
Realization of Verilog HDL Computation Model

CSCI 320 Computer Architecture

By Dr. Daniel C. Hyde
Department of Computer Science

Bucknell University
October 1997

Copyright 1997
By Daniel C. Hyde

Realization of Verilog HDL Computation Model Page 2

1. Introduction

Verilog HDL is a hardware description language. The computer industry uses Verilog HDL for de-
sign of digital systems. From the Verilog code, industry uses automated tools to generate integrated cir-
cuit masks needed in the fabrication of integrated circuit (IC) chips.

In this course, a subset of the Verilog language will be used to describe and develop computer archi-
tectural concepts using a model of computation at the register transfer level. The purpose of this handout
is to describe this model of computation and demonstrate how the model can be realized in digital cir-
cuits.

2. Example Simple Computer Using Register Transfer Level

Assume we have a very simple computer, with 1024 words of memory (Mem) each 32-bits wide, a
memory address register (MA), a memory data register (MD), an accumulator (AC), an instruction regis-
ter (IR) and a program counter (PC). Since we have 1024 words of memory, the PC and MA need to be
10-bits wide.

We can declare the registers and memory in Verilog as the following:

reg [0:31] AC, MD, IR;
reg [0:9] MA, PC;
reg [0:31] Mem [0:1023];

We assume a digital system can be viewed as moving vectors of bits between registers. This level of
abstraction is called the register transfer level. For example, we may describe in Verilog an instruction
fetch by four register transfers:

// instruction fetch
#1 MA <= PC;
#1 MD <= Mem[MA]; // memory read
#1 IR <= MD;
#1 PC <= PC + 1;

The meaning of the first line is to transfer the 10 bits of the PC into the MA register after waiting one
clock period (the #1). Note that it is important that we use Verilog’s blocking assignment operator (<=)
rather than the non-blocking assignment (=). The reason why will be discussed later.

Assuming the operation code for a LOAD instruction is 100 in binary and is in the first three
bits of IR, we could design the decode and execute part of a LOAD instruction as follows:

// decode and execute code for a LOAD
#1 if (IR[0:2] == 3’b100) begin

#1 MA <= IR[22:31]; // last 10 bits are address
#1 MD <= Mem[MA]; // memory read
#1 AC <= MD;

end

We will use Verilog to describe our digital systems but also to test our designs by a simulator running
on our Unix workstations. The #1 at the beginning of the Verilog statements means wait one unit of
simulation time. Verilog calls the feature “delay control.” The above design is very slow! A LOAD in-
struction will take eight clock periods. Later we will carefully analyze the Verilog code to explore ways
to improve the speed.

Realization of Verilog HDL Computation Model Page 3

3. Our Computational Model

Register transfers are general. In fact, we can view a computation as a specific class of register trans-
fers.

Definition: A computation consists of placing some Boolean function of the contents of
argument registers into a destination register.

That is, in this course a computation is a register transfer. In computer design, register transfers are very
important. They are everywhere -- in arithmetic logic units (ALU), control units (CU), memory subsys-
tems, I/O devices and interconnection networks.

Observe from the above definition that we need only Boolean functions. We don’t need arithmetic or
higher order functions. To realize the Boolean functions, we design combinational logic circuits, for ex-
ample, an adder, from AND, OR and NOT gates.

Boolean functions have no concept of time. To incorporate the passage of time in our model, we de-
fine computing as a sequence of several register transfers where each transfer takes one clock period.

Definition: Computing is a sequence of computations.

Therefore, the above Verilog code for the LOAD instruction has seven computations or register transfers.
We would say the performing of a LOAD instruction is computing because we do seven computations
one after the other, in sequential order.

A major part of the description of a computer is a plan defining each register transfer, or computation,
and specifying the order and timing in which these register transfers will take place.

How does this view of computation compare with other definitions you may have seen? One way to
view computation is as a change in state. Here in a very practical way, we are viewing computation as a
change in the state of hardware registers. For example, the MA changes state in the following transfer.

#1 MA <= PC;

One of the clever parts of the Verilog language design was making register transfers look like as-
signment statements in other programming languages. Since many designers are comfortable with a lan-
guage like C or Pascal, Verilog has had a large degree of success.

Other parts of the Verilog language allow the designer great flexibility to create starting with pass
transistors a hierarchy of combinational logic functions to be used in register transfers (called structural
level in Verilog).

It should be noted that we are interested in describing digital systems. There is a whole world of ana-
log or continuous systems, e. g., FM tuners, in which our definition of computation ignores.

