¢ as part of an address calculation,
has‘ not passed the execute
misses are another

meéiately 'ﬁfeﬁ@u&-

rtant aspects is the pipelin-  staac of the plpehne) Cache e
, in which a number of opera- major souige, of pipeline delay. ?‘%«a
auentially. A typical sequence One of the major problems in designing a CPU pipe-
of instruction feich, instruction fine is to ensure a steady flow of instructions to the initial
generation, operand fetch, ex-  stage of the pipeline. Such a flow can be either impeded
ipelining consists of ex-  Of interrupted for two reasons. The first is that the
ly,-with each in-  memory access time is so long that a request by the in-
sing (Figure 2). strucher fetch stage for another instruction will not be
inup satisfied in one PST. The second is that a change in the
expected sequence of instructions, due to a branch for
example, will cause the co ts of part of the pipeline to
be discarded, and h§¥pipeline to be reloaded. This
5 “‘branch probles#® is closely related to the timely fetch
‘ gits, since the penalty for a branch will de-
e time required to fetch the branch target.
e branch problem can be explained as the “‘execu-
7 of ?branch instruction, which consists of causing

eans 10 a
instructions

ruckion fetch unit to seiect a different instruction
instruction to execute. Thus, considering the
ions in

or failure to have an input
uses: the output of the.im-




gontinues by fetching instructions from the predicted
arget address.
This article presents a systematic approach to selecting
sod prediction strategies, which is based on 26 program
‘adidress traces grouped into four [BM 370 workloads {(sci-
satific, commercial, compiler, supervisor} and CDC 6400
-and DEC PDP-11 workloads. Results show the effective-
“ness of various prediction strategies, the number of past
‘hranches that should be remembered, the amount of
wate required for each, and the effect of workload and
branch type. Improvements of 5 to 20 percent can be ex-
‘pected in CPU petformance when a branch target buffer
« installed. Issués relating to the implementation of real
“brunch target buffers are also considered, as are alter-

native approaches.

Existing approaches to the branch problem

Loop buffers. A loop buffer is a small, very high speed

- huffer maintained by the instruction fetch stage of the
pipcling. A single loop bu ffer contains one set of sequen-
siab instructions, while multiple-loop buffers contain n
sequences, one per buffer, but the contents of the vari-
aus buffers need not be contiguous with each other. The
ioop buffer functions in twWo ways. First, it contains in-

lfél?]?e dructions sequentially ahead of the current instruction
nother fetch address; thus, instructions fetched in sequence will
o e available without the usual memory access time. Sec-
7 pipe- ond, it will recognize when the target of a branch falls
Cinitial within its contents (including backward branches} and
ipeded will defiver those instructions without accessing memaory.
at the Al instructions for a loop could be fetched entirely from
the in- this buffer; hence, the name ““loop buffer.”” Among the
not be machines using a loop buffer are the CDC Star-100 with
in the a buffer of 256 bytes,? the CDC-6600 with 60 bytes,? and
ch for the CDC-7600 with 12 60-bit words,*

fine to The Cray-1 maintains four loop buffers,” and replaces
. This their contents in a FIFO manner, (This structure can also
; fetch e considered to be a four-block, associative instruction
All de- cache.) The idea here is that a loop may consist of several
set. noncontiguous instruction sequences and may be better
execu- captured this way than by a mechanism that permits only
atising ane sequence.

uction

ng the Matltiple instruction streams. A normal pipeline suffers
onsin s branch penalty because for a conditional branch it
an ads must make a choice—the instruction fetch unit must

fetch either the next sequential instruction or the branch
rarget. A brute force approach to this problem is to
replicate the initial stages of the pipeline so that both the
sequential instruction and the potential branch target can
he fetched, decoded, and processed. However, this ap-
proach gives rise to three problems. The first is that the
pranch target cannot be fetched until its address is deter-
mined, which may require a compuiation, such as when
 displacement is added to both a base and index register.
This computation requires time even when all operands
arc available. Furiher delays may occur when operands
are not available, such as when an operand is the result
of an uncompleted instruction or when a memory feich is
- required. Contention delays are also a problem, for ex-
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ample, in accessing the register file. Also, additional
memory traffic is generated, further creating resource
contention.’

The second problem in replicating the initial stages of
the pipeline is that if instruction / is a branch instruction,
then additional branch instructions may need to enter
the pipeline (either part) before J can be resolved as
taken/not taken and its target determined. Riseman and
Foster® found that for a pipeline of typical length, more
than two branches would have to be processed this way
to vield a significant improvement, and the net amount
of hardware required would be impractical.

The third problem is that the cost of replicating signifi-
cant parts of the pipeline (including nstruction fetch, in-
struction decode, operand address generate) is substan-
tial, making this mechanism of questionable cost-effec-
{iveness.

Despite these problems, 2 number of machines follow
multiple instruction streams, including the IBM
370/168,° which can fetch one alternative instruction
path and the 1BM 3033,'° which can pursue two alter-
native instruction streams., The 3033 fetches an alter-
native instruction stream only when the stream is
predicted to be taken; the prediction depends on the
branch condition mask in the instruction, the operation
code, and the target address operand register. These
machines do not decode the alternative instruction
paths. Hughes'' proposes that fetching alternative in-
struction streams be combined with predictive informa-
tion from a branch target buffer so that the most likely

instruction stream is decoded.

Figure 1. Typical pipeline stages in a 370-like architecture.

Figure 2. Typical pipeline time sequence showing the in-
structions execuied per siage.




Prefetch branch target. Rather than replicate several
initial stages of the pipeline, we can duplicate only
enough logic to prefetch the branch target. That is, when
a branch is recognized, a special mechanism calculates
and prefetches the target of the branch; thus, if the
branch is found to be taken, the target is loaded im-
mediately into the instruction decode stage of the pipe,
with no additional delay for instruction fetch.'” Several
such prefetches can be accumulated along the main in-
struction sequence, but since the secondary {prefetched)
sequences are not decoded, no additional prefetches can
be generated there.

The IBM 360/91 uses this mechanism to prefetch a
double-word target.

Data fetch target. In the 1BM 370 architecture, the
“phranch conditional’” instruction has the same form as
the ““load’” or “add” (from memory) instruction; that is,
the target of the branch is computed in just the same way
as the memory-hased operand of the load or add. The
Amdahl 470 computers’™ use this feature to produce an
effect very much like the target prefeich mechanism of
the 360/91: the branch target is accessed as i it were an
ordinary operand; if the branch is taken, the target is
tonded inte the instruction decode stage of the pipeline,
rather than bring placed in a register, as for load, or be-
ing sent 1o the adder, as Tor add.

Prepare to branch. The Texas Instruments ASC com-
puter'™ uses two bulfers into which it alternately pre-
fetches instructions from memory. The *fprepare 10
pranch’ and “load look-nhead™ instruclions cimn cause
the machine Lo prefeteh from the branch target ral her
than to prefoteh sequentiafly. The effectivencss of this
scheme depends on the progeammer or the compiler cor-
reetly inserting these instructions.

Delaved branch. The problem with a branch is that il
instruction 7is a taken branch, then instruction 7+ will
be out of sequence, with the consequcnces just de-
sertbed. The instraction sel architecture can be specified
such that o branch is defined 1o affeet the address not of
instruction 7+ § but of iastruction £+ &, That i, con-
sidier a sequettee of instructions /1., /10, where /4 is
conditional branch whose target is 19, Assume that
branches are delayed two instruction times, making
k=2, and that 74 is a taken branch. Then the actual se-
guenee of instructions would ber fE, 72, 13, 14, 15,16,
19, 110.

