles TLB_WRITE events.

6. CTL, is new in the fetch stage; it handles TLB misses by inserting the appropriate exception code
into IFID_exc when a TLB miss occurs.

As mentioned in class, interrupts must be handled in the writeback stage, otherwise it might be possible
for interrupts to be handled out-of-order if back-to-back instructions cause exceptions but do so in differ-

ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

@ ASID
7y Y—¥ Program Counter
. MUX,
' VY
: TLB ASID1 VPN1 . e | +1
| (port 1) PFN1 miss1 TLB Miss .
: Tm FETCH
: T STAGE
! ADDR1
! MEMORY (port 1)
1 DATA1 OUT
: Y IF
rior[m|m| |l C o
L | IN1
D v/ Y TGT1
AR i ‘Sign-Ext-7‘ +1 -
. @ /‘/s ! SRC1 REGISTER FILE
! ; SRC2
: T DECODE
: I STAGE
l —
S NS NN RN I § 1| SRALA REER/
: MUX MUXop1
oP| T | OPERANDO H H OPERAND1 | D
el RN \ , \ EX
| |
MUXqiup s 7 .
/:;:;;,,,/f‘ MUX, 1 ; EXECUTE
- - STAGE
FUNC,, \ SRC2 SRC1
P e L THEN
‘O‘P r‘T ‘ STORE DATA ALU OUT ‘ EX
\ | | MEM
Bits 13:8
Bottom 8 bits (7:0) Top 8 bits
Bottom 8 bits
ASID2 MAP2 VPN2 pry, hi MUX,ypn
> miss2 TLB (port 2) Yo Bottom 8 bits
0-extend 1‘
\ Q_ L MEMORY
- 7 bits MUX g ,? MUX ey STAGE
. 1774+ o ADDR2 DATAZ2 IN
MEMORY (port 2)
- e
MUX gy ——
HTL‘ RF WRIiE DATA | MEM
L™ | WB
’ ’ WRITEBACK
) — STAGE
rf_in1

Fig. 1: RiSC-16 5-stage pipe

ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

ent stages of the pipeline. If an exceptional instruction is flagged as such at the moment the exception is
detected, it is safe to handle that exceptional condition during writeback because all previous instructions
by that time have finished execution and committed their state to the machine.

For this to work, the following things must happen in the pipeline:

1. Once an exceptional condition is detected in the writeback stage, all instructions in the pipeline
behind the exceptional instruction are turned into NOPs, and a NOP is inserted into IFID instead of
whatever was fetched during that cycle.

2. Each pipeline stage must suspend normal operation if the instruction has caused an exception and
the pipeline stage modifies machine state: for example, do not write to memory if the instruction
caused a privilege violation in a previous stage—this is indicated by CTL, taking into account the
value in MEMWB_exc. Each stage also forwards the exception code on to the following pipeline
stage. If the instruction has not already caused an exception but does so during the stage in question,
the EXC field in the following pipeline register must be set appropriately.

Otherwise, pipeline operation is as normal. In the simplest form of an exceptional condition, when an
exceptional instruction reaches the writeback stage, the following steps are performed by the hardware:

1. The PC of the exceptional instruction, or perhaps the instruction after the exceptional instruction
(PC+1) is saved in the EPC control register (exceptional PC).

2. The exception type is used as an index into the interrupt vector table (IVT), located at physical
address 80, and the vector corresponding to the exception type is loaded into the program counter.
This is known as vectoring to the exception/interrupt handler.

Some exceptions cause the hardware to perform additional steps before vectoring to the handler. For
instance, you will implement a TLB-miss exception facility and handler routine. In addition to the steps
listed above, before vectoring to the handler, the hardware will create an address for the handler to use.

The reason hardware might store PC+1 and not PC in EPC is that some exception-raising instructions
should be “retried” at the end of a handler’s execution (e.g., an instruction that causes a TLB miss), while
others should be jumped over (e.g., TRAP instructions that invoke the operating system—jumping back
to a TRAP instruction will simply re-invoke the trap and so cause an endless loop). If the exceptional
instruction should be re-tried, the handler jumps to PC; if the exceptional instruction should not be re-
executed or retried, the handler jumps to PC+1. Thus, EPC must have the correct value.

The general form of a RiSC-16 exception/interrupt handler looks like the following:

1. Save the EPC in a safe location. This is done in case another exception or interrupt occurs before the
handler has completed execution.

2. Handle the exception/interrupt.
3. Reload the EPC.
4. Return the processor to user/unprivileged mode and jump to the (modified) EPC.

Most architectures have a facility (“return-from-exception”) that performs step 4 in an atomic manner.

ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

Register File: Memory Map:
r0 (reads as zero) OxFFFF
r1
r2
VISIBLE STATE r3 0x8000
IN USER MODE r4 O0x7FFF | USERSPACE
5
6
i 0x0000
Registers addressed
with normal instructions
Register Files: Memory Map:
r0 (reads as zero) cr0 (reads as zero) OxFFFF
r1 cr1 - GPR1 User Page Tables
MAPPED via TLB | and Process Structs
r2 cr2 - GPR2
VISIBLE STATE 3 E8) = ARSI 0x8000
IN KERNEL MODE 4 o4 - PSR OX7FFF
rs crs - ISR 08, Handlers
7 M[O] - M[7FFF] ‘Devi ’
6 / o6 - IMR 1/0 Devices
7/ cr7 - EPC X0

Registers accessed Registers addressed
via spetialinstructions with normal instructions

P ogeésor Status Register (PSR):
‘K-8‘K-7‘K-B‘K-S‘K.4‘K.3‘K.2‘K_1‘ K ‘ 0 ‘ ASID
8 (initialized to 0) 1 1 6

Fig. 2: Registers and memory maps visible in privileged and non-privileged modes

3. Extended RiSC-16 ISA

We must extend the RiSC-16 instruction-set architecture with system-level mechanisms. The extensions
are the usual facilities found in any microarchitecture that supports operating systems and privileged
mode. We need a way to protect the operating system from user processes; we need a way to distinguish
between processes; we need a way to translate virtual addresses; we need an exception-handling facility;
the operating system needs some control registers and would do well to have a set of general-purpose reg-
isters that it can use without disturbing user processes (otherwise, it would have to save/restore the entire
register state on every exception, interrupt, or trap); etc. Briefly, the extensions include the following:

1.

Addition of an exception/interrupt-handling facility, as well as a mechanism that allows software to
directly enter the machine into an exceptional state—for example, traps. Some of the “exceptions”
that this mechanism supports are actually privileged instructions that the machine handles at the
time of instruction execution, instead of vectoring to a software handler routine. This includes TLB
handling routines, the HALT instruction, etc.

Addition of a privileged kernel mode that is activated upon handling an exception or interrupt or
upon handling a TRAP instruction, which raises an exception.

Addition of a set of 8 control registers that are used while in privileged mode. These are shown in
Figure 2. “GPR” refers to a general-purpose register. The processor status register (PSR) contains
mode bits that directly influence processor operation. The interrupt service register (ISR) indicates
what interrupts have been received by the processor. The interrupt mask register (IMR) allows soft-
ware to ignore selected interrupts. The exceptional program counter (EPC) register is filled by hard-
ware when vectoring to a handler and indicates the PC of the exceptional instruction. Access to the

ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

general-purpose register file is still possible while in kernel mode through special instructions
(which are not necessary for this assignment).

4. Addition of a translation lookaside buffer (TLB) that performs address translation. For this project,
the TLB will have two (2) entries and be fully associative, with a random replacement policy. On
every TLB write, consult the counter bit to choose which TLB entry to replace.

5. The definition of a memory map that delineates portions of the virtual space as mapped through the
TLBs, accessible in kernel mode only, etc. This is illustrated in the figure above. In user mode, all of
the address space is mapped through the TLB (all virtual addresses are first translated by the TLB
before being used to reference memory locations; note this implies that all virtual addresses are
valid in user mode). In kernel mode, the top half of the address space is mapped through the TLB,
and the bottom half is not: this means that addresses in this region, while the computer is in privi-
leged kernel mode, will be sent directly to the memory system without first being translated.

6. Addition of the concept of an address-space identifier (ASID). While this is not strictly necessary, it
does simplify the virtual memory mechanisms and organization. The ASID s used to distinguish
between different process that might run on the machine, and its use allows state from many differ-
ent processes to reside in the TLB and cache at the same time (otherwise the TLB and, at least
potentially, the cache as well would have to be flushed on context switches). ASID 0 is interpreted
by the hardware to indicate the kernel, executing in privileged mode. When the processor is in ker-
nel mode, instruction fetch will always use ASID 0, and data-memory access will use whatever
ASID is in the processor status register. This last mechanism allows the operating system to read
and write locations within different user address spaces (i.e., “masquerade” as different processes),
but it prevents the operating system from executing instructions from unprivileged processes (which
might otherwise constitute a security hole).

7. Definition of some memory-management constructs, including the user page table organization.
Having hardware define this structure is beneficial in that the hardware can quickly generate the
address that the TLB-miss handler needs to locate the PTE. In many systems, this limits flexibility
because the hardware dictates a page table format to the operating system. However, if desired, soft-
ware can always ignore this address (treat it as a “hint” that need not be followed) and implement
whatever page table it wants. Note that, in such a scenario, the operating system would then have to
generate its own PTE addresses without support from hardware.

3.1 Terminology

Following Motorola’s terminology, we will distinguish two classes of exceptional conditions: those stem-
ming from internal actions (exceptions) and those stemming from external actions (interrupts). For
instance, the following interrupt types are defined:

INT CLOCK

INT TIMER

INT IO
Though this is not a particularly exhaustive list, it is more than enough for the purposes of this project, in
which we will not even bother with interrupts, save possibly the timer or clock interrupt, both of which
could be used to debug the system. In addition, several exception types are defined, including:

EXC TLBUMISS

EXC TLBKMISS

EXC INVALIDOPCODE

EXC PRIVILEGES
Corresponding interrupt/exception numbers are listed in the following section. Each interrupt or excep-
tion type corresponds to a single vector point and thus a single handler routine.

ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

Another type of exception (another class of internally generated exceptional condition) is a TRAP. For
TRAP instructions, there is a whole class of trap types that can implement various operating-system rou-
tines, because the trap type is interpreted by the hardware to indicate a particular vector, just like each
exception and interrupt type has a separate vector. Thus one can think of #rap as equal in stature to inter-
rupt or exception. Each of the trap vectors is OS-defined (e.g., TRAP 1 can mean read or write or open or
close ...); the hardware simply vectors to the corresponding handler, so the operating system can attach
arbitrary semantics to each of the trap handlers. The most noticeable effect of using this style of mecha-
nism is to reduce the register-file pressure in handling system calls. Note that this is unlike most architec-
tures, in which there is a single TRAP exception and all system calls are vectored through the same
exception, and the user code first places the trap type into a user-visible register for the operating system
to read once the handler runs. Our implementation is different not for any specific reason, but rather to
explore the OS design space.

