
Basic Information
Time & Place

Lecture: MW 2:00–3:15 pm, EGR-2116

Professor

Bruce L. Jacob: AVW-1333, blj@umd.edu
Office hours: Mon/Wed open-door policy

Teaching Assistant

Aparna Kotha, akotha@umd.edu

Class Home Page

http://www.ece.umd.edu/courses/enee646/

Class Email List

enee646-0101-fall11@coursemail.umd.edu

Class Schedule
is is a weekly schedule of my hours, including class time and scheduled office hours, but also
including other things that make me unavailable. It is subject to change.

MON TUE WED THU FRI

9–9:30

9:30–10

10–10:30

10:30–11

11–1:30

11:30–12

12–12:30

12:30–1

1–1:30

1:30–2

2–2:30

2:30–3

3–3:30

3:30–4

4–4:30

4:30–5

Meetings with
graduate students
Meetings with
graduate students
Meetings with
graduate students
Meetings with
graduate students

ENEE 646
Lecture CSI-2118

ENEE 646
Lecture CSI-2118

Meetings with
graduate students

ENEE 646
Lecture CSI-2118

ENEE 646
Lecture CSI-2118

Meetings with
graduate students

ENEE 646
Lecture CSI-2118

ENEE 646
Lecture CSI-2118

Meetings with
graduate students
Meetings with
graduate students

ENEE 646: Digital Computer Design — Course Syllabus

1

Course Syllabus
ENEE 646: Digital Computer Design, Fall 2011
Prof. Bruce Jacob

mailto:blj@ece.umd.edu
mailto:blj@ece.umd.edu
mailto:akotha@umd.edu
mailto:akotha@umd.edu
http://www.ece.umd.edu/courses/enee359a/
http://www.ece.umd.edu/courses/enee359a/

Course Overview
is course covers the architecture and design of microprocessors, memory hierarchies, and system-
level software. It is intended to give you a solid understanding of how digital computers are
implemented today. We will cover concepts such as pipelines, caching, superscalar execution, out-of-
order execution, very-long-instruction-word architectures (VLIW), precise interrupts, and low-level
operating system mechanisms.
You will learn these concepts by not only reading about them but by building them; you will
partially design and “build” simple computers at various levels of sophistication. You will build a
simple machine, then a pipelined machine, and then you will have the opportunity to improve on a
design reflecting current thinking in high-performance microprocessors. e term “building” in this
course will mean implementing your design using the Verilog hardware description language (HDL).
Building in Verilog (or in any HDL, for that matter) is interesting for several reasons. First, you must
be infinitely more precise in your design than if you built the model in a high-level language such as
C. is is good because it forces you to understand all the finer points of your design and the
ramifications of your choices—if you are not thorough, it will not work. Second, the performance/
power/die-area results that you obtain are infinitely more believable than had you built the model in
a high-level language such as C. It is good to learn this because, historically, lots of money has been
spent on ideas that looked good on paper but whose implementations fell far short of projected
measurements. Lastly, an HDL implementation is just steps away from actual silicon.

Prerequisites
Students must have knowledge of digital logic design and computer organization. You should
understand digital design concepts such as multiplexers, gates, boolean algebra, finite-state machines,
and flip-flops. You should understand fundamental computer organization: what the program
counter is, what a register file is for, how busses are used, what happens in the hardware to effect
instruction execution, etc. It would help if you also understand and are reasonably fluent in
programming C or Perl, because Verilog is very C-like (as is Perl).

Course Material
e required text for the course:

Memory Systems: Cache, DRAM, Disk, by Jacob Ng, & Wang.
Due to the tremendous advancements in processor design over the past 3–4 decades, the processor is
no longer the system bottleneck that it perhaps once was. It has not, in fact, been a significant
bottleneck for most applications for over twenty years; rather, the memory system has. Memory
Systems is one of the few texts that treat the topic in significant detail. It also has more than enough
information on processor pipeline design to serve as a general, introductory architecture text. 0A
highly recommended complementary text:

Computer Architecture: A Quantitative Approach, 4th Ed., by Hennessy and Patterson.
is is a widely used textbook that describes in reasonable detail most of today’s thinking in high-
performance architecture. It is a good, solid book and is valuable as a reference for later on.
Because it is often worthwhile to go to the horse’s mouth for information, when discussing some
high-performance designs, we will go to the original descriptions of those designs, written by the
designers. For example, I will hand out copies of papers describing Tomasulo’s hardware algorithm
for out-of-order execution, Smith and Pleszkun’s reorder buffer for precise interrupts, and Sohi &
Vajapeyam’s register update unit for providing both out-of-order execution and precise interrupts.

ENEE 646: Digital Computer Design — Course Syllabus

2

For learning Verilog, there is a brief handout on the course website, and I recommend the following
very, very highly:

Verilog Styles for Synthesis of Digital Systems, by Smith & Franzon.

