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Methods of analyzing the control flow and data flow of pro- 
grams during compilation are applied to transforming the pro- 
gram to improve object time efficiency. Dominance relation- 
ships, indicating which statements are necessarily executed 
before others, are used to do global common expression 
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and other optimizations in O S / 3 6 0  FORTRAN H are described. 
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I n t r o d u c t i o n  

The implementation of object code optimization tech- 
niques in the 0S/360 FORTRAN H compiler is presented 
and the potential extensions of these techniques are dis- 
cussed. 

The compilation process basically converts programs 
from a form which is flexible to a form which is efficient in 
a given computing environment. Compiler writers are 
challenged on the one hand by increasingly complex 
hardware and on the other by the fact that much of the 
complexity and rigidity of large, costly programs results 
from conscious efforts to build in efficiency. Since the 
methods of analyzing and transforming programs used in 
FORTRAN H are relatively unspecialized, it is hoped that 
they will help form a basis for solving the many remaining 
problems. 

A major novel technique used is the computation of 
"dominance" relationships indicating which statements 
are necessarily executed before others. This computation 
facilitates the elimination of common expressions across 
the whole program and the identification of the loop 
structure (not depending on DO statements). No distinc- 
tion is made between address calculations resulting from 
subscripts and other expressions. Another important tech- 
nique is the tracing of data flow for unsubscripted variables. 

The FORTRAN H compiler performs the most thorough 
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analysis of source code and produces the most efficient 
object code of any compiler presently known to the 
writers. For small loops of a few statements, it very often 
produces perfect code. The efficiency is limited mainly by 
the (rather unnecessary) restrictions on the types of data 
organization that can be described in FORTRAN and the 
inability to combine subprograms in a single compilation. 
Of course the optimization does not compensate for in- 
efficient source coding except in minor ways. The methods 
will apply to almost any other procedural language, 
but they are not effective for interpretive systems or for 
object code that relies heavily on precoded library sub- 
routines. 

Most optimization can be optionally bypassed to gain 
a 40 percent reduction in compilation time. However, 
this expands the object code by about 25 percent, and 
execution times are increased threefold. 

C o m p i l e r  O r g a n i z a t i o n  

The optimization within the FORTRAN I-I compiler 
proceeds as follows. In a pass through text the arithmetic 
translator converts FORTRAN expressions into three-address 
text and, at the same time, builds up "connection lists" 
which describe the possible forward paths through the 
program. The connection lists are then sorted to give the 
flow backward as well as forward. 

From the connection lists the dominance relations 
are computed which provide the information from which 
loops are identified along with their initialization blocks. 
A scan is then performed for most unsubscripted variables 
to determine where in the program the variable is "busy," 
i.e. at what points it contains a value that will be sub- 
sequently fetched. 

The text is then examined for possible optimizations 
starting with the innermost loops and working outward 
until the whole program is covered. First, common ex- 
pressions are eliminated from each loop. Then loop-in- 
dependent expressions are moved out of the loop. Some 
statements of the form A = B are eliminated by replacing 
references to A with B. Induction variables are then iden- 
tified and multiplications of them are reduced to additions 
by the introduction of new induction variables. An attempt 
is then made to reorder some computations to form addi- 
tional constant expressions that may be moved out of 
the loop. 

When all loops have been processed by the "machine- 
independent optimizer" or text optimization phase, a 
similar pass is made through the loops doing register 
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allocation. For each loop some registers are assigned for 
very local usage and other available registers are assigned 
each to a single variable across the loop so that  no memory 
references to that  variable occur in the loop. Status bits 
are set to indicate which variables, bases, and index 
quantities must be loaded into registers or stored for 
each text entry. 

On the basis of the status bit settings, the amount  of 
code that  will be generated for each text entry can be 
calculated; hence, the branch addresses can then be 
computed. Finally, the object code is generated from the 
text. "The text retains the same format throughout op- 
timization except that  register numbers and status bits 
are set during register allocation. 

D i v i s i o n  o f  t h e  P r o g r a m  i n t o  B l o c k s  

In  the arithmetic translator phase the program is 
broken into computational "blocks" whose relationship 
may be represented by  a directed graph (see Figure 1) 
tha t  illustrates the flow of control through the program. 