3.2 New Instructions

As mentioned, the instruction set has changed, now that software can insert exceptions directly into the
pipeline and can execute a number of new privileged instructions. Additional instructions are given in the
table below. Pseudo-instructions are generated by the compiler; privileged instructions are a new class.

Assembly-Code Format Meaning

PSEUDO-INSTRUCTIONS:

nop do nothing (add r0, r0, r0)

trap type trap to the operating system with vector type
halt or trap TRAP_HALT ask operating system to stop machine & print state
111 regh, immed R[regA] <- R[regA] + (immed & 0x3f)

movi regh, immed R[regA] <- immed, implemented as lui/lli combo
.fil1l immed initialized data with value immed

.space immed zero-filled data array of size immed

PRIVILEGED INSTRUCTIONS:

write TLB entry (held in regA and regB) to the TLB:
bottom 8 bits of regA contain the PFN;

bits 9—14 of regB contain ASID;

bottom 8 bits of regB contain the VPN;

all other bits in regA and regB are ignored

tlbw regA, regB

return from exception: waits until writeback stage
to jump through regB; simultaneously returns
processor to previously stored mode

(does not save the link pointer)

rfe regB

cause exceptional condition of specified class
(inserts the value of “class” directly into IDEX.exc;
good for testing & debugging)

Sys class

Sys MODE_HALT

an example of the previous instruction: stop
machine & print state

These and related modifications/extensions are described in more detail in the following sections.

ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

3.3 Privileged Instructions (and TRAP)

As shown in the figure below, the JALR instruction is overlapped with a number of other instructions.

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 bits 3 bits 3 bits 7 bits

If (immediate == 0) — JALR: ‘ 11 ‘ reg A ‘ reg B ‘ 0 ‘
3 bits 3 bits 3 bits 3 bits 4 bits

Otherwise — EXTENDED: ‘ 11 ‘ reg A ‘ reg B ‘ EXT_OP ‘ EXT_DATA ‘

If the immediate field of the instruction is zero, the JALR is treated normally. Otherwise, the bottommost
7 bits of the instruction are treated as an opcode and associated data for a system-level instruction other
than a JALR. In this case, the extended opcode EXT OP takes precedence over the JALR opcode—i.e.,
the instruction does not perform a jump and link but rather performs the operation specified by EXT OP.

For these non-JALR instructions, we have two classes (privileged system-level operations, and the raising
of exceptional conditions through user-level TRAP instructions), each of which has the following timing:

1. Exceptions, interrupts, and traps as well as all MODE changes (for example, MODE HALT and
RFE, which changes the kernel/user mode bit) are shaded in the following table and handled in the
writeback stage to prevent unwanted interaction with earlier instructions in the pipeline.

2. Privileged operations except for MODE changes are left unshaded in the following table and are
handled wherever is most appropriate: for instance, the TLB-management instructions are handled
in the memory stage because doing so guarantees that multiple data-TLB accesses will not happen
(i.e., the TLB will not be probed for a data address at the same time that the TLB-WRITE instruc-
tion is writing a new entry into the TLB).

These extended opcodes are used to directly affect change in the operation of the hardware; many of them
insert exceptional conditions into the pipeline, but some are used to move data around the system. All are
privileged operations (i.e. they require that the processor be in kernel mode) except for the TRAP instruc-
tions, which simply invoke the operating system and thus enable kernel mode securely. Note that this
brings up an interesting point: the HALT instruction is now defined as a slightly more complex process
than before. HALT is now defined as one of the several modes of execution (including RUN and SLEEP),
and putting the processor in a specific mode is a privileged action—user code cannot HALT the proces-
sor. Thus, user code must ask the operating system to perform a HALT (which allows the graceful shut-
down of the machine, were there a file system or something similar attached). Thus, HALT is now a two-
stage process: first, user code calls a TRAP instruction with HALT as the argument. This causes an excep-
tional condition, and the machine vectors to the operating system’s corresponding TRAP handler, which
in turn cleans up any system state necessary (not needed in this implementation) and then calls the
MODE HALT instruction.

Note that (for the extent of this project) in all cases but TLB. WRITE and SYS RFE, the rA and rB fields
of the JALR instruction are ignored. These two instructions, however, do use the rB and/or rA fields of
the instruction, specifying a register to read and/or write. RFE uses the rB field to provide a jump address
taken from the register file. TLB_ WRITE constructs a TLB entry from two different 16-bit words read
from the register file (i.e., it uses both rA and rB).

The table on the following page describes the various extended opcodes and their associated possible data
values. Items that are shaded in the table represent conditions that cause hardware to vector to a software

ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

routine; all other items are essentially instructions that the hardware executes, just like ADD, ADDI,
NAND, etc. Those mechanisms that your Project 3 implementation must support are in bold.

