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CHAPTER 30

Analysis of Cost and
Performance

30.1

The characterization of different machine configurations is at the heart of com-
puter-system design, and so it is vital that we as practitioners do it correctly. Accu-
rate and precise characterizations can provide deep insight into system behavior,
enable correct decision making, and ultimately save money and time. Failure to
accurately and precisely describe the system under study can lead to misinterpreta-
tions of behavior, misdirected attention, and loss of time and revenue. This chapter
discusses some of the metrics and tools used in computer-system analysis and
design, from the correct form of combined multi-metric figures of merit to the phi-
losophy of performance characterization.

Combining Cost and Performance

The following will be obvious in retrospect, but it quite clearly needs to be said,
because all too frequently work is presented that unintentionally obscures informa-
tion: when combining cost and performance metrics into a single figure of merit,
one must take care to treat the separate metrics appropriately. The same reasoning
presented in this section lies behind other well-known metric-combinations such as
energy-delay product and power-delay product.

To be specific, if combining performance and cost into a single figure of merit, one
can only divide cost into performance if the choice of metric for performance
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grows in the opposite direction as the metric for cost. For example, consider the fol-
lowing:

Bandwidth per pin
MIPS per square millimeter

+ Transactions per second per dollar

Bandwidth is good if it increases, while pin count is good if it decreases. MIPS is
good if it increases, while die area (square millimeters) is good if it decreases.
Transactions per second is good if it increases, while dollar cost is good it if
decreases. The combined metrics give information about the value of the design
they represent, in particular how that design might scale. The figure of merit band-
width per pin suggests that twice the bandwidth can be had for twice the cost (i.e.,
doubling the number of pins); the figure of merit IPC per square millimeter sug-
gests that twice the performance can be had by doubling the number of on-chip
resources; the figure of merit transactions per second per dollar suggests that the
capacity of the transaction-processing system can be doubled by doubling the
cost of the system; and, to a first order, these implications tend to be true.

If we try to combine performance and cost metrics that grow in the same direction,
we cannot divide one into the other; we must multiply them. For example, consider
the following:

Execution time per dollar (bad)
* CPI per square millimeter (bad)
Request latency per pin (bad)

On the surface, these might seem to be reasonable representations of cost-perfor-
mance, but they are not. Consult the following table, which has intentionally vague
units of measurement:

System in Performance per Performance-Cost

Question Performance Cost Cost Product

System A 2 units 2 things 1 unit per thing 4 unit-things

System B 2 units 4 things 1/2 unit per thing 8 unit-things

System C 4 units 2 things 2 units per thing 8 unit-things

System D 4 units 4 things 1 unit per thing 16 unit-things
For example, assume “performance” is in execution time and that “cost” is in dol-
lars, an example corresponding to the first “bad” bullet above. Dividing dollars into
execution time (performance per cost, fourth column) suggests that systems A and
D are equivalent. And yet system D takes twice as long to execute and costs twice
as much as system A—it should be considered four times worse than system A.
Note that the values in the last column do suggest that relationship. Similarly, con-
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30.2

sider “performance” as CPI and “cost” as die area (second “bad” bullet above).
Dividing die area into CPI (performance per cost, fourth column) suggests that sys-
tem C is four times worse than system B (its CPI per square millimeter value is four
times higher). However, put another way, system C costs half as much as system B
but has half the performance as B—so the two should be equivalent, which is pre-
cisely what is shown in the last column.

Using a performance-cost product instead of a quotient gives the results that are
appropriate and intuitive:

Execution-time-dollars
CPI-square-millimeters

* Request-latency-pin-count product

Note that, when combining multiple atomic metrics into a single figure of merit,
one is really attempting to cast into a single number the information provided in a
Pareto plot, where each metric corresponds to its own axis. Collapsing a multi-
dimensional representation into a single number itself obscures information, even if
done “correctly,” and thus we would encourage a designer to always use Pareto
plots when possible. This leads us to the following section.

Pareto Optimality

This section reproduces part of the Overview chapter, for the sake of completeness.

The Pareto-Optimal Set: an Equivalence Class

It is convenient to represent the “goodness” of a design solution, a particular system
configuration, as a single number so that one can readily compare the number with
the “goodness” ratings of other candidate design solutions and thereby quickly find
the “best” system configuration. Howeyver, in the design of memory systems, we are
inherently dealing with a multi-dimensional design space (e.g., one that encom-
passes performance, energy consumption, cost, etc.), and so using a single number
to represent a solution’s worth is not really appropriate, unless we assign exact
weights to the various metrics (which is dangerous and will be discussed in more
detail later) or unless we care about one aspect to the exclusion of all others (e.g.,
performance at any cost).

Assuming that we do not have exact weights for the figures of merit and that we do
care about more than one aspect of the system, a very powerful tool to aid in system
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FIGURE 30.1: Pareto optimality. Members of the Pareto-optimal set are shown in solid black; non-optimal points are
grey.

analysis is the concept of Pareto optimality or Pareto efficiency, named after the
Italian economist, Vilfredo Pareto, who invented it in the early 1900’s.

Pareto optimality asserts that one candidate solution to a problem is better than
another candidate solution only if the first dominates the second: i.e., if the first is
better than or equal to the second in all figures of merit. If one solution has a better
value in one dimension but a worse value in another, then the two candidates are
Pareto-equivalent. The “best” solution is actually a set of candidate solutions: the
set of Pareto-equivalent solutions that are not dominated by any solution.

Figure 30.1 illustrates. Figure 30.1(a) shows a set of candidate solutions in a two-
dimensional space that represents a cost/performance metric: in this example, the
x-axis represents system performance in execution time (smaller numbers are bet-
ter), and the y-axis represents system cost in dollars (smaller numbers are better).
Figure 30.1(b) shows the Pareto-optimal set in solid black and connected by a line;
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the line denotes the boundary between the Pareto-optimal subset and the dominated
subset, with points on the line belonging to the dominated set (dominated data
points are shown in the figure as grey). In this example, the Pareto-optimal set
forms a wavefront that approaches both axes simultaneously. Figures 30.1(c) and
30.1(d) show the effect of adding four new candidate solutions to the space: one
lies inside the wavefront, one lies on the wavefront, and two lie outside the wave-
front. The first two new additions, A and B, are both dominated by at least one
member of the Pareto-optimal set, and so neither is considered Pareto-optimal.
Even though B lies on the wavefront, it is not considered Pareto-optimal: the point
to the left of B has better performance than B at equal cost, and thus it dominates B.

The point C is not dominated by any member of the Pareto-optimal set, nor does it
dominate any member of the Pareto-optimal set; thus, candidate-solution C is
added to the optimal set, and its addition changes the shape of the wave-front
slightly. The last of the additional points, D, is dominated by no members of the
optimal set, but it does dominate several members of the optimal set, so D’s inclu-
sion in the optimal set excludes those dominated members from the set. As a result,
candidate-solution D changes the shape of the wave-front more significantly than
did candidate-solution C.

