
ENEE 446: Digital Computer Design — IBM 360/91’s Out-of-Order Fixed-Point Pipe

e and
d on
ine

write
on and
from

riting
write
writes

nts that
ad an

is the

a bit

line,
ns in

IBM 360/91’s Out-of-Order Fixed-Point Pipe
ENEE 446: Digital Computer Design, Fall 2000
Prof. Bruce Jacob
This is a guess (my guess) as to the implementation of the out-of-order instruction issu
commit mechanism in IBM’s System/360 Model 91, fixed-point pipeline. The guess is base
the text and figures 2, 3, 6 and 7 in the article “The IBM System/360 Model 91: Mach
Philosophy and Instruction-Handling” by Anderson, Sparacio, and Tomasulo.

The fundamental problem is this: how does the system know when a given instruction may
to the general-purpose register file? The pipeline has in-order enqueue, out-of-order executi
completion, and it synchronizes through the register file: instructions reading their operands
the register file do not obtain them from forwarding paths. The pipeline enforces coherent w
to the register file by scheduling when instructions that would otherwise cause a write-after-
hazard are allowed access to the register file. The article mentions that each instruction that
to a GPR increments a counter associated with that register during decode and decreme
counter at the time of register file update, and the article says that no instruction may re
operand from a GPR unless its associated counter has returned to zero. What is missing
mechanism by which an instruction knows that it is its turn to write its result into the GPR.

The paper does not give a detailed diagram of the fixed-point pipeline ... the diagrams are
simple, but this is probably enough detail (taken from figure 2):

For comparison, here is the floating-point pipeline, taken from figure 3:

We’ll assume for the moment that the fixed-point pipeline is similar to the floating-point pipe
as is suggested by the general flow shown in figure 2. Here is the behavior of four instructio

INSTRUCTION 1

GENERATE I-ADDRESS1

INSTRUCTION ACCESS1

DECODE & GENERATE OPERAND ADDRESS1

OPERAND ACCESS1

EXECUTE INSTRUCTION1

RESULT1 AVAILABLE

INSTRUCTION 2

GENERATE I-ADDRESS2

INSTRUCTION ACCESS2

DECODE & GENERATE OPERAND ADDRESS2

OPERAND ACCESS2

EXECUTE INSTRUCTION2

RESULT2 AVAILABLE

INSTRUCTION 3

GENERATE I-ADDRESS3

INSTRUCTION ACCESS3

DECODE & GENERATE OPERAND ADDRESS3

OPERAND ACCESS3

EXECUTE INSTRUCTION3

RESULT3 AVAILABLE

FLOATING
EXECUTION

TRANSMIT
INST. TO FLOATING

DECODE EXECUTION
HARDWARE

MOVE INST.
TO

WAIT FOR
OPERAND

ARITHMETIC
UNIT

GENERATE
INST.

ADDRESS

INSTRUCTION
ACCESS

MOVE
INST.
TO

DECODE
AREA

DECODE
INST

GENERATE
OPERAND
ADDRESS

OPERAND
ACCESS

STORAGE
OPERAND
RETURN

INSTRUCTION
EXECUTION

TRANSMIT
OPERAND

TO
EXECUTION
HARDWARE

60 NSEC

EXECUTION
DECODE
ISSUE TO

ARITHMETIC
UNIT
1

ENEE 446: Digital Computer Design — IBM 360/91’s Out-of-Order Fixed-Point Pipe

his

talled
n that
his is

ented
o the
o, or,
very
ction
, see
ow a

ove
lays

nts the
pose
at hold
at the
tion
ny
ess, the
nt their

s are
. The
red in

same
ult to
This
the fixed-point pipeline, three of which write to GPR X, the last of which reads from GPR X. T
figure is adapted (and extrapolated) from figures 6 and 7:

The figure clearly shows that instruction decode (and therefore instruction enqueue) is s
until the requested read-register is free of hazards—i.e., decode is stalled until it is know
there are no more outstanding instructions that wish to write to the desired register. T
accomplished by the use of a counter associated with each register. The counter is increm
during the DECODE-1 phase whenever an instruction is decoded that wishes to write t
register. An instruction may only read from the register if its associated counter value is zer
presumably, if it happened to be the instruction that incremented it to 1. This mechanism is
clear from the article. Moreover, instruction issue/dispatch—the act of sending a ready instru
to a functional unit—can be done out of order. This is also clear from the article (for example
figure 7). However, what the article does not describe in detail is the commit mechanism—h
given instruction “knows” when it is allowed to write to a GPR. For instance, in the ab
example, instruction N completes execution after instruction N+1, but instruction N+1 de
writing its result to the register file until N completes. How is this done?

Here is my guess. The counter behaves like a semaphore: when an instruction increme
counter, it also retains the counter’s previous value, which is used like a ticket at a deli to im
order on instruction access to the shared resource (the register). The pipeline registers th
the state for an instruction also hold the previous value of the CTR variable for the GPR th
instruction targets. In the preceding example, instruction N would retain the value “0”; instruc
N+1 would retain the value “1”; and instruction N+2 would retain the value “2”. In ma
implementations of semaphores, when the resource is used and then released by a proc
other processes waiting in line for access to the resource are notified, and they decreme
counters. When a process’s counter reaches zero, it is allowed access to the resource.

We can imagine a similar scheme here, where the various copies of the X.ctr value
decremented whenever the corresponding register is written during instruction commit
counter values held by each instruction in the pipeline (e.g. the copies of X.ctr that are sto
each pipeline register) would need to be updated whenever another instruction writes to the
register in the general-purpose register file. For instance, when instruction N writes its res
GPR X, it broadcasts that fact—i.e. the register’s identifier: the value “X”—on a result bus.