Class Projects
Four projects will be assigned during the term, each of which will require a substantial time
commitment on your part. You will find the work load in this course to be extremely heavy.

• Project 1: C-language implementation of a simple assembler, and
 Verilog implementation of a simple CPU

• Project 2: Verilog implementation of a pipelined CPU
• Project 3: Addition to Project 2 of caches and precise-interrupt support, and

 assembly-code implementation of an operating system’s TLB-miss handler
• Project 4: Student-defined project

e most common reason for not doing well on projects is not starting them early enough. You are
given plenty of time to complete each project. However, if you wait until the last minute to start, you
will not be able to finish. Plan to do some work on a project every day. Also plan to have it finished
at least 1 week ahead of the due date—many unexpected problems arise during the debugging phase.
e computing sites can become quite crowded as deadlines approach, making it difficult to get a
computer. Plan for these things to happen. Your lack of starting early is not an excuse for turning in
your project late, even if unfortunate situations arise such as computer crashes.
ere are many sources of help on which you can draw. Simple questions can be submitted to the
professor and fellow classmates via email (use the email list given on page 1). ese will typically be
answered within the day, often more quickly during working hours. Keep in mind, however, that
many types of questions cannot be answered without seeing your project. If you have detailed
questions, your best option is to speak to the professor in person during office hours. Bring along a
listing of your project and the output from a run if available. Students are also encouraged to help
one another. One of the best ways for you to make sure that you understand a concept is to explain it to
someone else. Keep in mind, however, that you should not expect anyone else to do any part of your
project for you. e project that you turn in must be your own.
Projects are due at 5:00 pm on the due date. We will allow a grace period and accept projects until
11:59 pm. Sometimes unexpected events make it difficult to get a project in on time. For this reason,
each person will have a total of 3 free late days to be used for projects throughout the semester. ese
late days should only be used to deal with unexpected problems such as computer crashes,
illness, or submission problems. ey should not be used simply to start later on a project or
because you are having difficulty completing the project. Projects received after the due date
(assuming that you have no late days left) will receive a zero, even if it is just one second late. I advise
you to save at least one or two late days for the last project. Weekend days are counted in exactly the
same way as weekdays (e.g. if the project deadline is Friday and you turn it in Sunday, that’s two days
late). You will be submitting your projects electronically via email attachment.
e projects will be graded primarily for correctness: doing all the required tasks, simulating at the
correct hardware level, and giving correct results.

Exams
You are expected to take both the midterm and final exams at the scheduled times. Unless a
(documented) medical or personal emergency is involved in your missing an exam, you will receive a

ENEE 646: Digital Computer Design — Course Syllabus

3

zero for that exam. If you anticipate conflicts with the exam time, you must come talk to the
instructor about it at least 1 month before the exam date. e exam dates are given at the beginning
of the term so that you can avoid scheduling job interviews or other commitments on exam days.
Outside commitments are not considered a valid reason for missing an exam. Exams will be closed
book, closed notes.

Grading Policy
Final grades will be based on the total of points earned on the projects and exams. e tentative
point breakdown is as follows:

• Projects: 50%
• Midterm Exam: 25%
• Final Exam: 25%

Incompletes will generally not be given. According to university policy, doing poorly in a course is
not a valid reason for an incomplete. If you are having problems in the course, your best bet is to
come talk to the instructor as soon as you are aware of it.

Tentative Lecture Schedule

Week of Subject Readings Projects

Aug 29 Intro: overview of course Overview P1 out

Sep 5 Intro continued: overview of topics and the Verilog language Ch. 27

Sep 12 What is important: performance/power/cost Ch. 28 P1 due, P2 out

Sep 19 Processor implementation: pipelines

Sep 26 Processor implementation: pipelines

Oct 3 Processor implementation: caches & memory management Ch. 31.1

Oct 10 Operating systems: the use of interrupts Ch. 31.2 P2 due, P3 out

Oct 17 Review & Midterm (Oct. 19, in class)

Oct 24 Operating systems: memory management Ch. 31.1

Oct 31 Operating systems: processes & protection

Nov 7 Memory systems: Caches Chs. 1 & 2 P3 due, P4 out

Nov 14 Memory systems: DRAM devices & systems Ch. 7

Nov 21 Instruction-level parallelism: origins & today Handouts

Nov 28 Instruction-level parallelism: software mechanisms Handouts

Dec 5 Project Presentations, Final Review P4 due

Exams Final Exam (Monday, Dec 19, 1:30pm-3:30pm, in classroom)

Special Needs
If you have a documented disability that requires special needs, please see me as soon as possible, and
certainly no later than the third week of classes.

ENEE 646: Digital Computer Design — Course Syllabus

4