Opcode Extension (EXT_OP)

Data Extension (EXT_DATA)

Semantics

SYS_MODE (000)

MODE_RUN (0)
MODE_SLEEP (1)
MODE_HALT (2)

Normal mode—ignore (equivalent to JALR)
Low-power doze mode, awakened by interrupt
Halt machine

MODE_RFU3 No definition yet
..MODE_RFU7 (3..7)
MODE_PANIC8 Halt and output panic value (8..15)

.. MODE_PANIC15 (8 .. 15)

(meaning is software-defined)

SYS_TLB (001)

TLB_READ (0)
TLB_WRITE (1)
TLB_CLEAR (2)

Probe TLB for PTE matching VPN in rB
Write contents of rB to TLB (random)
Clear contents of TLB

SYS_CRMOVE (010)

Top bit specifies to/from
Bottom 3 bits identify CR#

Moves a value to/from the control registers
from/to the general-purpose registers

SYS_RFE (011)

Data value ignored

Return From Exception: JUMP (without link)
to address held in rB (a control register), and
right-shift (zero-fill) the kmode history vector

SYS_RESERVED (100)

Has no definition yet

SYS_EXCEPTION (101)

EXC_GENERAL (0)
EXC_TLBUMISS (1)
EXC_TLBKMISS (2)
EXC_INVALIDOPCODE (3)
EXC_INVALIDADDR (4)
EXC_PRIVILEGES (5)

General exception vector

User address caused TLB miss

Kernel address caused TLB miss

Opcode the execute stage does not recognize
Memory address is out of valid range
Decoded privileged instruction in user mode

SYS_INTERRUPT (110) INT_IO (0) General I/O interrupt
INT_CLOCK (1) Used to synchronize with external real-time clock
INT_TIMER (2) Raised by a watchdog timer

SYS_TRAP (111)

TRAP_GENERAL (0)
TRAP_HALT (1)

General operating system TRAP vector
Ask operating system to perform HALT

Any of these exceptional conditions or extended opcodes can be invoked through the assembler, using the
EXTEND opcode (looks like JALR with a non-zero immediate field). In most cases, there is no need to
specify both EXT OP and EXT DATA because the EXT DATA name uniquely identifies the excep-
tional condition or extended operation. The new assembler (can be found on the course website) supports
this facility via several mechanisms:

1. First, the sys opcode, which takes a single value as an operand (rA and rB are both zero):

sys MODE HALT # halts the machine

Sys INT CLOCK # vectors to the CLOCK interrupt handler

Sys EXC TLBUMISS # vectors to the TLBUMISS exception handler

sys TRAP_ HALT # vectors to the HALT trap handler (which executes a MODE HALT)

Second, the ext (EXTEND) opcode, which functions like JALR in that two registers are specified,
but an additional argument is also given to be used as the immediate value. This is how the
TLB_WRITE and TLB_READ functions are specified. Examples of its use:

ext rA, rB, TLB READ
ext rA, rB, TLB WRITE

VPN to search for is in rB, match is written to rA
reads entry from rB, rA is ignored

ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

ext rA, rB, MODE HALT # identical to “sys MODE HALT” ... rA and rB are ignored
ext rA, rB, SYS RFE # this is identical to “rfe rB”

3. Last, several of the operations are common enough to warrant their own opcodes:

rfe rB # identical to: ext r0, rB, SYS RFE

trap type # identical to: sys type

halt # identical to: trap HALT or sys TRAP HALT
tlbw rA, rB # identical to: ext rA, rB, TLB WRITE

3.4 Processor Status Register

The processor-status register is often considered the heart of a machine, as it contains some of the most
important state information in a processor. See the earlier figure for the RiSC-16’s PSR; it includes three
pieces of information: (1) the 6-bit ASID of the executing process, (2) the kernel-mode bit that enables
the privileged kernel mode, and (3) an 8-bit wide bit-array that represents a history of previous kernel-
mode bit values.

1. The address-space identifier (ASID) is a number that identifies the process currently active on the
CPU. This is used to extend the virtual address when accessing the TLB. Note that the operating
system gets special treatment in this regard: first, ASID 0 is considered to be synonymous with ker-
nel mode (this allows the TLB to translate kernel addresses appropriately without having to know
whether the machine is in privileged mode or not). Second, the kernel can operate in kernel mode
with an ASID other than 0 in the processor status register—this would allow the operating system to
perform I/O operations to and from a user-level process address space. However, to prevent poten-
tial security holes, and to clearly delineate handler code and operating-system code from user-level
code, instruction fetch should never proceed with a non-zero ASID if the processor is in kernel
mode. For instance, when the processor vectors to a handler, the ASID of the previously running
process is still in the PSR, but the handler instructions will be fetched from kernel space.

2. The K (kernel-mode) bit indicates whether the processor is in privileged mode or user mode; privi-
leged instructions are only allowed to execute while the processor is in privileged mode; they cause
an exception otherwise (EXC_PRIVILEGES). The memory map also changes depending on the mode:
as mentioned previously, user space is mapped through the TLB; kernel space is divided into
mapped and unmapped regions.

3. The K, through Kg bits make up a shift register that maintains the previous eight modes of opera-
tion; every time an exception or interrupt is handled, the kernel-mode bit is left-shifted into this
array (which is itself shifted to the left to accommodate the incoming bit), and the kernel most is set
appropriately (usually turned on). Every invocation of the return-from-exception instruction right-
shifts the K through Kg bit-array (while zero-filling from the left) and places the rightmost bit of
the array into the kernel-mode bit. Note that if the architecture is defined such that user mode cannot
be entered from kernel mode except by a return-from-exception, then the shift-register implementa-
tion can be replaced with a simple counter.