If &, the branch defay, is equal to or larger than the
number of pipeline stages preceding the stage in which
the branch is exccuted, then the instruction feich can
almost abways be given the correct address from which o
sclch. (The “almost™ refers to the occurrence of asyn-
chronous events such as interrupts, which cannot be pre-
dicted from the instruction stream.)

tn designing a machine Lo use adelayed branch, ween-
counter several problems. The most significant is that
human programmers will find it very difficult to write
code containing instructions (branches) with detaved cf-
fects. Thus, code for such a machine must be atmost en-
tirely compiler-generated, with the consequent need fora

bug-free and very cfficient compiler. The delaved
branch, requiring a new architecture, cannot be used as a
technigue 10 speed up an existing one. In addition, not
all the potential speedup of the delayed branch can be
realized: it may not be possible to schedule & —1 instruc-
tiens after the branch.

Despite these probiems, two experimental computers
are actually using the delaved branch: the 1BM 801, an
cxperimental minicomputer constructed at 1BM T. 1.
Watson Research Center, Yorktown Heights,' and a
dedicated microprogrammed machine constructed by
E. R. Berlekamp!” 1o insert and remove error-correcting
codes from signal transmissions. 1t has been proposed
for the RISC compuier.’™

Faken/not taken switch. As we will show later, we can
predict with good accuracy whether or not a branch will
he 1aken. A prediction mechanism that specifies whether
a hranch is or is not Hkely 1o be taken is called the taken/
1ot 1aken switeh, The idea is that one or more bits are
associated with every instruction in the cache memory.
The sctting of these bits determines whether the branch is
predicted 1o be taken or not. After the branch is re-
solved, 1he values of the bits may be reset in the cache to
reflect the prediciion for the next time.

In the taken/not taken switch proposed for the 5-1
computer, ™ two bils are stored with cach inst ruction.
One kit specilies whether a jump should be predicied
(the Jump bity and the other tells whether the last predic-
lion was wrong (the Wrong bit). Two wrong predictions
in o row cause the Jump bit 1o be changed. As we note
tater, this mechanism still encounters delays duc 10 targel
address computation and the out-of-sequence feteh.
Widdoes™ discusses the effectivencss of the prediction
alporithm in more detail, and Liles and Willner®! propose
a version ol this scheme.

f.ook-ahead resolution. Another proposed solution to
the brinch problem is (o place extra logic in the pipeline
«0 thai an carly stage of the pipeline can resolve a branch
whenever the condilion code affecting o conditionad
hranch s already been determined. 't Rao provides fur-
ther detail on this method.

Branch target buffer. The branch target bufler (Figure
3} is a small cache memory associated with the instrug-
tion fetch stage of the pipeline. The BTB retains three
1uples, each of which contains the address of a previousty
exceuted instruction, information that permits a predic-
tion as to whether or not the instruction branch will be
taken, and the most recent target address for that
branch. The BTB functions as follows: the instruction
fcteh stage compares the instruction address against the
instruction addresses in the BTB. I there is a match,
then a prediction is made as 1o whether the branch is like-
lv to be taken. If the prediction is that the branch wili oc-
cur, then the target address field is used to select the next
instruction fetch address, When the branch is actually
resolved, at the execute stage, the BTB can be apdated
with the corrected prediction information and target ad-
dress. Since the BTB can be used for cvery instruction
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ch, it can have as many predictions as there are un-

mmpleted instructions in the pipeline.

The major optimization problem in the design of a
IB is the sclection of the algorithm that predicis
hether or nol the branch will be taken. How large the
B wili or should be and how it should be organized
.g., set associative or hashed) are also issues, Holgate
1l Ibbett? have studied the BTB design effectiveness
o the MU-5, which actually implements a branch targei
uifer, roughly of the type described. Losg™ proposes
i use of the BTB, and Smith?® examines a number of
TB designs using traces for the CDC Cyber 170 com-
uter. Results rom these studics are similar to our own,
it here we consider three different machine architec-
ures (IBM 370, DEC PDP-11, CDC 64000, and predic-
ion strategics are examined much more systematically.

Figure 3. Branch target bufter organization.

Methodology and data

There is now no statistically acceptable modet to
characterize any aspect of program behavior (although
much research has been done in paging and memory
management}.*" For the design and evaluation of
hranch target buffers, we still need a model of when
nranches occur, whether or not they will be taken, and
whether or not the branch target will change. Because no
existing model can now predict these things accurately,
our research is based on the thorough analysis and use
lor trace-driven simulation of program address traces.

Data. We have 26 program address traces (see box at
right ), grouped into six workloads. Four workloads are
for the 1BM 370 architecture and consist of compiler ex-
ceutions (PL/1, Cobol, Fortran-H), business programs
(Cobol, PL/1}, a scientific mix (Fortran}, and supervisor
sate set of traces {(MVS operating system). Six traces
farm the DEC PDP-11 workload, and six more make up
the CDC 6400 workload,
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From each program trace, we extracted the branch in-
structions, along with their targets, addresses, sequence
numbers, and operation codes. All analysis was based on
this extraction.

The large number of traces used in this rescarch and
the grouping of them into workloads serves several pur-
poses, First, the large number of individual traces and
the use of several of them in each workload should give
sepresentative behavior; no individual trace, no matter
how peculiar, can significantly throw off the overal
resuits. Conversely, the use of workloads, rather {han a
grand average, shows the variation to be expected from
the different job mixes experienced at different computer
centers, on different machines, and at different times of
the day. Certain workloads are known to have different
instruction mixes; business programs use many more
storage-to-storage, Or string, operations on the 1BM 370
than scientific programs. Converscly, the scientific pro-
grams have far more tloating point operations. If such
differences impact the efficiency of a branch target bul-
fer, our study wiil show these effects. Similarly, the use

of traces from three very different machine architectures
will indicate whether the results are sensitive to the in-
struction sct architecture.

Some of our studies show results for various specific
machine instructions, and branch instructions for each
machine are given in the box below. Some studies are
Hmited to conditional branches only; the instructions
considered to be conditional branches are also listed.

Methodolopy. Trace-driven simulation is a technique
by which a trace is recorded of the operation of some
system. That trace is then used 1o drive a model of the
system that allows us to vary different parameters oF fea-
turcs of interest. 11 the variation does not affect the
validity of the trace, then the trace-driven simuiation can
accutately predict the effect of changes in the system.

We use program address traces in 1wo different ways.
First, we examine them and measure various features of
interest: for cxample, the freguency of taken and not
taken branches. We then use these measurements as one
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s from which we can formulate branch-buffering
ategies. The traces are then used to evaluate designs
- a branch target buffer.

anch behavior

Before presenting actual measurements of branch
havior, we need to consider what we can expect. There
il be several types of branches: oop-control branches,
1ich are usually taken and go backward; branches used

part of IF/THEN/ELSE logical constructs, which
ways go forward and may or may not have a consistent
shavior pattern; branches used for subroutine calling,
hich will always be taken; branches used to load
gisters, which are never taken: and branches used as
no-ops,”” which are never taken. While for most of
lese, we can predict likely behavior, the relative fre-
uency of each makes reasoning out overall average
chavior extremely difficult. Thus, we rely almost ex-
usively on data analysis and empirically derived predic-
on algorithms.