The primary benefit of using Pareto analysis is that, by definition, the individual
metrics along each axis are considered independently. Unlike the combination met-
rics of the previous section, a Pareto graph embodies no implicit evaluation of the
relative importance between the various axes. For example, if a 2D Pareto graph
plots cost on one axis and (execution) time on the other, a combined cost-time met-
ric (e.g., the cost Execution time product) would collapse the 2D Pareto graph into a
single dimension, with each value a in the 1D cost-time space corresponding to all
points on the curve y = o/x in the 2D Pareto space. The implication of representing
the data set in a 1D metric such as this is that the two metrics cost and time are
equivalent—that one can be traded off for the other in a 1-for-1 fashion. However,
as a Pareto plot will show, not all equally achievable designs lie on a 1/x curve.
Often, a designer will find that trading off a factor of two in one dimension (cost) to
gain a factor of two in the other dimension (execution time) fails to scale after a
point or is altogether impossible to begin with. Collapsing the data set into a single
metric will obscure this fact, while plotting the data in a Pareto graph will not. Fig-
ure 30.2 illustrates. Real data reflects realistic limitations, such as a non-equal
trade-off between cost and performance. Limiting the analysis to a combined met-
ric in the example data set would lead a designer toward designs that trade off cost
for execution time, when perhaps the designer would prefer to choose lower-cost
designs.

A related observation (credited to Tim Stanley, a former graduate student in the
University of Michigan’s Advanced Computer Arhitecture Lab) is that require-
ments-driven analysis can similarly obscure information and potentially lead
designers away from optimal choices. When requirements are specified in language
such as not to exceed some value of some metric (such as power dissipation or die
area or dollar cost), a hard line is drawn that forces a designer to ignore a portion of
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Cost Cost

Execution time Execution time

FIGURE 30.2: Pareto Analysis vs. Combined Metrics. Combining different metrics into a single figure of merit obscures informa-
tion. For example, representing the given dataset with a single cost-time product would equate by definition all designs lying on each
1/x curve. The 1/x curve shown in solid black would divide the Pareto-optimal set: those designs lying to the left and below the curve
would be considered “better” than those designs lying to the right and above the curve. The design corresponding to data point “A;”
gi\éen a comhbined-metric analysis, would be considered superior to the design corresponding to data point “B,” though Pareto analysis
indicates otherwise.

the design space. However, the observation is that, as far as design exploration
goes, all of the truly interesting designs hover right around that cut-off. For
instance, if one’s design limitation is cost not to exceed X, then all interesting
designs will lie within a small distance of cost X, including small deltas beyond X.
It is frequently the case that small deltas beyond the cut-off in cost might yield large
deltas in performance. If a designer fails to consider these points, he may overlook
the ideal design.

30.3 Taking Sampled Averages Correctly

In the opening chapter of the book, we discussed this topic and left off with an
unanswered question. Here, we present the full discussion and give closure to the
reader. Like the previous section, so that this section can stand alone, we repeat
much of the original discussion.

In many fields, including the field of computer engineering, it is quite popular to
find a sampled average—i.e. the average of a sampled set of numbers, rather than
the average of the entire set. This is useful when the entire set is unavailable, or dif-
ficult to obtain, or expensive to obtain. For example, one might want to use this
technique to keep a running performance average for a real microprocessor, or one
might want to sample several windows of execution in a terabyte-size trace file.
Provided that the sampled subset is representative of the set as a whole, and pro-
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10 minutes idling
0 mph, 0 mpg

0

60 miles, 60 mph, 30 mpg

FIGURE 30.3: Course Taken by Automobile in Example.

vided that the technique used to collect the samples is correct, this mechanism pro-
vides a low-cost alternative that can be very accurate. This section demonstrates
that the technique used to collect the samples can easily be incorrect, and that the
results can be far from accurate, if one follows intuition.

The discussion will use as an example a mechanism that samples the miles-per-gal-
lon performance of an automobile under way. The trip we will study is an out &
back trip with a brief pit-stop, shown in Figure 30.3. The automobile will follow a
simple course that is easily analyzed:

1. The auto will travel over even ground for 60 miles, at 60 mph, and it will
achieve 30 mpg during this window of time.

2. The auto will travel uphill for 20 miles, at 60 mph, and it will achieve 10 mpg
during this window of time.

3. The auto will travel downhill for 20 miles, at 60 mph, and it will achieve 300
mpg during this window of time.

4. The auto will travel back home over even ground for 60 miles, at 60 mph, and
it will achieve 30 mpg during this window of time.

5. In addition, before returning home, the driver will sit at the top of the hill for
10 minutes, enjoying the view, with the auto idling, consuming gasoline at the
rate of one gallon every 5 hours. This is equivalent to 1/300 gallon per minute,
or 1/30 of a gallon during the 10-minute respite. Note that the auto will
achieve 0 mpg during this window of time.

Let’s see how we can sample the car’s gasoline efficiency. There are three obvious
units of measurement involved in the process: the trip will last some amount of
time (minutes), the car will travel some distance (miles), and the trip will consume
an amount of fuel (gallons). At the very least, we can use each of these units to pro-
vide a space over which we will sample the desired metric.
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FIGURE 30.4: Sampling MPG Over Time. The figure shows the trip in time, with each segment of time labeled with the
average miles-per-gallon for car during that segment of the trip. Thus, whenever the sampling algorithm samples MPG dur-
ing a window of time, it will add that value to the running average.

30.3.1

Sampling Over Time

Our first treatment will sample miles-per-gallon over time. Our car’s algorithm will
sample evenly in time, so for our analysis we need to break down the segments of
the trip by the amount of time that they take:

*  Outbound: 60 minutes
Uphill: 20 minutes
Idling: 10 minutes

* Downhill: 20 minutes

Return: 60 minutes

This is displayed graphically in Figure 30.4, in which the time for each segment
shown to scale. Assume, for the sake of simplicity, that the sampling algorithm
samples the car’s miles-per-gallon every minute and adds that sampled value to the
running average (it could just as easily sample every second or millisecond). Then
the algorithm will sample the value 30mpg 60 times during the first segment of the
trip; it will sample the value 10mpg 20 times during the second segment of the trip;
it will sample the value Ompg 10 times during the third segment of the trip; and so
on. Over the trip, the car is operating for a total of 170 minutes; thus we can derive
the sampling algorithm’s results as follows:

60 20 10 20 60

If we were to believe this method of calculating sampled averages, we would
believe that the car, at least on this trip, is getting roughly twice the fuel efficiency
of traveling over flat ground, despite the fact that the trip started and ended in the

988
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30.3.2

same place. That seems a bit suspicious and is due to the extremely high efficiency
value (300 mpg) accounting for more than it deserves in the final results: it contrib-
utes 1/3 as much as each of the over-flat-land efficiency values. More importantly,
the amount that it contributes to the whole is not limited by the mathematics; for
instance, one could turn off the engine and coast down the hill, consuming zero gal-
lons while traveling non-zero distance, and achieve essentially infinite fuel effi-
ciency in the final results. Similarly, one could arbitrarily lower the sampled fuel
efficiency by spending longer periods of time idling at the top of the hill—for
example, if the driver spent an hour at the top of the hill, the result would be signif-
icantly different.

60 20 60 20 60

Clearly, this method does not give us reasonable results.