FIG. I. Block structure 

Each block consists of a sequence of statements, only the 
first of which may be branched to, and only the last of 
which contains a branch. Logical IF  statements may 
produce more than one block. If the statement following 
the logical expression is not a GO TO, it will form a 
separate block. If the logical expression contains .AND. or 
.OR. operators, the statement will generally be broken 
down into a set of equivalent statements tha t  do not 
contain such operators. This transformation considerably 
accelerates the execution of logical IF  statements by 
avoiding evaluation of many logical expressions and re- 
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Fro. 2. Organization of block packages, text entries and connec- 
tion lists. 

ducing the explicit use of logical variables [1]. For example, 
IF  (A.LT.B.OR.C.GT.D) GO TO 10 

is equivalent to 
IF  (A.LT.B.) GO TO 10 
IF  (C.GT.D) GO TO 10. 

Internally, a structure of fields called the block pack- 
age (see Figure 2) is associated with each block. One field 
points to a list of all blocks that  could be executed im- 
mediately after the given block. Such blocks are called 
"successors" of a given block. The lists of successors are 
constructed during the arithmetic translator phase, and 
they must be complete. Thus errors could be introduced 
into the program if the list of s tatement numbers in an 
assigned GO TO statement is not correctly provided. 
After the lists of successors are completed, they are 
sorted to provide lists of predecessors for each block. 

"Program entry blocks" are distinguished by  their 
lack of predecessors, and "re turn blocks" are distin- 
guished by  their lack of successors. 

Three bit strings are also included in each block package. 
Each string is 128 bits long and describes the status of 
variables in the block. The first string indicates which 
variables or constants are fetched in the block. The second 
string tells which variables are stored in the block. The  
third string, which is set during the data  flow analysis, 
indicates which unsubscripted variables are busy on exit 
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f rom the block. These strings constitute a significant 
space overhead, but  they save much scanning. 

D o m i n a n c e  Re lat ions  

The  idea of dominance relations between the blocks of 
a program was suggested by  Prosser [2] and refined by 
Medlock. We say tha t  a block I "predominates" a block J 
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Fro. 3. Dominance  relations.  Each  block points  to i ts  immedi- 
ate predominator .  

if every path along a sequence of successors from a pro- 
gram entry block to J aLvays passes through I.  Con- 
versely we may define a post-dominance relationship, but  
it  is less useful. 

The relation is transitive: If I predominates J and J 
predominates K, then I predominates K. Further,  if block 
K is predominated by both blocks I and J ,  then we can 
show that  either I predominates J or vice versa. We may 
conclude that  if a block K is predominated by several 
blocks, then one of them, J ,  is predominated by  all the 
other predominators of K. We call this block the "imme- 
diate predominator" of K. 

All the predominance relations in a program may then 
be summarized by indicating in each block package the 
immediate predominator for tha t  block (if there is any). 
The set of all predominators of a block is given by  scanning 
along the chain of immediate predominators. The domi- 
nance relations between the blocks of Figure 1 are illus- 
t ra ted  in the tree-like pat tern of Figure 3. 

To compute the immediate predominator for a block K, 
we may first lay out some arbitrary nonlooping path  
from a program entry block to K. The path  contains all 
predominators of K and the one closest to K on the path  
is its immediate predominator. We then remove from the 

path  the block nearest to K if we find a chain of prede- 
cessors from K to a program entry block or a more remote 
block on the path  where the chain does not go through the 
nearest block. The closest block remaining on the pa th  
after repeatedly removing blocks in this way is the im- 
mediate predominator. 

Loop Analysis  

I t  is very desirable to move computations and storage 
references from frequently executed blocks to infrequently 
executed ones whenever possible. In  practice, this means 
moving loop-independent computations out of loops and 
assigning registers to variables across loops. In  the 
absence of more complete information, we assume that  
depth of loop nesting and frequency of execution are 
related. Our procedure recognizes only those loops tha t  
are entered at one point; but  the others pose no serious 
problem since, in principle, they can be reduced to single 
entry loops by replicating part  of the program, and, in 
practice, they do not  occur often. The optimization makes 
no distinction between DO loops and equivalent IF  loops. 
The loop analysis described here is a slight improvement 
on the one actually used in the compiler. 