4. Realization of Verilog Code into Digital Logic Circuits

Our goal is to demonstrate that our subset of Verilog code can be realized in digital logic circuits.
Also, we will show that this translation from Verilog code to digital circuit can be automated. It is this
use of automated design tools that has allowed the computer industry to create extremely complex and
sophisticated designs such as Intel’s Pentium chip.

A register is a series of flip flops. We will assume for our model that all flip flops are trailing edge
triggered clocked D flip flops. Therefore, the declaration of the A register in Verilog:

reg [0:3] A;

Realization of Verilog HDL Computation Model Page 4

means the four flip flops as shown:

A
Q Q
C

D
A

Q Q
C

D
A

Q Q
C

D
A

Q Q
C

D

0 1 2 3

Fig. 1 Register A is four D flip flops.

A computation is a register transfer. Here are two computations and their associated declaration.

reg [0:3] A, B;

#1 A <= 4’b1010; // set register A to 1010
#1 B <= A;

The second register transfer is modeled by the following diagram:

A
Q Q
C

D
A

Q Q
C

D
A

Q Q
C

D
A

Q Q
C

D

0 1 2 3

D
B

Q Q
C

D
B

Q Q
C

D
B

Q Q
C

D
B

Q Q
C

0 1 2 3

system clock

CL

Fig. 2 Data unit for register transfer B<= A.

The transfer is only done when the control signal CL is 1 and system clock goes from 1 to 0
(assuming trailing edge triggered). Our Verilog notation models the situation because the blocking as-
signment operator (<=) means to block the assignment until the end of the current unit in simulation time.

Where does the control signal CL come from? From the control unit which sequences the register
transfers. Any digital system has two parts: the data unit (also called data path) and the control unit as
shown below:

Realization of Verilog HDL Computation Model Page 5

Data Unit

B <= A

PC<=PC +1

Control Unit

control lines

contains
computations

sequences the
computations

Fig. 3 A digital system is separated into a data unit and a control unit.

We will design control units in a later section.

The above diagram of a register transfer is misleading, register transfers are not that simple.
Typically, we transfer from several argument registers to one destination register. Given the following
register transfers used somewhere in the control sequence:

reg [0:3] A, B, X;

A <= B // uses control level CL1
A <= X // uses control level CL2

here is the data unit for the two computations:

A
Q Q
C

D
A

Q Q
C

D
A

Q Q
C

D
A

Q Q
C

D
0 1 2 3

system clock

D
B

Q Q
C

1

D
B

Q Q
C

2

D
B

Q Q
C

3

D

Q
C

Q
0B

D

Q
C

Q

D

Q
C

Q

D

Q
C

Q

D

Q
C

Q
XX XX0 1 2 3

CL1 CL2

Fig. 4 The data unit for A <= B and A <= X.

Extra AND and OR gates are needed to gate the proper bit values into the D input of the A flip flops.

Realization of Verilog HDL Computation Model Page 6

A bank of ANDs is needed for each argument register and a bank of ORs for the input into the D input of
the destination flip flops. A technique called “busing” would reduce the number of AND and OR gates
needed. However, we will ignore busing.

Observe that the data unit does not contain when the computations are done. The sequencing of the
three is done by the two control signals supplied by the control unit.

Here is another example of a computation and how we model the Verilog code as a digital logic cir-
cuit:

reg [0:3] A, B, X;

A <= X | ~B // | is bit-wise OR and
 // ~ is bit-wise NOT (complement)

A
Q Q
C

D
A

Q Q
C

D
A

Q Q
C

D
A

Q Q
C

D
0 1 2 3

system clock

D
B

Q Q
C

1

D
B

Q Q
C

2

D
B

Q Q
C

3

D

Q
C

Q
0B

D

Q
C

Q

D

Q
C

Q

D

Q
C

Q

D

Q
C

Q
XX XX0 1 2 3

A<=X|~B

Fig. 5 The data unit for A <= X | ~B.

Observe that we use the NOT Q output of the B flip flops. Also, note the convention where we label the
control signal with the character string of the computation. As digital systems become more complicated,
this convention helps the reader sort out what is happening.

Here is a circular right shift of register A.

A <= {A[3], A[0:2]};

The { } braces and comma are for concatenation of bit strings in Verilog. Here is the corresponding dia-
gram.

A
Q Q
C

D
A

Q Q
C

D
A

Q Q
C

D
A

Q Q
C

D
0 1 2 3

system clock

A <={A[3], A[0:2}

Fig. 6 The data unit for circular right shift of register A.