Sampling Over Distance

Our second treatment will sample miles-per-gallon over the distance traveled. Our
car’s algorithm will sample evenly in distance, so for our analysis we need to break
down the segments of the trip by the distance that the car travels:

Outbound: 60 miles
Uphill: 20 miles
Idling: 0 miles
Downhill: 20 miles

Return: 60 miles

This is displayed graphically in Figure 30.5, in which the distance traveled during
each segment is shown to scale. Assume, for the sake of simplicity, that the sam-
pling algorithm samples the car’s miles-per-gallon every mile and adds that sam-
pled value to the running average (it could just as easily sample every meter or foot
or rotation of the wheel). Then the algorithm will sample the value 30mpg 60 times
during the first segment of the trip; it will sample the value 10mpg 20 times during
the second segment of the trip; it will sample the value 300mpg 20 times during the
third segment of the trip; and so on. Note that, because the car does not move dur-
ing the idling segment of the trip, its contribution to the total is not counted. Over
the duration of the trip, the car travels a total of 160 miles; thus we can derive the
sampling algorithm’s results as follows:

60 20 20 60
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10 samples
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FIGURE 30.5: Sampling MPG Over Distance. The figure shows the trip in distance traveled, with each segment of dis-
tance labeled with the average miles-per-gallon for car during that segment of the trip. Thus, whenever the sampling algo-
rithm samples MPG during a window, it will add that value to the running average.

This result is not far from the previous result, which should indicate that it, too,
fails to gives us believable results. The method falls prey to the same problem as
before: the large value of 300 mpg contributes significantly to the average, and one
can “trick” the algorithm by using infinite values when shutting off the engine. The
one advantage this method has over the previous method is that one cannot arbi-
trarily lower the fuel efficiency by idling longer periods of time: idling is con-
strained by the mathematics to be excluded from the average. Idling travels zero
distance, and therefore its contribution to the whole is zero. Yet this is perhaps too
extreme, as idling certainly contributes some amount to an automobile’s fuel effi-
ciency.

30.3.3 Sampling Over Fuel Consumption

Our last treatment will sample miles-per-gallon along the axis of fuel consumption.
Our car’s algorithm will sample evenly in gallons consumed, so for our analysis we
need to break down the segments of the trip by the amount of fuel that they con-
sume:

Outbound: 60 miles @ 30 mpg = 2 gallons

+ Uphill: 20 miles @ 10 mpg = 2 gallons
Idling: 10 minutes at 1/300 gallon per minute = 1/30 gallon
Downhill: 20 miles @ 300 mpg = 1/15 gallon

* Return: 60 miles @ 30 mpg = 2 gallons

This is displayed graphically in Figure 30.6, in which the fuel consumed during
each segment of the trip is shown to scale. Assume, for the sake of simplicity, that
the sampling algorithm samples the car’s miles-per-gallon every 1/30 gallon and
adds that sampled value to the running average (it could just as easily sample every
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10 samples Ompg 300 mpg 6.1 gallons
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FIGURE 30.6: Sampling MPG Over Fuel Consumed. The figure shows the trip in quantity of fuel consumed, with each
segment labeled with the average miles-per-gallon for car during that segment of the trip. Thus, whenever the sampling
algorithm samples MPG during a window, it will add that value to the running average.

gallon or ounce or milliliter). Then the algorithm will sample the value 30mpg 60
times during the first segment of the trip; it will sample the value 10mpg 60 times
during the second segment of the trip; it will sample the value Ompg once during
the third segment of the trip; and so on. Over the duration of the trip, the car con-
sumes a total of 6.1 gallons; using this rather than number of samples gives an alter-
native, more intuitive, representation of the weights in the average: the first segment
contributes 2 gallons out of 6.1 total gallons; the second segment contributes 2 gal-
lons out of 6.1 total gallons; the third segment contributes 1/30 gallons out of 6.1
total gallons; etc. We can derive the sampling algorithm’s results as follows:

1/30 1/15

(EQ 30.4)
This is the first sampling approach in which our results are less than the auto’s aver-
age fuel efficiency over flat ground. Less than 30 mpg is what we should expect,
since much of the trip is over flat ground, and a significant portion of the trip is
uphill. In this approach, the large MPG value does not contribute significantly to
the total, and neither does the idling value. Interestingly, the approach does not fall
prey to the same problems as before. For instance, one cannot “trick” the algorithm
by shutting off the engine: doing so would eliminate that portion of the trip from
the total. What happens if we increase the idling time to an hour?

2 2 6/30

1/15 2

(EQ 30.5)

Idling for longer periods of time affects the total only slightly, as is what one should
expect. Clearly, this is the best approach yet.

Memory Systems: Cache, DRAM, Disk — 6/9/06 991



CHAPTER 30: ANALYSIS OF COST AND PERFORMANCE

30.3.4

The Moral of the Story

So what is the real answer? The auto travels 160 miles, consuming 6.1 gallons; it is
not hard to find the actual miles-per-gallon achieved.

160miles

6.1gallons = 26.2mpg (EQ 30.6)

The approach that is perhaps the least intuitive (sampling over the space of gal-
lons?) does give the correct answer. We see that, if the metric we are measuring is
miles per gallon,

sampling over minutes (time) is bad;
sampling over miles (distance) is bad; but

+ sampling over gallons (consumption) is good.

Moreover (and perhaps most importantly), in this context, “bad” means “can be off
by a factor of two or more.”

The moral of the story is that if you are sampling the following metric:

da—t.a (EQ 30.7)

unit
then you must sample that metric in equal steps of dimension unit. To wit, if sam-
pling the metric miles per gallon, you must sample evenly in units of gallon; if
sampling the metric cycles per instruction, you must sample evenly in units of
instruction (i.e., evenly in instructions committed, not instructions fetched or exe-
cuted”); if sampling the metric instructions per cycle, you must sample evenly in
units of cycle; and if sampling the metric cache miss rate (i.e. cache misses per
cache access), you must sample evenly in units of cache access.

What does it mean to sample in units of instruction or cycle or cache access? For a
microprocessor, it means that one must have a count-down timer that decrements
every unit—i.e., once for every instruction committed, or once every cycle, or once
every time the cache is accessed—and on every epoch (i.e., whenever a predefined
number of units have transpired) the desired average must be taken. For an automo-
bile providing real-time fuel efficiency, a sensor must be placed in the gas line that
interrupts a controller whenever a predefined unit of volume of gasoline is con-
sumed.

*  The metrics must match exactly. The common definition of CPI is toral execution
cycles divided by the total number of instructions performed/committed and does not
include speculative instructions in the denominator (though it does include their
effects in the numerator).
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30.4

What determines the predefined amounts that set the epoch size? Clearly, to catch
all interesting behavior one must sample frequently enough to measure all impor-
tant events. Higher sampling rates lead to better accuracy, at a higher cost of imple-
mentation. How does sampling at a lower rate affect one’s accuracy? For example,
by sampling at a rate of once every 1/30 gallon in the previous example, we were
assured of catching every segment of the trip. However, this was a contrived exam-
ple where we knew the desired sampling rate ahead of time. What if, as in normal
cases, one does not know the appropriate sampling rate? For example, if the exam-
ple algorithm sampled every gallon instead of every small fraction of a gallon, we
would have gotten the following results:

%30 + %10 + %30 = 23.3mpg (EQ 30.8)

The answer is off the true result, but it is not as bad as if we had generated the sam-
pled average incorrectly in the first place (e.g., sampling in minutes or miles trav-
eled).

Metrics for Computer Performance

This section explains what it means to characterize the performance of a computer
and which methods are appropriate and inappropriate for the task. The most widely
used metric is the performance on the SPEC benchmark suite of programs; cur-
rently, the results of running the SPEC benchmark suite are compiled into a single
number using the geometric mean. The primary reason for using the geometric
mean is that it preserves values across normalization, but unfortunately it does not
preserve total run time, which is probably the figure of greatest interest when per-
formances are being compared.