Taken/not taken and branch frequency by opcade. For
ach frace, we show the overall probability of a branch
seing taken or not taken and the ratio » of branch in-
tructions 1o all instructions in the Lrace {Table 1). Two
eatures are important: {irst, branches are taken twice as
Jften as not: thus by just guessing that branches are
ilways taken, we are right 60 to 70 percent of the time.
In Smith’s study,™ the range over six iraces was 571099
sercent, with an average of 76.7 percent.) Variation
wmnong workloads is moderate, and for all workioads,
sranches are taken most of the time.

The probability that a branch is of a specific operation
code is shown in Table 2 for each workload. For 1BM 370
workloads, note the significant variation in the frequen-
cies of the various operation types.

Table 3 shows the probability that a branch is taken
for each operation code. Unconditional branches arc
always either taken or not taken, but BALR is sometimes
used 1o set up the base registers, and so is not taken.
Those used for indexing are usually taken, but BCTR s
generally not taken because it is often used as a decre-
ment instruction,

Dynamic branch behavior. Not ail branches are ex-
ccuted with the same frequency, 50 much of our ability
{0 predict branches reiies on the fact that because some
hranches are execuited many times, we can make a good
guess as to what will happen next. Before examining this
approach further, we need 1o define static branch in-
seructions and dynramic branch instructions.

The frst type refers (o the individual branch instruc-
lions found in a program. For a given program, the
number of these branches is fixed and can be counted by
looking at the program. The second type refers to the
tranch instructions found in the trace of a program, A
Jlatic branch instruction ¢an occur more than once as a
dvnamic branch instruction, and cvery time a static
branch instruction is executed, a new dynamic branch is
formed.

In Figure 4, we show the probability distribution for
cach workioad for the number of times a static branch
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Table 1.
Fraction of branches, taken T and not taken N and fraction of
branches overali r.

IBM 1M 13M iBM DEC coc
cPL BUS SCI SUP PRR11 6400 AVERAGE

T 0.64C 0.657 0.704 0.540 0.738 0.778 0.676

N 0360 0343 0.286 0.460 0.262 0.222 0.324

v 0.7 0.189 0.106 0.376 0.388 0.079 0.242

Table 2.
Frequency of branch types.

ap iBM iBh 18 B 0P DEC 0P ¢oe
CODE CPL BUS SCI SUP CODE  PDP11  CODE 6400
BR.B 0222 0.243 0.254 0.138 JSR G111 R 0.049
BAL 0.056 0036 0013 0036 S08 0.008 JP 6.017
BALR 0.036 0050 0078 0.066 BGET 0113 A 0.560
8CT 0024 0.Q13  0.0%7 0.016 BYLS 0.030 EQ 0.157
BCTR  0.022 0.050 0.006 0.019 BHSL 0.03t NE 0.199
BXH 0004 0000 0000 0.000 BNEQ 0.278 GE 0.000
BXLE 0.032 0000 0.188 0.003 RTS 0074 LT 0.003
BC 0544 D521 0.318  D.674 JMP 0.180 SYS 0.01%
BCR 0051 0081 0MZz  0.034 BR 0.162

EX 0008 0.005 0003 0005 TRAP ¢.002

SVeC 0.000 0.001 0.000 0.009

(PSW  0.000 ©.000 0.000 0.00%

MC 0.000 0000 0.000 0003

Table 3.
Probabilities of branch taken by branch type
{blanks mean instruction is not in that trace).

QP 1B8M 1BM 1BM B OP DEC op coe
CODE cPL BUS SCl SuP  CODE  POPIY  CODE 640D
BR.B 1000 1.000 1.000 1.000 JSR 1.000 R 1.000
BAL 1.000 1.000 1.000 1.000 508 0.448 JP 1.000
BALR  0.658 0555 0.830 0.531  BGET 0.330 X 0.604
BCY 0584 0899 D.857 0.713 BVCS  0.155 EQ 1.000
8CTR 0.007 0173 0.000 0207 DBHSL  0.436 NE $.000
BXiH (.404 BNEQG 0.495 GE 0.848
BXLE 0.B65 0994 0.885 0.522 RIS +.000 LT 0.000
3¢ 0.462 0571 0342 0415 JMP 1.000  S8YS 1.000
BCR 0539 0.348 0.647 0.584 R 1.000

EX 1000 1.000 1.000  1.000 TRAP 1.000

SVC {.Q00  1.000 1.000 1.000

LPSW 1.060

MG 1.000

Figure 4. Percentage of branch instructions executed N times for each
of six workloads.
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Figure 5. Percentage of branch instructions executed N times
weighted by N.
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Figure 6. Sample sequences of taken and not taken branches
(¢ = not taken, 1 = taken).

Figure 7, Distribution ot the number of times that a conditional branch
has ibe same result.

12

occurs as a dynamic branch. Figure 5 shows the pro-
bahility that a dynamic branch is due o a static branch
executed N times. The large bulk of dynamic branches
oceur for frequently exceuted static branches; for exam-
ple, 23.4 percent of the static branches in the IBM/CPL
mix get executed only oneg, but they account toronly 0.5
percent of the dynamic branches. On the other hand,
10.4 percent of the static branches cxecuted over 200
times make up 48.2 percem of the dynamic branches.

Manv of our predictions as 10 whether a branch will be
aken arc contingent on the branch's past behavior
(taken/not taken). To llustrate such branch behavior,
Figurc 6 shows S0me sequenees of taken/not taken for a
pumber of branches. For many branches, there are long
sequences of cither taken or not takoen; it iy less common
to scc an alternation. We call such & sequence a 7, or @
sequence of identical hehavior (taken, not taken, taken
with a changed target) of a static branch as it gets ex-
ceuted many times. For example, the seguence of takens
7 and not takens N, TTTTINNTTTINTNNN, consists
of run lengths of 5, 2, 4, 1, 1, cte. Figures 7 and 8 show
he distsibutions of run lengths for conditional branches
only and all branches, respeetively. The same data are
shown weighied by the run lengih in Figures 9 and 10.
(Thas is. Figures 9 and 10 show the probability that a
given dynamic branch is an clement of & run N branches
long.} As 1he figures show, most branches ocour as parts
of long Tuns.

Branch clustering. We have described one method of
coping with the branch problem, called multiple instruc-
tion streams, which involved recognizing branches at the
insiruction decode step of the pipeline, and then fetching
and decoding both the taken and not taken oulcomes of
the branch. As noted, one difficulty with that sotution
was that a laree number of closely clustered branches
could occur, making it impossible 10 follow alf 2f paths
possible from k branches. A measure of the size of & ap-
pears in Figures 11 and 12. The figures show Lhe pro-
bability that in H sequential instructions (H =10 and
H = 6, respectively), there are & branches. If the pipcline
is long cnough (and 6 and 10 are typical numbers for
high-speed machines), then there s a signiticant prob-
ability that more thanr one branch is unresolved at any
one time.

Branch prediction

A number of the solutions (o the branch problem ai-
tempt to predict whether or not a branch will be taken.
The general probiem can be stated as what is the value of
Fixt,x2,...), where £ is the probability that a branch is
taken, and x1, ¥2,. .. arc paramelers on which F may be
reasonably conditioned. 1f Fixl.x2,...) > 0.5, then we
predict {hat a branch will occar; if less than 0.3 we
predict that it will not. {1t the cost of commussion errors
is not equal to that of omission errors, the best figure for
deciding to predict a branch may not be equal 1o 0.5. We
discuss this issue later) Of particular interest is x1=
operaton code, and x2= execution history of this bran-
ch. We can continue with other factors (for x3, x4, etc.)
such as other dynamic branches that precede the current
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amic branch (and their execution behavior),?* other
amic instructions that precede the current dynamic
ruction, the source language of the program, and the
ction of the branch (e.g., forward/ back®). For ex-
sle, certain instruction sequences will generally in-
ite a taken branch; others will almost always fall
ugh.