This implementation of maintaining previous history bits allows the hardware to handle nested interrupts,
a facility that is extremely important in modern processors and operating systems. A nested interrupt is a
situation where the hardware handles an exception or interrupt while in the middle of handling a com-
pletely different exception or interrupt. In our implementation of virtual memory, the ability to handle
nested interrupts will be of crucial importance.

3.5 Control Registers, Generally

The control registers are those extra 8 registers that are visible only in kernel mode:

ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

cr0 - reads as 0, read-only
crl - For general-purpose use
cr2 - For general-purpose use
cr3 - For general-purpose use and TLB interface
cr4 - Processor Status Register
cr5 - Interrupt Status Register
cr6 - Interrupt Mask Register
cr7 - EPC Register
They behave as follows:
cr0 Like rf0, this is always zero.

cr1 (gpr1) This register is for general-purpose use. However, if an interrupt handler is going to use
the register, it should save the register’s contents before writing to it and restore the con-
tents prior to exiting, just in case the handler happened to preempt another handler using
the register.

cr2 (gpr2) This register is for general-purpose use, just like crl.

cr3 (gpr3) Another general-purpose register, with the addition that on TLBMISS exceptions the hard-
ware places into this register the address of the mapping page-table entry. Details are pre-
sented in a later section. Because the contents of this register may be overwritten at any
moment due to a TLB miss in either user or kernel mode, the kernel should use this only as
a scratch register. In particular, the UMISS handler should first move the VPN into a dif-
ferent register before attempting to load the user PTE.

cr4 (psr) The processor-status register described earlier.

cr5 (isr) The interrupt status register, which contains a single bit for every interrupt type. When-
ever an interrupt occurs, its corresponding bit in this register is set high. Thus, a simple
poll of the interrupt status is possible by comparing its contents to r0; if they are equal, no
interrupts have occurred. Interrupts cause the hardware to vector to a handler routine, pro-
vided that the interrupt mask register (described below) is not disabling the interrupt type.
Not used in this project.

cr6 (imr) The interrupt mask register, which is set by the operating system. It defines the interrupts
that the processor is allowed to handle, indicated by a ‘1’ in the appropriate bit position.
On every cycle, a bit-wise AND is performed by the hardware between the ISR and the
IMR; if the result is non-zero, the hardware places the appropriate interrupt class into the
IFID_exc register. Not used in this project.

cr7 (epc) The exceptional PC, representing the return address for the exception/interrupt handler.
Hardware loads this right before vectoring to an exception, interrupt, or trap handler. The
first thing that a handler should do is save this value in a safe place, just in case another
handler is invoked in a preemptive manner.

These eight registers perform two separate functions: first, they provide the operating system access to
mode-control registers such as the PSR and ISR; facilities similar to these are found in nearly every pro-
cessor architecture in existence and are necessary for most system-level software. The second function
provided to the operating system is a small set of shadow registers not visible to user-level processes.
While not necessary for implementing most system-level software, shadow registers—such as those
found in processors as diverse as the Alpha, SPARC, PA-RISC, Xscale, and M-CORE—provide the oper-
ating system a safe haven in which to operate. These registers do not need to be saved when moving to
and from privileged mode, as would be necessary if the operating system shared the same register file as
user-level code. For instance, the MIPS architecture has only one space of registers, and the kernel, to
avoid having to save and restore user-level registers, claims two of the registers as its own: the assembler
and compiler assure that user-level code does not access these registers, and they are not saved or restored

10

ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

on interrupts or system calls and traps. The disadvantage of having shadow registers is either ensuring
that data can be moved between the two sets of registers (e.g. by providing a larger register specifier in
some or all privileged-mode instructions, or by providing a special data-move operation whose sole func-
tion is to move data between register namespaces), or ensuring that such a scenario is never needed.

As mentioned previously, these are the default registers when kernel mode is active, i.e. when the K-mode
bit in the processor status register contains a ‘1’ value. Thus, when the operating system performs instruc-
tions like the following:

kernel mode is on

add rl, r0, r4
the operand values are read from control registers, and the result is written to a control register. This
example moves the contents of the processor status register into crl.

There is an obvious trade-off between implementing the sixteen registers (eight user registers plus eight
control registers) as a unified register file using the kernel-mode bit as the fourth register-specifier bit, or
as two separate register files selected by a MUX controlled by the kernel-mode bit. Depending on imple-
mentation, the unified design can have a faster access time; the MUXed design can have lower power
consumption. We will do a unified design: the register file is now a 16-entry array of registers, as opposed
to an 8-entry array. When reading or writing the register file, the top bit of the register identifier needs to
come from the mode bit in the process status register—i.e., the bottom 8 registers are referenced in user
mode, and the top 8 registers are referenced in kernel mode. You need to implement this connection.

3.6 Address Translation and TLBs

The memory-management implementation defines pages to be 256 words in length. Therefore, a 16-bit
virtual address is composed of an 8-bit VPN and an 8-bit page offset, as illustrated in the figure below:

6 bits Virtual Address:

8 bits 8 bits
‘ Address Space Identifier (ASID) ‘
‘ ‘ Virtual Page Number (VPN) ‘ Page Offset ‘
}
TLB
Physical Address: ‘ Page Frame Number (PFN) ‘ Page Offset ‘

The figure also illustrates the mechanism of address translation: virtual addresses are translated by the
TLB into physical addresses. Translation consists of nothing more than replacing the virtual page number
with the corresponding page frame number. The page offset is identical in both addresses (a given word is
at the same location within a page, whether the page is virtual or physical).