What else needs to be realized? We need to reduce all operations to combinational circuits (ones
composed of only AND, OR and NOT gates). For example, we need to realize arithmetic, for example,

Realization of Verilog HDL Computation Model Page 7

the “+” operator by an ADDER circuit. Usually, we also design special combinational circuits for incre-
ment by one (INC) and decrement by one (DEC). For example, we would replace the + operator used in
the instruction fetch

#1 PC <= PC + 1;

with

#1 PC <= INC(PC);

We need to design combinational circuits for comparison operators, such as = =. For example, the
following

#1 if (IR[0:3] == 4’b1010) begin

would be replaced with

#1 if (EQUAL(IR[0:3], 4’b1010)) begin

The design of the combinational logic functions INC, DEC, EQUAL and GREATER are left as exercises
for the reader.

One advantage of Verilog is that it does not require the designer to reduce every operator to combi-
national functions (Verilog’s structural level). If appropriate, say at the beginning of a design, Verilog al-
lows the designer to use familiar arithmetic operators such as +, = = and > (Verilog’s behavioral level).
Verilog allows an incremental design strategy which is especially important for learning.

It should be noted that we also need to explore how we model memory. Our read of memory in the
above instruction fetch assumes a synchronous memory which can be read in one clock period, This may
not be realistic in the system we are designing.

5. Designing the Control Unit

Now that we know how to realize the data unit with its computations, we want to be able to sequence
the computations in the proper order. A control unit does the sequencing. Note: a digital system might
have several control units. We will discuss the design of a hardwired control unit. A second technique
used to design control units is microprogramming. Microprogramming though not difficult is beyond the
scope of the handout.

 Given the following Verilog control sequence:

initial begin
#1 A <= B; // no. 1
#1 C <= D;// no. 2
#1 A <= ~B; // no. 3

end

the control unit would place a 1 on the control line for no. 1 for a clock period. Then a 1 on control line
for no. 2 for a clock period. Then a 1 on control line for no. 3 for a clock period. That is, do 1, do 2, do
3, halt. Observe that the control unit does not know nor care what each computation does. We assume
here that a computation takes one clock period.

Our control unit starts with a single (1) pulse (a clock period wide) from a single pulse generator.

Realization of Verilog HDL Computation Model Page 8

system clock

clock period

single pulse

no. 1

no. 2

no. 3
time

Fig. 7 Timing diagram of control signal lines.

Notice that the pulse, called the control pulse, is delayed one clock period as it raises the control lines
for the three computations. What kind of circuit can delay a pulse for one clock period? We can use our
old friends the trailing edge triggered clocked D flip flops.

single
pulse

generator
D

C

Q

D
C

Q

D
C

Q

system clock

no. 1 no. 2 no. 3

A<=B C<=D A<=~B

Fig. 8 Hardwired control unit.

Rules for construction of hardwired control unit
1. Label each Verilog statement which starts with #1 (delay control).
2. Use one D flip flop for each labeled statement. Label flip flop with same label.
3. If more than one input to the D input of a flip flop, insert an OR gate.
4. More Rules to come.

Here is a control sequence with an always construct instead of an initial. The always construct in
Verilog is semantically the same as an initial except it repeats the control sequence forever.

always begin
#1 A <= B; // no. 1
#1 C <= D;// no. 2
#1 A <= ~B; // no. 3

end

Here is the control unit. Notice that we need to apply Rule 3 and insert an OR gate. The way to think
about this control unit is that the single control pulse travels around and around forever.

Realization of Verilog HDL Computation Model Page 9

single
pulse

generator
D

C

Q

D
C

Q

D
C

Q

system clock

no. 1 no. 2 no. 3

A<=B C<=D A<=~B

Fig. 9 Hardwired control unit for an always construct.

Verilog is a structured programming language in the tradition of Pascal and C, that is, the flow of
control is by while and if-then-else constructs and not goto statements.

For example, below is a while loop:

while (s)
begin

#1 A <= B; // no. 1
#1 C <= D;// no. 2
#1 A <= ~B; // no. 3

end

where s is a logical expression, i. e., results in a 0 or 1. We will assume that this while loop is part of a
larger control sequence of an initial or always construct. Therefore, we will show the in and out for the
control pulse. Notice we need a new rule -- Rule 4. (Note: the designer might need a #1 in front of the
while if any value in s uses a result set just before. Called a data dependency. See section Speeding Up
the Machine.)

Rule 4: If a conditional construct, i. e., a while or an if, send control pulse both directions depending on
 AND gates with s and NOT s as inputs.

D
C

Q

D
C

Q

D
C

Q

system clock

no. 1 no. 2 no. 3

A<=B C<=D A<=~B

s

~s

in

out

Fig. 10 Portion of a hardwired control unit for a while construct.