\ny solution to the branch problem must be imple-
nted in hardware, since it is part of the pipeline and
st execute at machine cycle speeds. For that reason,
complexity of practical schemes is very limited, and
consider only predictions that depend solely on the
eration code F(x1) and those that depend only on the
tory of the branch F(x2).
The other aspect of branch prediction concerns
owledge of the target address, since delays are en-
untered even for a correctly predicted taken branch
ten the target address is not immediately known,

Figure 8. Distribution of the number of tlimes that any type branch has
Prediction based on operation code. In Tables 2and 3,  the same resuit.

: show the probability that a branch was of a specific
y code, and the probability that the branch with that op
«de would be taken. These two tables can be easily com-
ned (Table 4) 1o yield the probability of whether or not
branch will be taken given only the op code. Note that
i the IBM CPL mix, the prediction accuracy rises from
{ percent (assume all branches are taken) to 66.2 per-
:nt (assume that only BR, B, BAL, BALR, RBCT, BX-
E, BCR, EX, and SYC are taken; all others never
iken). While this 2.2-percent improvement is helpful,
e shall see that it is considerably less than what can be
biained by predictions based on branch history.
5mith? gives a range of accuracy for op-code-based
redictions of 65.7 to 99.4 percent, with a mean of 86.7
ercent.)

Prediction based on branch histery. Prediction based
s branch history uses the previous sequence of taken/
w0t taken _for cach branch to predl'ct whether or not the Figure 8. Distribution of the number of times {hat a conditional branch
seanch will be taken next time it OCCUIS. The mMOSl  has the same result, weighted by run length.
sowerful predictor, of course, Uses the entire history of
ihe branch to predict the pext choice, but such a predic-
Lor is infeasible because of the large possible number of
such past sequences. Consequently the problem becomes
for a given amount of history, what prediction accuracy
can be otained, and what is the most desirable amount of
history to retain, given all cost and performance trade-
offs? The basic data for this evaluation are presented in
Tables § and 6, where we show the observed probability
of all possible sequences of five taken/not taken events
(v1,72,3,74,35) for conditional branches and all

pranches, respectively.

Table 4.
Probability of correct branch prediction given only op
code, and assuming branch is always either taken or
not taken, based on op code.

IBM 18M BM IBM BEC ¢oC :
cPL BUS sC! sup PDPYY 8400 e 10. Distributi f th mber of 1i that \ b n

igure 10. Distribution of the nu er of times that any lype branc
0.662 0.692 0.7t0 0.552 0.798 0.778 has the same result, weighted by run length.
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The data in Tables 5 and 6 may be used Tor prediction
in the following manner: whenever ihe probability
Fivl,v2,v3,v4,T) is greater than Fivl,v2,v3,v4,N),
the branch should be predicted as taken and when loss
than, the prediction should not be taken (where
yi,»2,v3,v4 is the sequence of the four previous dy-
namic occurrences of this static branch). Predictions
based on the previous threc cvenis, F(»2,v3,v4, 1
and F(y2,v3,v4,N), can be computed by noting that
F(v2,v3,v4, Np=F(T v2,v3 v4, N} + FIN,v2,v3,v4,N).
Predictions based on the previous two, one, ot 72r¢
branches can be similarly derived. Table 7 shows the ac-
curacy of such predictions, where cach is bascd only on
the values of F(ri} for that workioad. (For one previous
pranch, Smith’s success rate™ was from 76.2 1o 98.9 per-
cent with a mean of 90.4 pereent.)

Figure 11. Probability of N or fewer branches in 10 consecutive in-
structions,

[EEPET L Suw

Figure 12. Probability of N or fewer branches in six consecutive in-
structions.

14

We can create a composite predictive strategy: that is,
a prediction based on F(w), where F(vi) is computed
over all six workloads used, rather than for just the
workload in question. This strategy is much more vafid,
since varying the predictive sirategy on a real computer is
not likely (o be cost-effective (depending on the program
running). In any case, as Tablc 8 shows, the predictive
accuracy s almost identical to that shown in Table 7.

A number af interesting obscrvations can be made
from Tables 7 and 8. First, the predictive accuracy ap-
proaches very closely to its maximum with one, two, or
three preceding branches used for prediction. Increasing
the amount of histary to four or five branches does not
seem 10 add accuracy,

Second, the predictive accuracy for as fow as two
preceding branches is from 83.4 1o 7.5 pereent, which is
much kigher than the accuracy using only the branch
Lype, and no branch history (Table 4). Finally, the eftec-
siveness of prediction varies significantly among the
workloads. Most striking is the varintion of 83.9 10 97
pereent between the IBM/SUP and the 1BM/BUS work-
toudks, both of which are for the same architecture. [We
believe shal the lower prediction success rate for the
IBM/SUP workioad is due to the low probability that a
branch is exccuted repeatedly {sce Figure 4). This low

Table 5.
Distribution of live consecutive executions
{conditional branches).

BM IBM iBM iBM DEC coc
HISTORY CPL BUS 501 sup POPIT 6400

NNNNN 0.407 0.414 0437 0422 0491 0370
NNNNT 0.013 04006 0014 0005 0.011 0.008
NNNTN 0.012 0.004 0014 0005 0012 0.006
NANTT 0.004 0003 0005 0003 0003 ©.007
NNTNN 0013 0005 001 0005 0012 0.008
NNTNT 0.003 ©.001 0005 0003 000t 0003
NNTTN 0007 0001 0004 0002 0001 0003
NNTTT 0.004 0.002 D004 0.004 0003 ©.003
NTNNN 0.018 0008 0.0t 0021 0014 0006
NTANT 0.005 0.002 0010 0004 0.002 0.006
NTNTN 0.029  0.017 0026 0005 9005 0035
NTNTT 0.008 0.00% 0006 0026 0004 €007
NTTNN 0.003 0.001 0004 0.003 G001 0003
NTTNT poo3 000t 0.4 G003 04003 0.044
NITIN 0004 0.00t 0002 00062 0.007 0.083
NTTTT 0.015 0.043 0020 0020 0.012 0020
TNNNN 0018 0009 0.017 0034 0017 0008
TNNNT 0.003 06002 0005 0003 0064 0.001
TNNTN 4004 0002 0410 ©003 0001 0.005
TNNTT 0003  0.001 0003 0003 0.001 0003
TNTNN 0.011 0006 00610 0029 0003 0003
TNTNT 0.017 0010 0018 0021 0067 0025
TNTIN 0.003 0007 0.014 0004 0002 0.044
TNTTT 0915 0012 0018 002% 0016 G019
TTNKN 0.003 0.002 0004 0002 G001 0.003
TTNNT 0.003 0001 0.004 0003 0001 0.002
TTNIN 0.003 0000 0003 0002 0005 0.002
TINTT 0011 0009 0027 0064 0014 0.08!
TTTNN 0004 0.002 0004 0002 0002 0003
TITNT 0041 0008 0016 0.003 0017 0019
TTTTN 0.011  0.009 0018 0004 0012 V018
T 0.338  0.447 0228 0341 0320 047
NNNNN