The TLB is a cache, usually implemented as a content addressable memory (CAM), or fully associative
cache. In this implementation, the cache’s tag field is the concatenation of a 6-bit ASID and an 8-bit vir-
tual page number. The corresponding data field of the cache entry is the page frame number where the
indicated virtual page can be found.

In this implementation, all user addresses from 0x0000 to OxFFFF are mapped through the TLB. The top
half of the kernel’s virtual space is also mapped through the TLB. The bottom half of the kernel’s address
space, ranging from address 0x0000 to Ox7FFF is mapped directly onto the bottom half of main mem-
ory—the physical address equals the virtual address. Thus, references to this space cannot cause a TLB
miss. This is an important consideration to remember when designing your TLB-miss handler.

The RiSC-16 has a software-managed TLB. This simply means that the operating system, and not the
hardware, is responsible for handling 7LB refill, the act of walking the page table on a TLB miss to find

1"

ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

the appropriate page-table entry and inserting it into the TLB. When the TLB fails to find a given VPN for
a mappable virtual address, the TLB raises an exception, invoking the operating system. If the address
being translated is a user address (i.e., if the CPU was in user mode at the time of the exception), then the
exception raised is a “user miss,” EXC TLBUMISS. If the CPU is in kernel mode, and the top bit of the
virtual address to be translated is a 1,” then a “kernel miss,” or EXC_TLBKMISS, is raised. If in kernel
mode, and the top bit of the address is ‘0,” the address cannot cause an exception because it is not trans-
lated through the TLB but instead is mapped directly onto physical memory.

3.7 Organization of the Page Table

The page table format is very similar to that used in the MIPS architecture: it is a two-tiered table, where
the topmost level is in physical space, wired down when the application is executing, and the lower level
is pageable and addressed virtually. We will call the top level the “root” for obvious reasons and the lower
level the “user page table” because it maps the user address space. The page table organization is illus-
trated below (note the difference in scale between the user page table and the user address space):

Root “table”: 1 PTE, 1 word Each page table entry has the 16-bit format shown below:
D - > ‘V‘ unused ‘ Page Frame Number ‘
/ > — Physical space
‘/4/ \ wor® Virtual space
Y one
‘ 0 ‘ 1 ‘ 2 ‘ 3 H USER PAGE TABLE (256 PTEs, 1 page) ‘ ‘fe{‘ f D/
J\/ o0 02%°
N
‘ 0 ‘ 1 ‘ 2 ‘ 3 H USER ADDRESS SPACE (256 pages) ‘ ‘fe{‘ ff D

COMPLETE RiSC-16 16-bit VIRTUAL ADDRESS SPACE (64K words: 256 x 256-word pages)

The full address space contains 256 pages, which requires 256 PTEs to map it. Each PTE is a single
word, and 256 PTEs can thus fit in a single page. Therefore, a single page of PTEs can map the entire user
space. The kernel keeps a set of pages in its virtual space, each of which holds one user page table. There
are 64 of these tables (there are 64 unique ASIDs: the ASID is 6 bits wide), and the corresponding user
tables are held in the top 64 virtual pages of the kernel’s address space. These are in turn mapped by root
PTEs that are held in the top 64 words of page frame 0. Thus, the virtual page number of the user page
table is equal to the physical address of the root PTE that maps it.

As mentioned, all user addresses are translated through the TLB, and kernel space is typically divided
into regions that are translated through the TLB and other regions that map directly onto physical mem-
ory. The kernel’s translated regions typically hold data that is seldom used, for example the various data
structures (including process page tables) that are used to keep track of the running processes. If a process
is not currently running, then none of these structures are in use, and they need not occupy physical mem-
ory. Thus, it makes sense to put them into virtual space.

The different views of the 16-bit address space are shown below:

User Mode: Kernw
OxFFFF OxFFFF Each page table
User Page Tables | is located by its
User page tables (64 pages) corresponding ASID
MAPPED via TLB | and process structs 0xC000 + (ASID << 8)

0xC000
0x8000 USER SPACE 0x8000 OxBFFF
Ox7FFF | MAPPED via TLB OX7FFF

Process Structures,
directly onto Dynamic Data, etc. 64 pages
m[0] - m[7FFF] physica ory

0x0000 0x0000 Kernel Virtual Space

12

ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

As mentioned, all user addresses are translated through the TLB, and kernel space is typically divided
into regions that are translated through the TLB and other regions that map directly onto physical mem-
ory. The kernel’s translated regions typically hold data that is seldom used, for example the various data
structures (including process page tables) that are used to keep track of the running processes. If a process
is not currently running, then none of these structures are in use, and they need not occupy physical mem-
ory. Thus, it makes sense to put them into virtual space.

3.8 Nested TLB-Miss Exceptions & Faulting PTE Addresses

When the TLB fails to find a given VPN, it raises an exception. If the address being translated is a user
address (i.e., the CPU is in user mode), then the exception raised is EXC TLBUMISS. If the CPU is in
kernel mode and the top bit of the address to be translated is a ‘1’ then the exception raised is
EXC TLBKMISS. If the top bit of the address is ‘0’ the address cannot cause an exception because it is
not translated through the TLB but instead is mapped directly onto physical memory.