Average Cycles per Instruction (average CPI) is another widely used metric, but
using this metric to compare performance is also invalid, even if comparing
machines with identical clock speeds. Comparing averaged CPI values to judge
performance falls prey to the same problems as averaging normalized values.

Instead of the geometric mean, either the harmonic or the arithmetic mean is the
appropriate method for averaging a set running times. The arithmetic mean should
be used to average times, and the harmonic mean should be used to average rates”
(“rate” meaning 1/time). In addition, normalized values must never be averaged, as
this section will demonstrate.
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30.4.1

Performance and the Use of Means

We want to summarize the performance of a computer; the easiest way uses a sin-
gle number that can be compared against the numbers of other machines. This typ-
ically involves running tests on the machine and taking some sort of mean; the
mean of a set of numbers is the central value when the set represents fluctuations
about that value. There are a number of different ways to define a mean value;
among them the arithmetic mean, the geometric mean, and the harmonic mean.

The arithmetic mean is defined as follows:

N
N
ArithmeticMean(ay, @y, as, ..., ay) = IT (EQ 30.9)
The geometric mean is defined as follows:
N
GeometricMean(ay, ay, as, ..., ay) = y Ha[ (EQ 30.10)
i
The harmonic mean is defined as follows
HarmonicMean(a,, a,, as, ..., ay) = —— (EQ 30.11)

N
N
!
2a
l
In the mathematical sense, the geometric mean of a set of n values is the length of
one side of an n-dimensional cube having the same volume as an n-dimensional
rectangle whose sides are given by the n values. As this is neither intuitive nor
informative, the wisdom of using the geometric mean for anything is questionable .
Its only apparent advantage is that it is unaffected by normalization: whether one

* A note on rates, in particular miss rate. Even though miss rate is a “rate,” it is not a rate
in the harmonic/arithmetic mean sense because (a) it contains no concept of time, and,
more importantly, (b) the thing a designer cares about is the number of misses (in the
numerator), not the number of cache accesses (in the denominator). The oft-chanted
mantra of “use harmonic mean to average rates” only applies to scenarios in which the
metric a designer really cares about is in the denominator. For instance, when a
designer says “performance” he is really talking about time, and when the metric puts
time in the denominator either explicitly (as in the case of instructions per second) or
implicitly (as in the case of instructions per cycle), the metric becomes a “rate” int eh
harmonic mean sense. For example, if one uses the metric cache-accesses-per-cache-
miss, this is a de facto rate, and the harmonic mean would probably be the appropriate
mean to use.
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normalizes by a set of weights first or by the geometric mean of the weights after-
ward, the result is the same.

This property has been used to suggest that the geometric mean is superior, since it
produces the same results when comparing several computers irrespective of which
computer’s times are used as the normalization factor [Fleming & Wallace 1986].
However, the argument was rebutted in [Smith 1988], where the meaninglessness
of the geometric mean was first illustrated.

In this book, we consider only the arithmetic and harmonic means. Since the two
are inverses of each other,

ArithmeticMean(a, a,, as, ...) = ! 1 (EQ 30.12)

. 1
Harmonszean(—, —_ =, ...
a) dy 4z

and since the arithmetic mean—the “average”—is more easily visualized than the
harmonic mean, we will stick to the average from now on, relating it back to the
harmonic mean when appropriate.

An Example
We begin with a simple illustrative example of what can go wrong when we try to
summarize performance. Rather than demonstrate incorrectness, the intent is to

confuse the issue by hinting at the subtle interactions of units and means.

A machine is timed running two benchmark tests and receives the following scores:

testl: 3 sec (most machines run it in 12 seconds)
test2: 300 sec (most machines run it in 600 seconds)

How fast is the machine? Let us look at different ways of calculating performance:

Method 1 —one way of looking at this is by the ratios of the running times:

testl: i test2: 300
12 " 600

The machine’s performance on test 1 is four times faster than an average machine,

its performance on test 2 is twice as fast as average, therefore our machine is (on
average) three times as fast as most machines.

*  Compare this to just one physical interpretation of the arithmetic mean; finding the
center of gravity in a set of objects (possibly having different weights) placed along a
see-saw. There are countless other interpretations which are just as intuitive and mean-
ingful.

Memory Systems: Cache, DRAM, Disk — 6/9/06 995



CHAPTER 30: ANALYSIS OF COST AND PERFORMANCE

Method 2 —another way of looking at this is by the ratios of the running times:

testl: i test2: @
12 600
The machine’s running time on test 1 is 1/4 the time it takes most machines, its run-
ning time on test 2 is 1/2 the time it takes most machines, so our machine (on aver-
age) takes 3/8 the time a typical machine does to run a program, or, put another
way, our machine is 8/3 (2.67) times as fast as the average machine.

Method 3 —yet another way of looking at this is by the ratios of the running times:

testl: i test2: @
12 600
The machine ran the benchmarks in a total of 303 seconds, the average machine
runs the benchmarks in 612 seconds, therefore our machine takes 0.495 the amount
of time to run the benchmarks as most machines do, and so is roughly twice as fast
as the typical machine (on average).

Method 4—and then you can always look at the ratios of the running times ...

How can these calculations seem reasonable and yet produce completely different
results? The answer is that they seem reasonable because they are reasonable; they
all give perfectly accurate answers, just not to the same question. Like in many
other areas, answers are not hard to come by —the difficult part is in asking the
right questions.

The Semantics of Means

In general, there are a number of possibilities for finding the performance, given a
set of experimental times and a set of reference times. One can take the average of

+ the raw times,
* the raw rates (inverse of time)*,
the ratios of the times (experimental time over reference),

or the ratios of the rates (reference time over experimental).

Each option represents a different question and as such gives a different answer;
each has a different meaning as well as a different set of implications. An average
need not be meaningless, but it may be if the implications are not true. If one under-

*  As indicated previously, we use the word rate to describe a unit where time is in the
denominator despite what may be in the numerator (unless it is also time, in which
case the unit is a pure number). Time and rate are related in that the arithmetic mean of
one is the inverse of the harmonic mean of the other.
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stands the implications of averaging rates, times, and their ratios, then one is less
apt to wind up with meaningless information.

In the following discussions, remember the correspondence between the arithmetic
and harmonic means:

ArithmeticMean(times) <> HarmonicMean(rates)

ArithmeticMean(rates) <> HarmonicMean(times)

The Semantics of Time

A set of times is a collection of numbers representing Time Taken per Unit Some-
things Accomplished. The information contained in their arithmetic mean is there-
fore On Average, How Much Time is Taken per Unit Somethings Accomplished;
the average amount of time it takes to accomplish a prototypical task.

“On Average” in this case is defined across Somethings and not Time. For example,
a book is read in two hours, another in four; the average is 3 hours per book. If
books similar to these are read continuously one after another and the reader’s
progress is sampled in fime (say once every minute) then the value of 4 hrs/book
will come up twice as often as the value of 2 hrs/book, giving an incorrect average
of 10/3 hours per book. However, if the reading time is sampled per book (say once
every book), the average will come out correctly.

Time is our concern when comparing the performance of computers. Though it is
just as important a measure of performance, we are not concerned with throughput
since juggling both would confuse the point. For this discussion, we want to know
how long it takes to perform a task, rather than how many tasks the machine can
perform per unit time. If the set of times is taken from representative programs,
then the average will be an accurate predictor of how long a typical program would
take, and thus it would indicate the machine’s performance.