+
TTT7Y 0745 0.856 0665 0763 0611 0.641
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Table 6. Table 7.
istribution of five consecutive executions (ail types). Percentage of correct guesses, using n past branches
and conditional probabilities drawn from only given
trace.

iBM BM IBM 1B DEC che
STORY cel BUS SN syp  PDPIt 64D M IBM iB8M BM e coe
INNN 0.275 0310 0186 0.378 0230 0129 CPL BUS SCI SUP POPI1 5400
INNT 0008 0.004 0.005 0.004 $.004 0007 644 64.4 70.4 54 0 73.8 77.8
TN 0.008 ©0.003 0005 0.004 0.004 0.006 91.9 95.2 86.6 79.7 96.5 872.3
INTT 0.003 0.002 D002 0.003 0.001  0.002 93.3 85.5 00.8 83.4 g7.5 90.6
4TNN g.008 0.003 ©.008 0.003 0.00% 0.007 93.7 96.7 91.2 83.5 97.7 93.5
NTNT g0z  0.00% 0002 0.004 0.000 0.603 94.5 97.0 92.0 83.7 98 95.3
yTTN g.00z 0.015  0.002 0.002 0.000 0003 947 671 49.2 83.9 98.2 95.7
NTTT 0.003 0002 G002 p.oo2 000t 0.003
TNNN p.012 0.006 0.008 g.0i7 0005 0.005
?H’NJ% gggg ggggj gg?g g?}gg 838; ggﬂg I:orcc. and cu@v cdge shmfvs the ifmfsiti‘on (muf}pi‘ng t)
INTT 0009 0008 0.007 0.036 0002  ©.003 from state to stare depending on whether the branch was
TTNN 4.001 0.006 0.002 .00z ©.000 0.003 taken vF not taken.
TTNT 0.002 000t 0012 0.002 000t 0.040 We can suggest mappings E and functions G other
TN 0002 0001 0.002 0002 0001 0.002 than those based on the last n executions of the branch.

T .014 0012 0.030  0.024 0.004  0.017 Figure 14, for example shows an ajgorithm in which two

MNNN po1l 0008 0007 g.078  0.004  0.007 . . .
NNNT 0002 0001 0002 0003 0601 .00 errors are required to change the prediction. That s,

NNTN 0.003  ©.001 0005 0003 0a01 0.004 when the current prediction is N and the last two

NNTT 0.001 0.001 0.002 0.003  0.000 0.003

NTNN 0.007 0005 0.005 0024 0001 0.003
NTNT p.oie  0.012 0013 0.028 0005 ©.046
INTTN p.o02 0001 0012 0.003 D001 0.040
INTTT 0.014 0013 0.03C 0.029 €003 008
FTNHN g002 0002 D062 9.002 0.001  0.003
ETNNT 0.001  0.000  0.002 0.002 0001 0002
TTNTN p.002 0007 0.002 0.007 000t 0000
[TNTT 0008 0007 0.036 0004 0.004 005
ITTRN p.002  0.001 0002 0.007 0001 0002
FTTNT o008 0007 0027 0.003 0.004 0015
TTTIN 0.008  0.007 007 0.003 0004 0.017
Ty 0.534 0561 0521 0384 0702 0500
HNNNN

(S-S =

+
17117 g.809 0.87% 0717 0.762 0.932 0629

probability is to be expeeted in supervisor code, in which i ' .
Figure 13. State diagram for branch predictor. The state

inops are refatively less frequent. ] name ({op ling} is the history of the lasi two dynamic oc-
currences of this branch followed by the prediction {bot-

Prediction based on nonuniform history retention. tom line). TT means both were taken, and T implies
/ables 7 and 8 give the cffectiveness of branch prediction predict taken. The label on each arrow is the resuti of the
when prediction is hased on cxactly the # preceding ox- branch.
ccutions of the branch in question, and whether that
ranch was taken or not taken. These n preceding execu-
ions may be remembered in the branch target bulfer
with a1 bits, those n bits representing the 27 possible se-
quences of taken/not taken.

Given that n bits are available to us¢ in predicting the
sest branch, the bits need not be aflocated 1o show the
st /1 executions, but can be used to record a state that
Joes not map o the precise history. That is, given a
tate S(7) {for the branch in question) at time ¢, we have a
vunction G{S(Y) that viclds the prediction T or &V, and a
mapping E(S(}, T/N) ™ S(i + 1) that maps the current
ate S(4) and whether the branch is actually taken into
e mext state S(7+ . Thus, the prediction algorithm
cun be specified by giving # (2" states), the function G
nd the mapping E. For example, Figure 13 shows the
Jigerithm that uses the past two exccutions to predict the
wext: the effectiveness of this method is shown in Table 8

Figure 14, State diagram for branch predictor. The name
. . ’ : of the state gives the prediction. For t and {7, prediction
1 the line labeled *2.7 In Figure 13, the states arc label-  js taken. For n and n?, prediction is not taken.pThe fabel
- with the their history (as a name) and the prediction in - on the arrow is the result of the branch,
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Tabte 8.
Percentage of correcl guesses using n past
branches and conditional probabilities drawn
from average of all traces.

1BM 1BM 1BM IBM DEC che
CPL 8US SCI SuP POPYY 6460

64.1 64.4 70.4 54.0 738 778
319 95.2 86.6 9.7 96.5 §2.3
933 96.5 90.8 83.4 97.5 80.2
937 96.6 91.0 83.5 ar.7 93.4
94.5 96.8 91.8 837 98.1 948
94.7 97.0 92.0 83.9 98.2 851

o L e O D

Figure 15. State diagram for branch predictor. The name
of the stale gives the prediction. The label on the arrow is
the result of the branch.

hranches were N, then two Ts are required to change the
prediction (o 7. The idea here is that a toop exil will not
serve to change the prediction. We note, however, that
the scquence NTNTNTNT ..., when started in the
wrong state {cither 7 or (1) will yicld 100 percemt wrong
predictions; when started in cither of the other two
states, the predictions will be 50 percent wrong.

In another algorithm, proposed for the S-1," (Fipure
15), two wrong pucsses arc again required to change the
prediction, but two are also required to return to the
previous prediction. (In the previous algorithm we could
return to the previous prediction in one step altertwo er-
rors.) The sequence NNTTNNTTNNTT ... can cause
cvery prediction to be incorrect.

Close examination of ‘both Figures 14 and 13 shows
that the states indicated do not correspond exactly with
the previous two branches. For example, state # in Figure
14 implies a history of NN, whereas state #n? implies
history of NNT or TNN.

The success of the algorithms represented in Figures 14
and 15 is shown in Table 9. Comparing the two, we sce
shat their results are almost ideniical. For further com-
parison, Table 8's 2"’ line shows that in most cases (five
workloads). the algorithms in Figures 14 and 15 are only
slightly better. For the IBM Supervisor workload, the
earlier results are three percent better, probably because
supervisor code uses branches much less frequently for
loop control than do user programs.

We can consider all possible functions G and mappings
E for n bits of state to derive the optimat algorithm, but
we have noi done so, since the results in Tables 8 and 9
and the comparison between them suggest that such an
exercise would yield very little, if any, improvement.