Both exceptions behave as normal and perform additional functions before vectoring to the handler.
When the TLBUMISS exception handler runs, its job is to find the user page table entry corresponding to
the page that missed the TLB. The user page table is located in the top quarter of the address space, as
shown above. The (virtual) location of the PTE, given the ASID of the current user process and the VPN
of the address that caused the TLB miss, is computed according to the following equation:

ADDRpte = 0xC000 + (ASID << 8) + VPN

To aid in the handling of the exception, the construction of this address is performed by hardware. This is
similar to the memory-management facilities offered by MIPS processors and UltraSPARC processors.
As soon as a TLBUMISS exception is detected, the hardware takes the VPN of the faulting address and
the ASID currently stored in the process status register (PSR) and performs this computation. Because all
of the values in question (number of unique ASID values, number of unique VPNs) are all powers of two,
the additions in the equation above simply to ordinary concatenation of bit-fields. This is illustrated
below, which shows the locations in the register file and formats of the various data that are placed into
the register file by hardware when vectoring to a TLB-miss handler:

User Mode: UMISS: KMISS:
cr0 - cr0 - cr0
cr1 - cr1 - crl
cr2 - cr2 - cr2 -
cr3 - i‘> cr3 11‘ ASID ‘ BadVPN j‘> cr3 | 00000000 | BadVPN
cr4 - cr4 - cr4 -
cr5 - cr5 - cr5
cr6 - cr6 - cré
cr7 - cr7 EPC cr7 EPC

The address is placed into cr3, control register 3. After this, the hardware vectors to the UMISS handler.
When the handler runs, it will use the virtual address in cr3 to reference the PTE. When the PTE is
loaded, the handler obtains the PFN (see figure below for specifics on the PTE format). The handler then
performs a tlbw (TLB write) instruction to move the loaded mapping into the TLB.

Note that the handler loads the PTE into the processor using a virtual address. Thus, it is possible for the
handler itself to cause a TLB miss. This is what invokes the TLBKMISS handler.

When handling a kernel-level TLB miss (EXC TLBKMISS), the type of TLB miss that happens while
the kernel is executing, the page table needed is the kernel’s own page table that maps the top half of the
address space (the kernel’s virtual space). This page table is illustrated in the next section; it is located at
address 128 in physical memory and extends to address 255. The top half of this page table (addresses

13

ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

192-255) maps the user page tables referenced by the user TLB-miss handler. By construct, because the
user page tables begin at virtual address 0xC000, their VPNs range from 0xCO to OxFF—in decimal, the
range is 192-255. Therefore, by construction, the VPN of the virtual address for the user PTE that the
UMISS handler loads equals the physical address of the kernel PTE that maps the user page table. Before
vectoring to the KMISS handler, the hardware places this VPN (which, as described, is equal to the phys-
ical address required by the KMISS handler) into er3, control register 3.

This is actually a fairly intricate process, and it demands careful attention on your part in the development
of your TLB-miss handlers, otherwise data can get stepped on without the software realizing it (for

instance, when the umiss handler causes an exception when it performs the PTE load using a virtual
address).

If, during user mode, an access causes a TLB miss, the umiss handler is invoked. The hardware places the
PTE’s virtual address into cr3. This is done in addition to saving the return PC in cr7, and it is all done
before vectoring to the umiss handler.

If, during the execution of the umiss handler (or, in fact, during any kernel code at all), a memory access
causes a TLB miss, the kmiss handler is invoked. The hardware places the faulting 8-bit VPN into cr3, in
the lower 8 bits of the register. This happens to be the physical address of the root PTE (the root table is in
physical page 0—see later diagram). The hardware places the return PC (which, in most cases will be the
PC of the LW instruction in the umiss handler) into cr7. Then hardware vectors to the kmiss handler.

Once a handler has loaded a PTE, what happens next? The PTE format looks like the following:

1 bit 7 bits 8 bits

Page Table Entry (PTE): | V | 0 | Page Frame Number (PFN) |

The bottom eight bits represent the physical location of the page (the PFN); the top bit is a valid bit
(O=invalid; 1=valid). Ultimately, this will be used to create a new entry in the TLB, which has the follow-
ing format:

Bt 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
1 bit 6 bits 8 bits 8 bits
TLB Entry: ‘ v ‘ Address-Space Identifier (ASID) ‘ Virtual Page Number (VPN) ‘ ‘ Page Frame Number (PFN) ‘

Once the PTE has been loaded, generating the TLB entry is straightforward: the handler must verify the
validity of the PTE and then write it to the TLB. The TLB-write instruction, tlbw, takes two operands:

1. The corresponding Page Frame Number—i.e., the contents of the PTE just loaded.

2. The ASID and Virtual Page Number (i.e., the same thing as the address used to load the PTE, which
the hardware stored into cr3 at the time of vectoring to the handler).

Hardware uses the bottom 8 bits of #1 and the bottom 14 bits of #2; all else is ignored. TLB update can be
accomplished with the following instructions. Assume that the load address is in 12 and the PTE is in 1.

lui r3, 0x8000 # will be used to test top bit

nand r3, r3, rl # r3=0111111111111111 => val; r3=1111111111111111 => inv
nand r3, r3, r3 # r3=0x8000 => val; r3=0x0000=>inv

bne r3, r0, valid

error-handling code

valid:

tlbw rl, r2 # writes contents of rl+r2 to TLB, sets ‘v’ bit in TLB entry

The steps that the UMISS and KMISS handlers go through are very similar.