The Semantics of Rate

A set of rates is in units of Somethings Accomplished per Unit Time, and the infor-
mation contained in their arithmetic mean is then On Average, How Many Some-
things You Can Expect to Accomplish per Unit Time. Here, the average is defined
across Time and not Somethings; if you intend to take the arithmetic mean of a set
of rates, the rates should represent instantaneous measures taken in Time and
should not represent measurements taken for every Something Accomplished.

Take the above book example; if we try to average 1/2 book per hour and 1/4 book
per hour (the values obtained if we sample over books), we obtain a measurement
of 3/8 books per hour; what good is this information? It cannot be combined with
the number of books we read to produce how long it should have taken (it took 6
hours, not 16/3 hours). This confusion arises because of an incorrect use of the
arithmetic mean.
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When measuring computers, we are generally presented with a set of values taken
per task completed—a set of benchmark results, each of which is the time taken to
perform one of several tests—not a set of instantaneous measurements of progress,
sampled every unit of time. Therefore, in general, finding the arithmetic mean of a
set of rates is not a good idea, as it will lead to erroneous and misleading results.
Use the harmonic mean of the execution times instead.

The Semantics of Ratios

Computer performance is often represented by a ratio of rates or times. It is a unit-
less number, and when the reference time is in the numerator (as in a ratio of rates)
the measurement means how much “faster” one thing is than another. When the ref-
erence time is in the denominator (as in a ratio of times) the measurement means
what fraction of time the machine in question takes to perform a task, relative to the
reference machine.

What does it mean to average a set of unitless ratios? The arithmetic mean of a set
of ratios is a weighted average where the weights happen to be the running times of
the reference machine. What information is contained in this value? If the reference
times are thought of as the expected amount of time for each benchmark, the
weighting might ensure that no benchmark result counts more than any other, and
the arithmetic mean would then represent what proportion of the expected time the
average benchmark takes.

30.4.2 Problems with Normalization

Problems arise if we take the average of a set of normalized numbers. The follow-
ing examples demonstrate the errors that occur. The first example compares the
performance of two machines, using a third as a benchmark. The second example
extends the first to show the error in using averaged CPI values to compare perfor-
mance. The third example is a revisitation of a recent proposal on this very topic.

Example 1: Average Normalized by Reference Times

There are two machines, A and B, and a reference machine. There are two
tests, T1 and T2, and we obtain the following scores for the machines:

Scenario I Test T1 Test T2
Machine A: 10 sec 100 sec
Machine B: 1 sec 1000 sec
Reference: 1 sec 100 sec

In scenario I, the performance of machine A relative to the reference machine
is 0.1 on test T1 and 1 on test T2. The performance of machine B relative to
the reference machine is 1 on test T1 and 0.1 on test T2. Since time is in the
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denominator (the reference is in the numerator), we are averaging rates, there-
fore we use the harmonic mean. The fact that the reference value is also in
units of time is irrelevant; the time measurement we are concerned with is in
the denominator, thus we are averaging rates.

The performance results of Scenario I:

Scenario I Harmonic Mean
Machine A: HMean(0.1, 1) =2/11
Machine B: HMean(1,0.1) =2/11

The two machines perform equally well. This makes intuitive sense; on one
test machine A was ten times faster, on the other test machine B was ten times
faster. Therefore they should be of equal performance. As it turns out, this line
of reasoning is erroneous.

Let us consider scenario II, where the only thing that has changed is the refer-
ence machine’s times (from 100 seconds on test T2 to 10 seconds):

Scenario IT Test T1 Test T2
Machine A: 10 sec 100 sec
Machine B: 1 sec 1000 sec
Reference: 1 sec 10 sec

Here, the performance numbers for A relative to the reference machine are
1/10 and 1/10, the performance numbers for B are 1 and 1/100, and these are
the results:

Scenario IT Harmonic Mean
Machine A: HMean(0.1, 0.1) = 1/10
Machine B: HMean(1, 0.01) = 2/101

According to this, machine A performs about 5 times better than machine B.
And if we try yet another scenario changing only the reference machine’s per-
formance on test T2, we obtain the result that machine A performs worse than
machine B.

Scenario 111 Test T1 Test T2 Harmonic Mean
Machine A: 10 sec 100 sec HMean(0.1, 10) = 20/101
Machine B: 1 sec 1000 sec HMean(1, 1) =1
Reference: 1 sec 1000 sec

The lesson: do not average test results that have been normalized.
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Example 2: Average Normalized by Number of Operations

The example extends even further; what if the numbers were not a set of nor-
malized running times but CPI measurements? Taking the average of a set of
CPI values should not be susceptible to this kind of error, because the num-
bers are not unitless; they are not the ratio of the running times of two arbi-
trary machines.

Let us test this theory. Let us take the average of a set of CPI values, in three
scenarios. The units are cycles per instruction, and since the time-related por-
tion (cycles) is in the numerator, we will be able to use the arithmetic mean.

The following are the three scenarios, where the only difference between each
scenario is the number of instructions performed in Test2. The running times
for each machine on each test do not change, therefore we should expect the

performance of each machine relative to the other to remain the same.

Scenario I Testl Test2 Arithmetic Mean
Machine A: 10 cycles 100 cycles AMean(10, 10) = 10 CPI
Machine B: 1 cycle 1000 cycles ~ AMean(1, 100) = 50.5 CPL
Instructions: 1 instr 10 instr Result: Machine A faster
Scenario II Test1 Test2 Arithmetic Mean
Machine A: 10 cycles 100 cycles AMean(10, 1) =5.5 CPI
Machine B: 1 cycle 1000 cycles ~ AMean(l1, 10) =5.5 CPI
Instructions: 1 instr 100 instr Result: Equal performance
Scenario III Testl Test2 Arithmetic Mean
Machine A: 10 cycles 100 cycles AMean(10, 0.1) =5.05 CPI
Machine B: 1 cycle 1000 cycles AMean(1, 1) =1 CPI
Instructions: 1 instr 1000 instr Result: Machine B faster

However, we obtain the anomalous result that the machines have different rel-
ative performances which depend upon the number of instructions that were
executed.

The theory is flawed. Average CPI values are not valid measures of computer
performance. Taking the average of a set of CPI values is not inherently
wrong, but the result cannot be used to compare performance. The erroneous
behavior is due to normalizing the values before averaging them. If instead we
average the running times before normalization, we get a value of 55 cycles
for Machine A, and a value of 500.5 cycles for Machine B. This alone is the
valid comparison. Again, this example is not meant to imply that average CPI
values are meaningless, they are simply meaningless when used to compare
the performance of machines.

1000

Memory Systems: Cache, DRAM, Disk — 6/9/06



30.4 METRICS FOR COMPUTER PERFORMANCE

Example 3: Average Normalized by Both Times & Operations

An interesting mathematical result is that, with the proper choice of weights
(weighting by instruction count when using the harmonic mean and weighting
by execution time when using the arithmetic mean), use of both the arithmetic
and harmonic means on the very same performance numbers —not the
inverses of the numbers —provides the same results. That is,

1
——— = Y o1 MIPS, (EQ 30.13)

EMIPlS -

where the expression on the left is the harmonic mean of a set of values, the
expression on the right is the arithmetic mean of the same set, wi; is the
instruction-count weight, and w¢, is the execution-time weight, as follows:

(EQ 30.14)

it

_ T
t_ETn
n

I, is the instruction count of benchmark x, and 7 is the execution time of
benchmark x.