Example if construct:

if (s)
begin

#1 A <= B; // L1
#1 C <= D; // L2

end
else

begin
#1 D <= A; // L3
#1 X <= Y; // L4

Realization of Verilog HDL Computation Model Page 10

end

D
C

Q

D
C

Q

D
C

Q

system clock

A<=B C<=D

s

~s

in out

D
C

Q

D<=A X<=Y

L1 L2

L3 L4

Fig. 11 Portion of hardwired control unit for an if construct.

Again we need a new rule. Note that the pulse goes one way or the other, never both.

Rule 5: For an if construct, we need an OR gate to combine the two possible paths of the control pulse.

 Theorem: Sequence, if-then-else and while are enough control of flow constructs to do any algorithm.
(Proven by Jacoppini and Bohm in 1966)

Because of the above theorem, we have all the control constructs we need. However, for designer con-
venience, Verilog has a case construct, a for and a repeat. Handling their translation to digital logic cir-
cuits is straight forward since any case can be transformed into ifs and any for or repeat can be trans-
formed into whiles.

Another important control construct in Verilog is the fork-join. The fork-join introduces concur-
rency into the control sequence, i. e., multithreads of control. The reader should recall that all Verilog
initial and always constructs are already performed concurrently (conceptually each has its own control
unit). The fork-join is concurrency within a single initial or always construct.

fork
#1 A <= B;
#1 Q <= P;
#1 C <= D;

join

The fork sends the control pulse n ways, one for each statement inside (can be begin-end constructs).

in 3 pulses out

Fig. 12 Portion of hardwired control unit for a three-way fork.

Rule 6: For a fork, the control pulse is sent n ways.

The join synchronizes the control pulse after all n pulses have arrived. This is performed by a special
circuit.

Realization of Verilog HDL Computation Model Page 11

3 pulses in synchronizing
unit

system clock

1 pulse out

Fig. 13 Portion of the hardware control unit for a three-way join.

Rule 7: For a join, the n control pulses are synchronized by a special circuit which passes along one
control pulse after all n pulses have arrived.

This concludes the design of the hardwired control unit.

6. Speeding Up the Machine

Fast performance is many times important, especially with CPUs. Many times, register transfers can
be performed in the same clock period. For example, given the following register transfers:

#1 A <= B; // first
#1 C <= D; // second

we can remove the second #1 and have the transfers done in the same clock period.

#1 A <= B;
 C <= D;

The semantics of the Verilog blocking assignment says to evaluate the right-hand sides and block all
the assignments to left-hand sides until the end of the current unit of simulation time. In our control unit,
we would eliminate the second D flip flop and the control lines for the two register transfers would origi-
nate from the same place, i. e., the Q output of the first D flip flop.

We can only remove #1s when there is no interference between registers, e. g., transferring to same
register, and no data dependencies , i. e., the results of one transfer is needed as argument to later transfer.
For example, a data dependency exist in the following:

#1 MA <= PC;
#1 MD <= Mem[MA];

because the results of the first transfer is needed in the second. In this case, one cannot remove the #1. If
one did, the MA in the second transfer would be the old value of the MA. However, one can do this:

#1 MA <= PC; PC <= PC + 1;

because both transfers use the old value of the PC. Remember with the Verilog blocking assignment
(<=), all the assignments to the left-hand sides are blocked until the end of the current unit of simulation
time.

We need to be careful with logical expressions in whiles and ifs because of possible data dependen-
cies. For example,

#1 IR <= MD;
if (IR[0:2] == 3’b100) begin

is probably not what was intended. The if statement compares the old value of the IR not the value set in
the previous line. Here we need to add a #1 in front of the if statement.

Realization of Verilog HDL Computation Model Page 12

Usually, we write our design using #1s liberally. After we have tested the design and are confident
that it works, then we carefully analyze the code and remove the #1s one at a time.

7. Conclusions

Given a complicated digital system description in Verilog, translating the Verilog code to the digital
circuit becomes very tedious and time consuming. Hence, the utility of automated tools to perform this
task. From the few examples shown, you should begin to see how the task of translating Verilog non-
blocking assignment statements, e. g., A<= B, to data unit could be automated. Similarly, you should be
able to see how to create the control unit circuits from the Verilog control sequence.

It is important to understand that our goal is to realize our Verilog code in digital circuits so we no
longer need to think in digital circuits. That is, we are developing a higher level of abstraction to think
about digital systems that are much more concise than digital circuits, e. g., sequential machines. A few
lines of Verilog code may translate into hundreds of flip flops, AND, OR and NOT gates. This Verilog
model is precise and concise -- the Verilog notation supplies the information for both the data unit and
the con trol unit associated with the control sequence. This approach is basically the one used in industry
to design digital integrated circuits, such as CPU chips. With automated tools, the Verilog code is
translated to the integrated circuit masks, say, for CMOS with p-channel and n-channel transistors.