14

ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

Note that this is not a complete handler: for example, error-handling is missing, the beginnings of the
handlers are missing (in which register contents are saved and the PTE loaded), the ends of the handlers
are missing (in which register contents are restored from memory), and return-from-exception is missing.
For error-checking, you can simply HALT the machine prematurely or use a special syscall (e.g., PANIC
mode), because the PTEs you reference in your page tables are predefined and should never be invalid.

3.9 Physical Memory Map

Previous figures have illustrated the layout of virtual space. The following figure illustrates the layout of
physical memory, including the all-important first page:

N 112(3]... Pages hold anything: application code & data, kernel code & data, handler code, etc. ‘ ‘fe ‘ ff ‘

Page Frame 0:

word Kernel save area ‘ - ‘ Ve‘ Vi ‘ Vit ‘ KPT ‘ RPT ‘
address: 0 64 80 96 112 128 192 255

The kernel save area is used for saving state during handler execution, etc. The Ve, Vi, and V't regions con-
tain vector addresses for exceptions, interrupts, and traps, respectively. The kernel page table (KPT)
maps the region of memory in which process structures and associated data are held. You will not use the
KPT region in this project. The root page table (RPT) contains the mappings for the various user page
tables that occupy the top quarter of the virtual address space. It is no accident that the RPT is placed in
the top quarter of page frame 0—as mentioned earlier, the result is that the VPN of any kernel virtual
address can be used directly as a physical address to obtain the appropriate root-level PTE.

For this project, you need to put data into page O (set up Ve and Vt 127
regions, as well as one PTE in the root page table for ASID number 9). :
Note that the PSR should be initialized appropriately to contain ASID 9 as

well, so that the hardware can create the correct address as part of . : TRAP
responding to a TLBUMISS exception. You will also need to put handler : : VECTORS
code somewhere in physical memory, with the vector addresses initialized ' :
to point to the handlers using physical addresses. For example, you could .
very well put the handler code in page 1 and point the addresses in the Ve s T
and Vt regions to these locations. Lastly, you must create a page table for 12 | Tean.cenERAL
an application. For example, you could put this page table into physical : '
page 2 and point the root PTE corresponding to ASID 9 to page 2.

3.10 Interrupt Vector Table VEGTORS |
The interrupt vector table has a simple format: for every exceptional con- : :

dition that the hardware recognizes (including exceptions, interrupts, S

and/or traps), there must be an address in the table that points to a handler w [ciooc

routine. The table is located at physical address 80 in memory and has 48 . 5

entries (16 exception types, 16 interrupt types, and 16 trap types). This is

illustrated in the figure to the right.

Those vectors that must be implemented are shaded; vectors that are not : : EXCEPTION

shaded need not be implemented in this project.

85 EXC_PRIVILEGES
84 EXC_INVALIDADDR
83 EXC_TLBPRIV
82 EXC_TLBKMISS
81 EXC_TLBUMISS
80 EXC_GENERAL

15

ENEE 646: Digital Computer Design — Project 3: Precise Interrupts (15%)

4. Your Task

Your task in this project is to build the memory-management scheme described in this document. You
have been given my solution for Project 2, extended with a larger register file; you can start there or start
with your own project 2 code. You are to build an exception facility that handles interrupts precisely. You
are to implement the TLB (2-entry and fully associative). You are to implement two exception types, one
trap type, one TLB-management instruction, and one mode instruction:

EXC TLBUMISS

EXC TLBKMISS

TRAP HALT

TLB WRITE

MODE HALT

You are to write handlers for each of the exceptions and trap types in RiSC-16 assembly code. You are to
build a memory image containing your OS code (at this point, comprised of only handlers), kernel data,
kernel save area, interrupt vector table, and an initialized kernel page table mapping all of the kernel’s vir-
tual code & data as well as the user page table for ASID 9. Follow the example given in the previous sec-
tion:

1. Create your handlers and load them in physical memory: page frame 1 (starting at physical memory
address 256).

2. Initialize your IVT so that the entries point to the appropriate handler locations.

3. Put the user page table into page frame 2 (starting at physical address 512). You do not need to ini-
tialize the user page table entries—my test code will choose a physical location for the application
and initialize the page table for you (therefore, this step requires no work). However, you wil/l need
to initialize this page table when testing your own code.

4. Lastly, you need to put the user page table’s physical location into the root page table (RPT): at the
RPT entry corresponding to ASID 9, you must put a valid page table entry (see the format above)
and set the page frame number to ‘2’ (where the user page table has been placed).

Your processor should start running with user mode enabled (K bit is PSR set to ‘0”), nothing but zeroes
in the kernel-mode history vector (i.e. the top eight bits of the PSR), the ASID set to the value ‘9’, and the
program counter set to 0.

What I want from you:
1. Your RiSC.v pipeline.

2. A file called “init.sys” that represents the contents of the first 3 pages of physical memory (the ini-
tial page frame, a page of handler code, and the user page table for ASID 9).

I will test your code by loading a random program (probably laplace.s because it is large) into the mem-
ory space at a randomly chosen physical location and initializing the user page table for ASID 9 to point
to the appropriate physical locations. The grade will break down along the following lines:

e Correctness of hardware exception recognition and TRAP handler invocation, 5 points
e Correctness of memory-management/address-translation hardware, 5 points
e Correctness of TLB-miss handler implementations (umiss and kmiss handlers), 5 points

16