The fact of this equivalence suggests that the average so produced is somehow
correct, in the same way that the geometric mean’s preservation of values
across normalization was used as evidence to support its use [Fleming & Wal-
lace 1986]. However, as shown in the sampled-averages section, just because
two roads converge on the same or similar answer should not be taken as proof
of correctness; it could always be that both paths are erroneous. Take, for exam-
ple, the following table, which shows the results for five different benchmarks
in a hypothetical suite.

Benchmark Instruction Time (sec) Individual
Count (10%) MIPS

1 500 2 250

2 50 1 50

3 200 1 200

4 1000 5 200

5 250 1 250

The overall MIPS of the benchmark suite is 2000 million instructions divided
by 10 seconds, or 200 MIPS. Taking the harmonic mean of the individual
MIPS values, weighted by each benchmark’s contribution to the total instruc-
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tion count, yields an average of 200 MIPS. Taking the arithmetic mean of the
individual MIPS values, weighted by each benchmark’s contribution to the
total execution time, yields an average of 200 MIPS. This would seem to be a
home run.

However, let’s skew the results by changing benchmark #2 so that its instruc-
tion count is 200 times larger than before, and its execution time is also 200
times larger than before. The table now looks like this:

Benchmark Instruction Time (sec) Individual
Count (10 MIPS

1 500 2 250

2 10,000 200 50

3 200 1 200

4 1000 5 200

5 250 1 250

This is the same affect as looping benchmark #2 two hundred times. However,
the total MIPS now becomes roughly 12000 million instructions divided by
roughly 200 seconds, or roughly 60 MIPS. Thus, though this mechanism is
very convincing, it is as easily spoofed as other mechanisms: the problem
comes from trying to take the average of normalized values and interpret it to
mean “performance.”

30.4.3 The Meaning of Performance

We have determined that the arithmetic mean is appropriate for averaging times
(which implies that the harmonic mean is appropriate for averaging rates), and that
normalization, if performed, should be carried out after the averaging. The question
arises: what does this mean?

When we say that the following describes the performance of a machine based
upon the running of a number of standardized tests (which is the ratio of the arith-
metic means, with the constant N terms cancelling out),

N
EOurTimei
i
5 (EQ 30.15)
ERefTimej
J

then we implicitly believe that every test counts equally, in that on average it is used
the same number of times as all other tests. This means that tests which are much
longer than others will count more in the results.
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Perspective: Performance is Time Saved

We wish to be able to say, “this machine is X times faster than that machine.”
Ambiguity arises because we are often unclear on the concept of performance.
What do we mean when we talk about the performance of a machine? Why do we
wish to be able to say this machine is X times faster than that machine? The reason
is that we have been using that machine (machine A) for some time and wish to
know how much time we would save by using this machine (machine B) instead.

How can we measure this? First, we find out what programs we tend to run on
machine A. These programs (or ones similar to them) will be used as the bench-
mark suite to run on machine B. Next, we measure how often we tend to use the
programs. These values will be used as weights in computing the average (pro-
grams used more should count more), but the problem is that it is not clear whether
we should use values in units of time or number of occurrences; do we count each
program the number of times per day it is used or the number of hours per day it is
used?

We have an idea about how often we use programs; for instance, every time we edit
a source file we might recompile. So we would assign equal weights to the word
processing benchmark and the compiler benchmark. We might run a different set of
3 or 4 n-body simulations every time we recompiled the simulator; we would then
weight the simulator benchmark 3 or 4 times as heavily as the compiler and text
editor. Of course, it is not quite as simple as this, but you get the point; we tend to
know how often we use a program, independent of how slowly or quickly the
machine we use performs it.

What does this buy us? Say for the moment that we consider all benchmarks in the
suite equally important (we use each as often as the other); all we need to do is total
up the times it took the new machine to perform the tests, total up the times it took
the reference machine to perform the tests, and compare the two results.

It does not matter if one test takes three minutes and another takes three days—if
the reference machine performs the short test in less than a second (indicating that
your new machine is extremely slow) and it performs the long test in three days and
six hours (indicating that your new machine is marginally faster than the old one),
the time saved is about six hours. Even if you use the short program a hundred
times as often as the long program, the time saved is still an hour over the old
machine.

The error is that we considered performance to be a value which can be averaged;
the problem is our perception that performance is a simple number. The reason for
the problem is that we often forget the difference between the following statements:

* on average, the amount of time saved by using machine A over machine B is ...

* on average, the relative performance of machine A to machine B is ...
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30.5

Rethinking Metrics for Performance

We usually know what we need to do; we are interested in how much of it we can
get done with this computer versus that one. In this context, the only thing that mat-
ters is how much time is saved by using one machine over another. The fallacy is in
considering performance a measure unto itself. Performance is in reality a specific
instance of the following:

¢ two machines,
e aset of programs to be run on them,

* and an indication of how important each of the programs is to us.

Performance is therefore not a single number, but really a collection of implica-
tions. It is nothing more or less than the measure of how much time we save run-
ning our tests on the machines in question. If someone else has similar needs to
ours, our performance numbers will be useful to them. However, two people with
different sets of criteria will likely walk away with two completely different perfor-
mance numbers for the same machine.

Rules to Live By

1. When presented with a number of times for a set of benchmarks, the appropri-
ate average is the arithmetic mean.

2. When presented with a number of rate ratios for a set of benchmarks (refer-
ence time over experimental time, such as in SPECmarks), sum the individual
running times and use the ratio of the sums (equivalent to the ratio of the arith-
metic means).

3. When presented with a number of time ratios for a set of benchmarks (experi-
mental time over reference time), sum the individual running times and use the
ratio of the sums (equivalent to the ratio of the arithmetic means).

4. When presented with a set of rates, the harmonic mean is appropriate.

Analytical Modeling and the Miss-Rate
Function

The classical cache miss-rate function, as defined by Stone, Smith, and others, is
M(x) = Bx“ for constants (3 and negative o and variable cache size x [Smith 1982,
Stone 1993]. This function has been shown to accurately describe the shape of the
cache miss rate as a function of cache size. However, this function, when used
directly in optimization analysis without any alterations to accommodate boundary

1004

Memory Systems: Cache, DRAM, Disk — 6/9/06



30.5 ANALYTICAL MODELING AND THE MISS-RATE FUNCTION

30.5.1

cases, can lead to erroneous results. This section presents the mathematical insight
behind the behavior of the function under the Lagrange multiplier optimization
procedure and shows how a simple modification to the form solves the inherent
problems.

Analytical Modeling

Numerous articles have been written about memory hierarchies”, generally focus-
ing on a two-level hierarchy. Most studies after 1980 used trace- and execution-
driven simulation to investigate such aspects of cache performance as multiproces-
sor cache coherence and replacement strategies. Benchmark-specific simulation
studies are valuable for understanding cache behavior on particular workloads, but
they are not easily applied to other workloads [Smith 1982].

Unlike execution traces, mathematical analysis lends itself well to understanding
cache behavior on general workloads, though such generality usually leads to less
accurate results. Many researchers have used such analysis on memory hierarchies
in the past. Chow showed that the optimum number of cache levels scales with the
logarithm of the capacity of the cache hierarchy [Chow 1974, 1976]. Garcia-
Molina and Rege demonstrated that it is often better to have more of a slower
device than less of a faster device [Garcia-Molina et al. 1987, Rege 1976]. Welch
showed that the optimal speed of each level must be proportional to the amount of
time spent servicing requests out of that level [Welch 1978].