Branch target changes. As noted earlier, the branch
1arget butfer contains a number of entries, each of which
consists of a branch address, state information, and a
targel address. The branch target can be obtained only
by computing it directly from the instruciion or by
remembering it from the past exccution and assuming
that it will be tie same. Since the purpose of the BTB is
to predict the target immediaicly, the previous target
must be remembered. While target changes are likely to
be infrequent, they will sometimes oceur, particularty if
the source {higher leve! language program) coniains a
computed GOTO or a case statement, Exccute msiruce
tions. such as those from the 1BM 370-architecture, also
gencrally change tarpets.

The possibility of branch target changes implies that
when a branch is resolved and found to be taken, the
rarget address must be compared with the target
predicted in the BTB, If it is different, the BTB entry
must be changed. Also, il the BTB had predicted a
branch, then the pipeline must be flushed, and the cor-
rect stream of instructions fetehed, just as if the BTB had
predicted that the branch would not oceur. (With this re-
guirement, perhaps a branch whose targel has been
found 1o change previously should not be used to predict
a branci. We believe, however, that predicting a branch
is better, i the cost of an incorrect prediction is the same
as the cost of an incorrect fall-through—primarily
beeause a fall-through is very unlikely, whereas the target
need not abways change.)

Table 10 shows the fraction of all dynamic branches
executed for which a branch is taken whose target ad-
dress differs from that of its previous targel. Some of

Table 9.
Prediction success of state diagrams
in Figures 14 and 15.

WORKLOAD FIGURE 14 FIGURE 15
IBM/CPL 438 83.8
IBM/BUS 96.2 96.2
1IBM/SC! 91.3 91.3
IBM/SUP 80.2 80.2

POP-11 7.8 97.8
CoC6400 86.4 891
Tabie 10.

Fraction of branch targets found to have changed from
previous execulion of that branch.

PROBABILITY OF

WORKLOAD TARGET CHANGE (%)
18M/CPL 4.2
BM/BUS 2.1
1BM/SC 4.4
BM/SUP 1.4

PDPI 12

CDCE400 2.8
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hese target changes will cause predictions that were
oiherwise correct (predict branch} to be incorrect. The
oiher cases (predict branch, but none oceurs; predict no
branch, but branch oCCuss, and predict no branch, and
(one OCCUESY are not aftected.

WRITEs into the nstruction stream. The branch
;arget buffer is accessed using the address of a previously
cxecuted branche. 1f there has been @ WRITE into the in-
siruction stream, such that the bits al {he given address
no longer specify a branch, ihen the BTB will not opet-
ate correctly. We can deat with this problem in two Witys.
First, and more correct, is that the insiriction in ques-
tion, identified by the BTB, can be ragged as it MmOves
down the pipeline with a bit specifying sthranch.” i n
the instruction-decode stage, {he instruction is found not
to be a branch, then the pipeline can be flushed and re-
loaded, and the BTH can cither be flushed or just that
entry can be deleted. The alternative is to ignore the
possibility of a WRITE into the instruciion stream on the
basis that the machine architecture forbids moditying in-
structions, and correct operation is not guaranteed. The
fatter solution is not acceptable for older arcinfectures,
for which existing programs do moditfy the instruction
streant.

Extensions and alternatives. We have defined a general
mechanism for predicting hranches and shown sOme
results for the more important cases. Some cases exist
that we have not considered, and some improvements
have been suggested.

pomerene  and Rechtschaffen®  suggested that @
machine be built s0 that both the taken and not taken
diregtions can be followed {as in multipie insiruction
sireams). Then, ifa change in locality is detected, for ex-
ample, when there are instruction misses in the CPU
cache, the multple instruction stream mechanism should
he used instead of the BTB predictions. More generally,
such a scheme can be used whenever the BTB fails to
contain the desired eniry. ™

Smith proposcs a strategy (strategy aumber 3} in which
all backward branches arc predicted 10 be taken as loop
closures and all forward branches are predicted to be not
taken, but the performance is poor. Smith reporis on
the effectiveness of a number of his other syt rategies,”’
but in many cases, the strategies combine the prediction
afgorithm with implementation issues such as the size of
the BTB or its addressing. It is thus difficult 1o compare
most of his results with ours. Another of his ideas is to
keep a table of recently used not raken branch instroc-
tions, but this technique, of course, Fails ¢o retain branch
tragets for successful branches, and so can be of only
limited use for 370-like architectures. For CDC and Cray
architectures,’ however, the branch target address need
not be in the branch target buffer. In those machines, the
branch target address can be computed from the instruc-
tion itself well before the instruction branch condition is
resolved.

Some other ideas Smith?® has are to keep @ taken/not
taken bit in the cache, 10 Use 4 hashed BTB with a ones
hit predictor, and to use the same design but with a two-
bit predictor. gmith also notes that the branch target
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wuffer docs not actually need Lo hold the address of the
branch.?! The buffer could, for example, have 2 direct
mapping organization (using either bit selection of
hashing® with a large number of sets. Thus, if a branch
hashes into a specific set, the prediction contained
therein would be assumed 1o be for that branch; if
because of mapping conflicts, the branch prediction
recorded was for the wrong branch, the penalty would at
most be a wrong prediction.

An interesting use of the branch target buffer is
described by Driscoll et al.®® An address-generate in-
ierlock in a pipeline is a logical dependency between the
address caleulation function for operand addressing and
the register update function in the execution unit. This
AGL can delay the processing of a branch instruction
because of the need 1o caleulate the target address. Since
the BTB predicts the target address, this interlock can be
suppressed unitit the branch is resolved, and the target
address can then be calculated only if pecessary. Amn un-
pecessary pipeline interlock is thus avoided most of the
time.”

An additional use of the branch target puffer or simi-
ar buffer is to speed up access 10 indirectly addressed
operands or addresses. Indirect addressing s a major
pipchine blocker, since indirect addressing requires a
storage delay for each indirect step. 1f ali fetches
{operand, pranch target) that could be indirect either by
tag in instruction or by tag in farget are matched against
an “tindirect buffer,”’ the ultimate farget of an indirect
address could be tetched in one siep. The BTB couid
serve double duty here, 07 3 separate buffer could be
used, We have not addressed this extension, since none
of the three architectures for which we have traces pel-
mits indirect addressing.

Branch target buffer implementation

Performance costs and optimal prediction. Thus far,
we have assumed that the branch target puffer impacts
performance in the following way: A correct prediction
py the BTB ineurs no lost cycles (fali-through if no
branch predicted or correct branch and target predic-
tion), and all incorrect predictions (predict branch, and
none occurs or predict tall-through, and branch occurs}
result in the same number of lost machine cycles, In a
real machine, neither of these assumptions is necessarily
true.

Specifically, a prediction of a taken branch could
always cost & small number of machine cycles because &
taken branch is out of sequence, and storage access time
{cache or main memory) may be long enough that the
target cannot be feiched before the instruction decode
stage of the pipe is ready for it. In Figure 16, we assume
that j cycles are jost for every predicted branch.

The cost of a branch predicted to be taken and then
not taken may be less than the cost of a branch not ex-
pected to be taken, but which is actually taken. This dif-
ference can oceur because the fall-through segquence of
instructions may be already available from a sequential
fetch for more than one instruction, and thus when the
branch is resolved, the correct target {the fall-through in-
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Figure 16. Diagram showing time penalties in lost
machine cycles for cosmrectly and incorrectly predicted
branches.

struction) may already be on hand. In Figure 16, we
assume that the cost of an incorrect positive {predic
1aken) prediction is & cycles and an incorrect negalive
(not taken) prediction costs 4 cyeles,

The four events of interest are predict no branch, and
1o branch oceurs; predict no branch, and branch occurs;
predict branch, and nonc oceurss and predict branch
correctly, (We omit the target change case here for
simplicity.} The respective costs for these cevents arc
respectively 0, m, k. and J. Previously, we assumed that
=k oand j = Q. In that case, the optimal prediction is 1o
masimize the probability of being right, i.e., predicting
whether the branch oceurs or not. In the latter, morc
complex case, the optinal prediction is the one tat has
the average minimuwm cost, Thus, the optimal stralegy
does not have to reflect the highest prediction aceuracy.