INSTRUCTION FETCH DECODE-1 INSTRUCTION EXECUTE WRITE GPR

Instruction N: Reads from GPR-W, writes to GPR-X GPR-X.ctr++ GPR-X <- T
GPR-X.ctr--

Produce result T

INSTRUCTION FETCH DECODE-2DECODE-1 INSTRUCTION EXECUTE WRITE GPR

Instruction N+1: Reads from GPR-Y, writes to GPR-X GPR-X.ctr++ GPR-X <- U
GPR-X.ctr--

Read GPR-Y Produce result U

INSTRUCTION FETCH DECODE-2DECODE-1 INSTRUCTION EXECUTE WRITE GPR

Instruction N+2: Reads from GPR-Z, writes to GPR-X GPR-X.ctr++ GPR-X <- V
GPR-X.ctr--

Read GPR-Z Produce result V

INSTRUCTION FETCH DECODE-1

Instruction N+3: Reads from GPR-X, writes to GPR-W GPR-W.ctr++

STALL N+1 for OPERAND

STALL Instruction N+2 in EXECUTE

 STALL Instruction N+3 in DECODE DECODE-2

Read GPR-X

INSTRUCTION FETCH

Instruction N+4

STALL Instruction N+4 in FETCH DECODE-1

X.ctr = 0 X.ctr = 1 X.ctr = 2 X.ctr = 3 X.ctr = 0X.ctr = 1X.ctr = 2X.ctr = 3

DECODE-2

Read GPR-W

STALL N+1 in EXECUTE
2

ENEE 446: Digital Computer Design — IBM 360/91’s Out-of-Order Fixed-Point Pipe

-X)
n be

few
the

lding.
his is

ated,
ion
has
s its
vious
stalls
le, it
local
When
vior

gister
ction
tions
s at

ounter
indicates to all instructions in the system (some of which might be waiting to write to GPR
that the current “lock-holder” for GPR-X has given up the lock. Note that only one result ca
written to the register file at a time, and the register number is a small value requiring only a
bits, so this is relatively efficient. Continuing with the example, any instruction that targets
register GPR X would see this broadcast and decrement the local value for CTR that it is ho
Once that value reaches zero, the instruction may write its result back to the register file. T
illustrated below.

The figure shows the local value of CTR for each instruction during each cycle. As indic
instruction N retains the value “0”; instruction N+1 initially retains the value “1”; and instruct
N+2 initially retains the value “2”. When it approaches the WRITE-GPR stage, instruction N
the local value “0” in its pipeline register, which indicates that it can write to GPR-X as soon a
result is ready. Instruction N+1 reaches the end of the EXECUTE stage before the pre
instruction is finished, however, and because its local copy of CTR has a non-zero value, it
waiting for access to the register file. When the previous instruction writes to the register fi
broadcasts the value “X”, and this fact is noted by instruction N+1, which decrements its
copy of CTR because its target matches the value on the bus: its target register is GPR-X.
its local copy of CTR is zero, instruction N+1 commits its result to the register file. The beha
of instruction N+2 is similar.

When instruction N+3 enters the DECODE phase, it is noted that it targets a different re
(GPR-W), but it reads from GPR-X. Because the global value of X.ctr is non-zero, the instru
stalls in the DECODE phase. Note that when the value “X” is broadcast by other instruc
when they write to GPR-X, instruction N+3 does not respond: its local copy of CTR remain
zero. This is because its CTR value corresponds to GPR-W, not GPR-X. Once the global c
X.ctr is zero, instruction N+3 is allowed to read from the register file.

INSTRUCTION EXECUTE

Produce result U

CTR=1

INSTRUCTION FETCH DECODE-1 INSTRUCTION EXECUTE WRITE GPR

Instruction N: Reads from GPR-W, writes to GPR-X GPR-X.ctr++ GPR-X <- T
GPR-X.ctr--

Produce result T

INSTRUCTION FETCH DECODE-2DECODE-1 WRITE GPR

Instruction N+1: Reads from GPR-Y, writes to GPR-X GPR-X.ctr++ GPR-X <- U
GPR-X.ctr--

Read GPR-Y

INSTRUCTION FETCH DECODE-2DECODE-1 INSTRUCTION EXECUTE WRITE GPR

Instruction N+2: Reads from GPR-Z, writes to GPR-X GPR-X.ctr++ GPR-X <- V
GPR-X.ctr--

Read GPR-Z Produce result V

INSTRUCTION FETCH DECODE-1

Instruction N+3: Reads from GPR-X, writes to GPR-W GPR-W.ctr++

STALL N+1 for OPERAND

STALL Instruction N+2 in EXECUTE

 STALL Instruction N+3 in DECODE DECODE-2

Read GPR-X

INSTRUCTION FETCH

Instruction N+4

STALL Instruction N+4 in FETCH DECODE-1

X.ctr = 0 X.ctr = 1 X.ctr = 2 X.ctr = 3 X.ctr = 0X.ctr = 1X.ctr = 2X.ctr = 3

DECODE-2

Read GPR-W

BCAST ‘X’

BCAST ‘X’RECV ‘X’

CTR=0 CTR=0 CTR=0

CTR=1 CTR=1 CTR=1

CTR=2 CTR=2 CTR=2 CTR->1 CTR->0
BCAST ‘X’

CTR->0

RECV ‘X’ RECV ‘X’

CTR=0 CTR=0

CTR=0

CTR=0

CTR=0

CTR=0

STALL N+1 in EXECUTE
3

	IBM 360/91’s Out-of-Order Fixed-Point Pipe
	ENEE 446: Digital Computer Design, Fall 2000 Prof. Bruce Jacob