A more recent mathematical analysis [Jacob et al. 1996] complements this earlier
work and provides intuitive understanding of how budget and technology charac-
teristics interact. The analysis is the first to find a closed-form solution for the size
of each level in a general memory hierarchy, given device parameters (cost and
speed), available system budget, and a measure of the workload’s temporal locality.
The model recommends cache sizes that surprise many people (including the
authors). In particular, with little money to spend on the hierarchy, the model rec-
ommends spending it all on the cheapest, slowest storage technology rather than
the fastest. This is contrary to the common practice of focusing on satisfying as
many references in the fastest cache level, such as the L1 cache for processors or
the file cache for storage systems. Interestingly, it does reflect what has happened in
the PC market, where processor caches have been among the last levels of the
memory hierarchy to be added.

The model provides intuitive understanding of memory hierarchies and indicates
how one should spend one’s money. Figure 30.7 pictures examples of optimal allo-
cations of funds across 3- and 4-level hierarchies (e.g. several levels of cache,
DRAM, and/or disk). The costs and access times for the technologies in the hierar-

* Articles by A. J. Smith [Smith 1982, Smith 1985] provide excellent overviews of CPU
and disk caches.

Memory Systems: Cache, DRAM, Disk — 6/9/06 1005



CHAPTER 30: ANALYSIS OF COST AND PERFORMANCE

Size of Level
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FIGURE 30.7: An Example of Solutions for Two Larger Hierarchies. A three-level hierarchy is shown on the left; a four-
level hierarchy is shown on the right. Between inflection points (at which it is most cost-effective to add another level to the
hierarchy) the equations are linear; the curves simply change slopes at the inflection points to adjust for the additional cost
of a new level in the hierarchy.

30.5.2

chy are constants and need only be “realistic” values: costs should monotonically
decrease and access times should monotonically increase as one moves down the
hierarchy (to a larger 7). The figures are applicable across all choices of technolo-
gies for the cache hierarchy using realistic values for costs and access times.

In general, the first dollar spent by a memory-hierarchy designer should go to the
lowest level in the hierarchy. As money is added to the system, the size of this level
should increase, until it becomes cost-effective to purchase some of the next level
up. From that point on, every dollar spent on the system should be divided between
the two levels in a fixed proportion, with more byfes being added to the lower level
than the higher level. This does not necessarily mean that more money is spent on
the lower level. Every dollar is split this way until it becomes cost-effective to add
another hierarchy level on top, and from that point on every dollar is split three
ways, with more bytes being added to the lower levels than the higher levels, until it
becomes cost-effective to add another level on top. Since real technologies do not
come in arbitrary sizes, hierarchy levels will increase as step functions approximat-
ing the slopes of straight lines.

The interested reader is referred to the article for more detail and analysis.
The Miss-Rate Function

As mentioned, there are many analytical cache papers in the literature, and many of
these use the classical miss-rate function M(x) = fx%. This function is a direct out-
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growth of the 30% Rule*, which states that successive doublings of cache size
should reduce miss rate by approximately 30%.

The function accurately describes the shape of the miss-rate curve, which repre-
sents miss rate as a function of cache size, but it does not accurately reflect the val-
ues at boundary points. Therefore the form cannot be used in any mathematical
analysis that depends on accurate values at these points. For instance, using this
form yields an infinite miss rate for a cache of size zero, whereas probabilities
reside in the [0,1] range. Caches of size less than one will have arbitrarily large
miss rates (greater than unity). While this is not a problem when one is simply
interested in the shape of a curve, it can lead to significant errors if one uses the
form in optimization analysis, in particular the technique of Lagrange multipliers.
This has lead some previous analytical cache studies to reach half-completed solu-
tions or (in several cases) outright erroneous solutions.

The classical miss-rate function can be used without problem provided that its form
behaves well, i.e. it must return values between 1 and O for all physically realizable
(non-negative) cache sizes. This requires a simple modification; the original func-
tion M(x) = Bx* becomes M(x) = (Bx + 1)*. The difference in form is slight, yet the
difference in results and conclusions that can be drawn are very large. The classical
form suggests that the ratio of sizes in a cache hierarchy is a constant; if one
chooses a number of levels for the cache hierarchy, then all levels are present in the
optimal cache hierarchy. Even at very small budget points, the form suggests that
one should add money to every level in the hierarchy, in a fixed proportion deter-
mined by the optimization procedure.

By contrast, when one uses the form M(x) = (Bx + 1) for the miss-rate function,
one reaches the conclusion that the ratio of sizes in the optimal cache hierarchy is
not constant; in fact, at small budget points, certain levels in the hierarchy should
not appear. At very small budget points, it does not make sense to appropriate one’s
dollar across every level in the hierarchys; it is better spent on a single level in the
hierarchy, until one has enough money to afford adding another level. This is the
conclusion reached in [Jacob et al. 1996].

* The 30% Rule, first suggested by Smith [1982], is the rule of thumb that every dou-
bling of a cache’s size should reduce the cache misses by 30%. Solving the recurrence
relation

0.7f(x) = f(2x) (EQ 30.1)

yields a polynomial of the form

f&) = px® (EQ 30.2)

where o is negative.
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The form of the miss-rate function M(x), intuitive explanation

The technique of Lagrange multipliers may be used in situations that obey certain
stipulations; the model does not support inequalities, and the functions involved
must be differentiable at all points of interest. For instance, if the function M(x) =
Bx“ is a staircase function, one cannot use it in Lagrange analysis.

First, assume that the miss-rate function has the form M(x) = px“ and is correct.
Clearly, this violates the differentiability assertion, but there are other compelling
reasons to find fault with the form. Note the §§ term: it is included in the function
because the problem is not mathematically restricted to any particular scale— val-
ues for x can be in bytes, kilobytes, megabytes, petabytes, or even something odd
like 3.14159 bits. The analysis must therefore allow cache sizes below 1, else it
eliminates from consideration a potentially large fraction of the solution space.

To continue, if the miss rate for a cache of size x is given by M(x) = Bx®, what then
is the miss rate for a cache of size zero? What is the miss rate for a cache of size
1/1024? If x is in units of megabytes, this is a very reasonable question. The form
M(x) = Bx® is perfectly content to return miss rates larger than unity when x is less
than one. Clearly, this is a critical weakness of the form.

A simple solution replaces x by x+1, yielding M(x) = B(x+1)*. There are two prob-
lems with this form, as with the form M(x) = Bx®. The first is that, to make M(x)
unitless, p must be in units that are dependent on o. This is not an enormous math-
ematical dilemma (for example, one could argue that x, cache size, should be unit-
less, which would solve the problem); nonetheless it is not particularly reassuring.
A more important problem is that, depending on the value of {3 (e.g. if p is larger
than 1), this form can also yield miss rates greater than unity. Perhaps most impor-
tantly, the form of the function does not guarantee the miss rate of a cache of size
zero to be unity; a cache of size zero will have a miss rate of 3, not 1 (miss rate is
only unity if 3 is defined to be 1, which is not particularly useful). The problem is
that the function does not behave properly at the boundary cases.