Because i, A, and jare very implementation depen-
dent, we have not developed strategics for cost-based
performance predictions. Such st ragegics can casily (but
tediousty) be generated, given the costs i, k,and/, from
Tables § and 6. For cach sequence ol preceding takens/
not takens {viY, there is some probability p that the
pranch is twken amd probability 1 - pr that it is not. 1§ we
decide to predict that the hranch is taken, the cosl is
(1 pyk + pxj. Hwe devide to predict that the branch

Figure 17. Hit ratio of the branch target buffer as function of the
number of entries.
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is not taken, the cost is p*m. The correct prediction is |

the one with the lower expected <Ost,

Branch target buffer size and hit ratio. The branch
rarget butter, like the CPU cache or the transiation look- 2

aside buffer, is a smali, high-speed memory, and because
of both cost and performance must be of limited size. In
our analysis thus far, we have aiways assumed that the
BTH had no boundarics and could hold all previously ex-
ccuted branches, which of course, cannot be true. Now
we will examine the effect of a BTB with a finite size.

The kit ratio of the BTB is the probability that a
branch is found to be in the BTB at the time it is fetched. |

As such, the hit ratio depends on the replacement
algorithm and the BTB fetch algorithm, The former
determines which item in the BTB to replace when a new

entry is to be placed into the BTB. The latter determines :
when 1o place cntries in the BTB. In particular, it may be |

better not Lo ender branches in the BTB if they are not |

taken, given that the BTB now has a finite size.

We have used a **fetch-all” algorithm here: that s,
whenever a branch is recogiized, it is emered in the BTS
it it is not abready there. For repiacement, we use the |
plobat L.RU algorithm, which removes tire least reeently |
used {executed) branch in the BTB. (The replacement
alporithm  could  be modified 10 reflect the feteh
algerithm. For example, if the feteh alporithm does not |
feteh o nol taken branch, then when a brasich is alreudy

in the BTB and is not taken, its replicement status s not
altered. That is, it replacement is LRU, then the branch
entry s not moved Lo the top of the |LRU stack. Aller-
patively, 1o save space, & not taken branch could be
deleted from the buffer entirely.)

The hit ratios for various BTB sizes, given fetch-all
and global LRU replacement algorithmis arc shown for
cach workload in Figure 17, As the figurc shows, the hit
ratio varies widely. For example, for a 256-entry BTB,
{he hit ratio varics from a low of 61.5 pervent (for the
IBM Supervisor workload) 1o a high of 99,7 pereent for
the CDC 6400 programs. These resulls are gualitatively
similar to the rclative cache hit ratios” tor the various
types of programs, as we would expect. {Widdoes?
reports that 16 10 32 entries it a BTB vicid over 50 per-
cent misses for 5-1 traces.)

The branch larget butler is similar in cost and perfor-
mance constraints 10 a translation look-aside bu {fer, or
TLB, and the range of feasible sizes should be similar.
Thus, the TLB sizes for the following machines are com-
parable: IBM 3033 (64), Amdahl 470V/6 {128), and Am-
dahi 470V/7 (256).

A major effect of the finite-size BTB is that it now has
fewer advaniages over the other **branch problem” solu-
tions discussed earlier. For example, the taken/not taken
hit stored in the cache will be more frequently available,
if the cache is large, than the BTH ensry. Although the
taken/not taken bit method is less effective in tmproving
performance, because the branch target address is not
immediately available, the higher hit ratio may be suffi-
cient 10 compensate.

Buffer addressing and organization. The branch target
buffer is accessed associatively; that is, the address of the
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iastruction fetch s matched with the instruction address ment lo mit the feasibie degree of complexity tor the
fields in the BB Y {hey maich, the appropriate predic- BTR. We have therelore narrowed the range of alter-
tion is made. Associative memories are slow and expen- natives considered 10 those that are sulficiently simple
sve if implemented i other than VLSE so 1t s not and imexpensive 10 implemem. Further, we have looked
diways [easible 10 make the BTB fully associative. The al the effea of BTB stz and organization for the same
Lo reasonable chojees are (o make i s associive™ or reason. Anyone proposing cither to design & BTB or to
hashed as is done For mosl TLBs. tn (e former vise, study BTHs further should keep in mind these important
wome middle bits of the mstruction addresy are used 10 constraints.

celect @ set, and the remaining bits are used [or the asso-

cative mateh within the set. The replacement is within M-S implumcm:\iiun and results, The M-S com-
ihe set. Hashing is usualty combined with st associative  puter systen uses brancly target Bufter whose coffee
replacement as roflows. The adkcress of the instruction is fiveness is discussed by Foigate und Ibbett. The BTB
nashed,” and & scl ol clements is welectaed. The search is relaimns up o clghil ps‘cviouw%y {aken branches and their
then associutive witiin this set (ihe set size may be one),  larpets Only branches with lixed (invariunt) Lreets arc
and replacement s also within ihe sel. Sipce A, Smith’s placed in the BTH.
e}{pcrimcma3 showed the two et hods 1o be aboul ettt The effecliveness of the MU-5 BEB was quddied vsing
v effective, we welect 1he slandard set qesoviative mapp- @ haasghware IONILOLS easUreIeiis were made for a pHx
of compifations and exceutions for both Fortran and

ng as simpler,  cheaper, and Tasier. Smith uses
' Algol. Branches constitute 14 and 12.5 pereent of the in-

hashing as one af his s ratepics. )
Table 11 shows the effect of 1he set sz i shown for sructions from Algol andd Fortran evecutions, respees
the IBM/CTL iy, (The cltects of other mixes are tively. The BB correctiy predicts from 20 {Alpol com-
presented c[scwhcrc.“) AL Snith shows that st dizes of  piation) 1o 65 pereent {Aleod execittion) of the corredt
tascly approach sequences after @ pranch Gnchuding rall-ilrroughs), o
! compared with 1S 1o 25 pereend without the BTB.

four oy cight are cufficiently lungw andd ¢
the hit ratio of the Pully associaliv desizn. ™"