If a loop is entered at only one point, then that  loop 
entry block must predominate all members of the loop. 
We may scan for all blocks J which are branched to from 
some block predominated by J (or which is J itself), and 
we flag those blocks as loop entry blocks (see Figure 4). 
Usually a loop entry block is immediately preceded by  an 
initialization block for the loop. If the immediate pre- 
dominator of a loop entry block has just one successor, 
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FiG. 4. Loop s t ruc tu re :  Membersh ip  in four loops is indicated.  
( In i t ia l iza t ion  blocks are shaded and the  in i t ia l iza t ion block for 
loop number  i has  been inserted.) .  
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then it is a satisfactory initialization block. Otherwise, a 
block is inserted to branch or fall through to the loop entry 
block. Some of the blocks that  are predecessors of the loop 
entry block are then changed so they branch or fall through 
to the inserted initialization block instead of the loop 
entry block. The blocks so changed are those that  are not 
predominated by  the loop entry block (nor are they the 
loop entry block itself). 

We may then associate with each block K an "initializa- 
tion block" for the most deeply nested loop which contains 
K.  To do this, we scan the chain of immediate predomi- 
nators of K until we find a loop entry block such that  there 
is a forward path from K to the loop entry block that  does 
not include the immediately preceding initialization block. 
If such an initialization block is found, it then becomes the 
initialization block for K. 

If  a block has no initialization block, we assign it  a 
nesting depth of zero. If the initialization block for a block 
K has a nesting depth N, then block K has nesting depth 
N + 1. Nesting depths are used only in the assignment of 
loop numbers, a discussion of which follows. 

Blocks are assigned loop numbers so that  all blocks with 
a common initialization block are assigned the same num- 
ber, and the members of a loop have a lower number than 
their initialization block (which is not considered a member 
of the loop). 

In  performing text optimization and register assignment, 
we start  with the lowest loop number (an innermost loop) 
working from inner to outer loops until the whole program 
has been covered. The  last "loop" processed is not a 
normal loop since some blocks in it do not lie on a closed 
path. When we finish working on a loop, all its member 
blocks are marked as completed and each is assigned the 
same loop number as its initialization block. This has the 
effect of identifying the blocks of the inner loop as a 
properly nested part  of the next outer loop. 

Note tha t  the blocks belonging to a loop may not 
correspond exactly to the range of an associated DO. A 
branch out of the range of a DO will cause other statements 
(the extended range of the DO) to be added to the loop if 
there is a branch back into the DO range. Both  an uncon- 
ditional GO TO which branches out of the range of a DO 
without returning and possibly some preceding state- 
ments will be excluded from the loop. 

Data Flow Analysis 

We say that  a variable is "busy"  at a point in the 
program if at tha t  point it contains data tha t  will sub- 
sequently be fetched. An unsubscripted variable is not 
busy immediately before a store into it because any data  
it contains cannot be subsequently fetched as it  will be 
erased by the store operation (see Figure 5). 

Information about where a variable is busy is useful in 
the following ways: 

1. When a variable is assigned to a register across a 
loop, it must generally be loaded on entry to the loop and 
stored on exit from it. However, if it is known that  the 
variable is not busy at a point crossing the loop boundary, 
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the corresponding load or store may be omitted. Further,  
if a variable is altered within a block but  is not busy on 
exit from the block, it  is usually not necessary to return 
the variable to storage. Within such a block only register 
references to the variable need occur. 

2. An induction variable may  sometimes be eliminated 
from a loop if it  is not busy on exit from the loop. 

3. We may sometimes move the store of a variable into 

( ) 

C--3  
FIG. 5. Data flow. The shaded areas and heavy lines indicate 
where variable X is busy. 

the initialization block of a loop if its not busy-on-entry 
to the loop. 

4. Statements of the form X = Y may  sometimes be 
eliminated. If X is stored into just once and Y is not stored 
into when X is busy, then all references to X can be re- 
placed by  Y. Here X is said to be "subsumed" by  Y. 

5. If  two variables are not busy at  any common point, 
then they may be combined into a single variable. This 
facilitates register allocation and saves space for one of the 
variables. 

The information on where variables are busy is used in 
FORTRAN H in each of the above ways except the last. 
The  combining of external variables to save space has 
been done by  Yershov [3]. 

In  the arithmetic translation phase the most frequently 
referenced variables, constants, arrays, and address con- 
stants are each assigned a number from 2 to 127 to identify 
their respective positions in the bit strings of the block 
package. Other variables and constants get no at tent ion 
during optimization. 