A solution is to scale x directly by [ so that x and 3 have identical (but inverted)
units. Therefore the numerator of the miss-rate function will have a value of 1 and
the minimum value for the denominator will be 1 (therefore the miss rate must be
equal to unity for x = 0 and less than unity for all x > 0). This gives us a well-
behaved form for the miss-rate function:

M(x) = (Bx+1)" (EQ 30.16)

This form behaves well for all realistic values of x, a, and § (meaning x =0, a < 0,
and 3 = 0). For a cache of size zero, it yields a miss rate of 1. For any finite cache
larger than zero, it yields values between 0 and 1 (0 < M(x) < 1), and as the cache
approaches infinite size, M(x) — 0.
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The form of the miss-rate function M(x), mathematical explanation

Since the miss rate is a decreasing function (ot is implicitly negative), we will
instead use a positive value for a in the following analysis to make the physical
implications more easily seen and to simplify the mathematics. Also for simplifica-
tion, we will use a form for the miss-rate function that divides x by f rather than
multiplying x by B; the only difference is that 3 cannot be 0.

The average access time of a hierarchy can be shown as a summation of miss prob-
abilities or a summation of integrals. Analysis using a summation of integrals can
be found elsewhere [Jacob et al. 1996]; this section will use the summation of miss
probabilities:

n+1
T, = E M (s; )t 5o=0 (EQ 30.17)

i=1

where there are n levels in the hierarchy (plus backing store), s; is the size/capacity
of level i in the hierarchy, and ¢ is the access time of level i in the hierarchy. Con-
sider both forms of the miss-rate function:

M) = ﬁq M) = — L (EQ 30.18)

o
x oy
B
First, we show the access-time using M; for the miss-rate.

B B

-1 : : B_.
T, =1t1+— t,+— I3+ o+t

(EQ 30.19)
o o
Sl S2 N

n+1
n

Note first that this yields arbitrarily large access times as the sizes of the cache lev-
els s; approach zero. This is unrealistic; a true cache hierarchy would have a maxi-
mum access time of #| + t, + 13 + ... + t,, + t,,,; (one would reference L1, discover
the item missing, reference L2, discover the item missing, reference L3, etc.).
Therefore if we use the M(x) = Bx“ form for the miss-rate function, we reach the
conclusion that hierarchies can be built with arbitrarily large access times.

Now we look at both access-time models using the second form for the miss-rate
function, M(x) = 1/(x/p + 1)*.

t t t t
T, = L2 3 g n#l (EQ 30.20)

(%0+l)a <%+1)a <%+1)a (%”+1>a

By simple inspection one can see that it is impossible to have a hierarchy with an
infinite access time: if all s; are zero (for i from O to 1), we reach the natural conclu-
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30.5.3

sion that the access time 7 equals #; + t, + f3 + ... + t,, + #,,1. Another nice thing
about this form is that we do not need to define a value for M(s(); we can simply
plug s into the miss-rate function directly without yielding disastrous results.

Since the values in the denominators are constrained to be greater than or equal to 1
for cache sizes greater than or equal to zero, it is intuitively clear that one cannot
create arbitrarily large access times as is the case with the previous miss-rate form.
However, one can choose values for s; that yield arbitrarily high values for 7. For
instance, we can choose the following for s; :

L1\
.= -1 EQ 30.21
S B[(thﬂ) } (EQ )

This yields arbitrarily large values for 7—a hierarchy that has an access time of X
times the slowest access time in the hierarchy (¢, ;). Clearly, this is impossible in
an actual system. However, note that since ¢; <, when i < n+1 this gives us 5; <0,
Vi (for X larger than 1) which is meaningful mathematically but not physically.

Recap

The use of the miss-rate form M(x) = px“ is erroneous. It yields impossibly large
miss rates (greater than unity) for small cache sizes and leads to inconsistent and
unrealistic physical interpretations; therefore a form that constrains the miss rate to
behave properly should be used. We suggest the form M(x) = (Bx + 1), alterna-
tively M(x) = (x/B + 1)%, both of which are guaranteed to give miss-rate values
between 1 and O for all physically meaningful values for x, o, and 8. The only dif-
ference between the two forms is that the second cannot handle cases where § = 0.

Interesting Side-Effect of Lagrange Analysis

Let us look further at the problem of not being able to specify inequalities when
using Lagrange multipliers. We may not restrict the values of x to be non-negative
or even non-zero; this leads to interesting results.

For this section, we return to a summation of integrals. The probability of accessing
level i is equal to the probability that the reference will miss in all the levels above
it:

f px)dx (EQ 30.22)

Si g

where p(x) is the probability density function, the differential of the cumulative
probability graph 1-M(x). The average system time spent per reference accessing
level i is thus the time to reference level i scaled by this probability:
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FIGURE 30.8: Behavior and Sensitivity of the Access Time Function. This is an example of the access time for a two-level hier-
archy, depending upon what proportion of money is spent on which level in the hierarchy. The curves represent constant budget val-
ues. As the budget increases, the sensitivity to hierarchy configuration decreases.

tifp(x)dx (EQ 30.23)

i-1

and the total system time spent per reference is the sum of the times across all lev-
els in the hierarchy:

o o0 0 0

T = tlfp(x)dx + tzfp(x)dx + t3fp(x)dx +oHt,, 1fp(x)dx (EQ 30.24)

So s 5y S,

The size of the bottom storage level n+1 does not appear in the equation, since this
level is assumed to contain all data, so s,,, ; is for all intents infinite. The time to ref-
erence this level does appear, scaled by the miss rate of the lowest cache level. As
we expect, backing store is only referenced on misses to the lowest cache level.

Fig 30.8 illustrates the behavior of the access time function 7 as affected by the
hierarchy organization. The graph illustrates a two-level hierarchy and the x-axis
represents the proportion of the budget spent on each level of the hierarchy.
Towards the left represents more money spent on the L2 cache, toward the right
represents more money spent on the L1 cache. The curves represent constant bud-
get values. The graph demonstrates the function’s reduced sensitivity to hierarchy
configuration as the budget increases.
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Access-Time of Hierarchy (cycles)
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FIGURE 30.9: Behavior of the access-time function for a two-level cache hierarchy. The different curves represent
different budgets. The curves are plotted beyond reasonable values (above 100%, below 0%) to show points that
Lagrangian analysis considers, even though they might not be realistic in physical terms.

The interesting thing is to look at the entire space considered by the analysis,
because budget cannot be restricted to a non-negative number, and neither can the
sizes of the various levels in the hierarchy. The wider view of access time T can be
plotted as shown in Figure 30.9, for a hierarchy of two levels. In this figure, the x-
axis shows the proportion of the budget spent on the Level-1 cache. 100 minus this
value is the proportion of the budget spent on the Level-2 cache. The curves plot
lines of constant budget and represent only the real portions of any complex num-
bers.

We show the x-axis scale beyond the realistic range of 0% to 100% to demonstrate
the behavior of the access-time function when one considers negative values for x
(as the method of Lagrange multipliers does). Note that many optimal points lie in
physically impossible locations—where the size of the one cache is negative in
order to make the size of the other cache larger. If the hierarchy access-time model
is to be believed, for small budget values the optimal point is where we have nega-
tive amounts of L1 cache in order to purchase more of L2 cache. For a budget of
size zero, this implies that the optimal point of the curve represents a non-zero hier-
archy size.

What does this mean? Very simply, it means that we should not be surprised when
our optimization technique locates these optimal points, suggesting absurd physical
dimensions (non-zero hierarchy sizes at zero budget, for instance). Why does this
happen? It does so because values for x are unrestricted, and therefore the values
for s; are similarly unrestricted —because the statement Vi s; = 0 is meaningless in
the context of Lagrange multipliers; the gradient of a half-space is undefined.
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