The effcet of multiprogramniig. Muhiprogramiuiog is S-1 trace experiments. SOme branch target butler ex-

important o bath the design and performance ol the periments ot S-1 traces have been 1'cp0ricd.“’ Suteess
brasnch target bulter. \’\"hcucwrlhcaddrc\\ space in con- pates age from 9140 95 pereent with one- {0 five-bil
irol of the computer changes, the soviation beiween prodictons, using the method shown in Figure 15, The el
virtaad menory qddresses and memory conlents vhanges. ‘-‘\“'H"?“C“ ol this scheme varies from worse than the
{Since virtual midresses are the Ones seneraled by the ane-bit predivior 1o ahmost @4 oo as the four-bil
arogram, 1he BB must be aceessed H'm\ing_' \-‘irln;;i - prodicior. Fhese uxpcr‘%mcnl\ wore iy anl Two Triees of
dresses,  Otherwise alb BTH aceesses would  reguire aboul 100,000 instrelions-
¥ rranslation fiest A Fhus, the 3EB siroudd be purgcd wheti
_1 the address space clhanpes: otherwise incosreed matehes
:1 will oceur as will incorredt prediciions. Fach such predic- Table 11
h tion wil have to he correcied. and since many wmeorrest apie 11 .
L posifive p;‘cd%clion.\. will Lake place for non-brinehes, the Branch target puffer hit ratios (iBM/CPL mix).
;L EE-Lln"!kZCi‘ ol errors will he pigh and the periorminee coxt T o 5[7"%1}["7_7 ''''''''' -
J; ﬂgmlicu;}‘l. ' _ y . . BUFFER ‘ ,
" The elfect of purging the BB, of cquivalently in ot _fﬁi&,_g_ﬂ_”},_,_t __A_‘L_M_aﬁ_gul 32 64 178 256
' recting it entry by ciiey, is (hut the BB will usuadly con- 1 601
T Laip far Tewer vatid cntrics thas our previous diseussions g 00h7 D07
and simiations suggest. As o worsi-case cxanple, con- 4 ().GE%-Q 0.124 0185
" sder the data in 'l"nl;lc 12, The Lable compases the fruc- 8 0.16! O }?4 0.228 O 298 -
or ¥ ! e . ompares e 11 6 0058 0267 0271 033 (.369
. iign o!. corrccl.ptcc_llclmus usmrg: an ml,mi‘c BTB with 39 0.353 ().3?'39 0,355? 0.360 0441 0.514
o those from an infinitely large BTH that 15 flushed cvery 64 0407 0470 0475 493 0.513 0.570 0.634
m- 1000 instructions. As the (ublc shows, these frequent o8 0562 0602 0617 0623 0623 0.626 0.702 0.769
m- Mushes significantiy impact performance. we believe, i?g g?gi gggg ggz; gg;g %78?32 gg%% ggg% %gﬁ? gggg
s nowever, thal address space sx.vhchcs wilh oceur A inter- K 0.864 0910 0944 0956 0.96¢ 0964 0.965 0.066 0966
. '\.aa‘ds closer Lo S(K)E) Lo 25,000 instructions ﬂ‘}zm ’i{-)' 1000, 2K 0§17 0951 0.874 0.a79 0.98t 0931 pogt 0.981 0.98¢
Vherefore, the BTB Mushes may nave less of an effecton 4K 9946 0.976 0981 0.981 gag 0981 0981 098! 0.981
en e miss ratio than will the linite size ol the BTH.
e, if the BTR is 1o be flushed when a rask switch ogours, Table 12
f:‘li hon the task switch must he detected. }"u_rihcz"., SOME Com‘parative Pefcentage‘s of co!’fect guesses
= sine may be lost as the Nush takes place. Smith discusses in a multiprogramming envirpnment.
nC}I 1 methods for flushing TLBs.? v//!””/
W6 B iaM 1B 1B DEC £ne
Restrictions o logic complexity, The branch taract M LJ,“EQ_
Lalfer, as noted cartier, is closcly associated with the No Flush 93.2 9.3 89.7 80.0 97.4 85.5
agel CpU pipeline and must \herefore function very quickly. Fiush Every 79.9 83.3 74.9 86.3 68.9
Fthe st and size limitations combine with the speed require- M
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Use for tracing. In some computers, circular buffers
are maintained of the last # instructions or branches ex-
ccuted, and their contents are useful in debugging both
hardware and software. The branch target buffer can be
combined in function with the circular branch buffer.*®

Overall BTB effectiveness

The reasen for building a branch target buffer is to im-
prove CPU performance. Thus, the results on correct
predictions and hit ratios must be integrated with the
costs of hits and misses and correct and incarrect predic-
tions 1o get an overall estimate of performance impact.

For example, in the IBM/CPL mix, we can predict the
branch path with an accuracy of 93.8 percent, using the
predictor depicted in Figure 14. A hit ratio of 86.5 per-
cent is obtained with a BTB consisting of 128 sets of four
entries each. Up 1o 4.2 percent of our predictions will be
incorrect due to target changes, giving an overall
minimum prediction accuracy of (93.8--4.2) 0.87 = 78
pereent.

Prediction accuracy can be used to estimate the per-
formance wnpact by considering a real machine. We used

the Amdahl 470V/6,'* which has a machine cycle time of

32.5 nsec and runs at about four MIPS.Y Excluding
memory access delays, five MIPS is closer {and the figure

we used) and vields a mean of six cycles per instruction.
Each branch taken causes a delay of four machine cycles.
if the branches are 30 percent of the instructions, and 63
percent of the branches are taken. Excluding the branch
penalty, the mean execution time ¢ for an instruction §
would be 6 —{0.3)(0.65)(4) = 5.22 cycles. Branch predic-
tion using the BTB would then result in a mean execution §
time of 5.22 + (0.3)(1 —0.78)(4) = 5.48 machine cycles. ]
Defining performance as the rate of instruction execu-
tion gives us a performance improvement of 9.5 percent.

This computation, using the same basic figures, has
been replicated, varying each parameter of interest, onc i
case per table, and the results appear in Figure 18. The
figure shows (left to right, top to bottom) the mean in-
struction time for different basic instruction execution
times, the mean instruction time for different time
penaltics when the wrong stream is processed after an
unresolved branch, and the mean instruction time for
different hit ratios in the BTB with basic instruction
times of 5.22 and 2.2 cycles.

Figure 18a shows that the BTB is most effective when
the cost of an incorrect guess is Jarge relative to the mean
instruction time. That result is confirmed in Figure 18cin
which the other parameter of that pair is varied. Figure
18b shows that the hit ratio to the BTB is important and
rises in importance, as scen in Figure 18d, when the basic
nstruction time is short.

Figure 18. Mean instruction time in machine cycles as a function of variations in the basic instruction time (a), the in-
correct guess penalty (c), and the probability of a branch target buffer hit (b), {d).
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Taken branches have tong been one of the magor
abstacles to high efficiency in @ pipelined computer
~siem. A great deal of effort has been mvested in over-
~oming this problem, cither by Facilitating the aceess to
usiructions (Joop buffers, target preletch} or by directly
attacking the branch  problem (mukiple instruction
.reams, delayed branch, ete.. We helieve that the
mranch target buffer is the moslt cifective way 10
minimize branch penalties.

Our study of the BTB has been hased on a close ex-
amination of instruction traves and analysis of their
hehavior. We have developed a wencral prediction
Jrategy, bascd on branch history and op code, and have
measured the effectiveness of the Importam variants of
this predictor. Qur results show that two bits are sulfi-
cient to retain the necessary stie information for ctlec-
tive prediction. We also found that on the order of 256
cntries in the BTB are required for some workloads and
represent a pood design targel for o large, high-
performance machine.

We have also considered  various implementtion
issues, such us the design ol the RTH addressing {set
associativey, the ceffect of multiprogranuning on the hi#
ratio, the need to flush the BTH when the address space
changes, and the problems of branch target changes and
WRITESs into the instruction stream.

The use of six workloads, taken from three machines,
gives us reason 10 believe our results are representative of
the those to be generally expected, and we believe ous
work has dircet application (o high-speed  compuier
systemt design, A number of extensions 1o the basic BTB
include the use of the BTB or anoiher similar bufler to
avoid penalties from indirect addressing. fmprovements
in CPU performance of from 510 20 percent can be ex-
pected when comparing a BTB design (o @ simidar CPU
design without a BTB. W
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