If  two unsubseripted variables of the same type  and 
length are equivalenced, we t reat  them as a single variable. 
Otherwise, eqnivalenced variables are excluded from the 
set included in the bit strings because of the danger of 
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changing the program logic during optimization. If  a 
program adheres to USASI Standard FORT~N, this prob- 
lem will not arise; but  in practice it  does. An additional 
level of optimization that  optimizes equivalenced variables 
for those programs conforming to the standard could be 
introduced. 

Arrays and constants are assumed to be busy everywhere 
in the program. For  each unsubscripted variable with a 
position in the bit strings, a scan is made to determine 
which blocks it is busy on exit from. Appropriate bits are 
set in the busy-on-exit strings for each block. Using the 
fetch and store bit strings, the scan is made starting at 
each fetch and working backward along all paths until  
stopped by  stores. Initially the busy-on-exit strings are 
used to indicate whether the store or fetch precedes when 
both occur in a block. All COMMON data  is assumed 
to be both fetched and stored at a CALL, a nonlibrary 
function reference, or a return block. If  the scan reaches 
an entry block to a subprogram, it  continues at all return 
blocks so that  local variables can be remembered from one 
execution of the subprogram to the next. 

Common Expression Elimination 

The first of the global optimizations performed on a 
given loop is common expression elimination (see Figure 6). 
Common expressions have usually been combined into a 
single calculation only when they appear in a single 
statement. In  the FORT~N H compiler, widely separated 
common expressions are found and combined. This means 
that  the scans must be performed quickly, and that  we 
must check for statements tha t  may change the operand 

TI=A~ 

I 

) 

FIG. 6. Common expression elimination. Blocks 2 and 10 are 
shown before and after the elimination. Shaded areas indicate the 
locations of potentially interfering s tores .  

values of the expression between the two appearances of 
the expression. 

The process is particularly important  for higher-dimen- 
sional subscript expressions in FORTI~AN since these occur 
repeatedly and generate extensive address arithmetic. 
There is no convenient way to eliminate such common 
expressions at the source language level. 

At any point we search only for matching expressions 
consisting of two operands and an operator, but  repeated 
application may combine much larger expressions. An 
expression such as A • B may be replaced by the result of 
an earlier computation of A * B or B * A provided that  
the earlier occurrence predominates it and neither A nor 
B can be altered between the two evaluations of the 
expression. 

The search for an expression matching the expression 
A • B which occurs in a block K is then limited to text  
items preceding it in both block K and other blocks in the 
same loop that  predominate K, but  are not in inner loops 
that  were processed earlier. For  the following reason there 
is no need to search outside the loop containing K:  If  
there is any possibility of replacing A • B by  the result of 
an earlier computation done outside the loop, it  is also 
possible to move the expression outside the loop into the 
initialization block. The movement outside the loop will 
be done later, and the common expression that  remains 
will be found when processing the outer loop. 

The scanning for common expressions could grow in 
proportion to the square of the program size; so to prevent 
very long scans only the first ten predominating blocks 
are examined. Only blocks whose bit strings indicate tha t  
both A and B are fetched are considered. A hash-table 
technique could be used to shorten the scan. The hash 
index would be formed from the two operand pointers and 
the operator. 

Every  expression in block K is first compared with every 
other expression in block K. Then every expression in 
block K is compared with expressions in the immediate 
predominator of K, and then its immediate predominator, 
and so on. At each stage the "store" bit strings for all 
blocks between K and the predominating block are 0R'ed 
together to easily determine which variables might have 
been changed. 

To identify the set of "interfering blocks" between K 
and its immediate predominator, we search backward from 
block K marking blocks along all paths without passing 
through the immediate predominator. When looking for 
matches in the second predominator of K, we search 
backward from the immediate (or first) predominator and 
mark additional blocks without passing through the second 
predominator, and so on. 

To make rapid scans backward from a block along all 
paths, an auxiliary, working vector may be used in which a 
list of all blocks reached is developed. Two pointers to the 
list are maintained between which one can locate at any 
time the set of all blocks already reached by the scan, but 
whose predecessors have not yet been examined. 

If we find a store into A or B, either above the expression 
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A • B in block K or in an interfering block at  any stage, 
we may  flag as unmovable  the text  i tem containing A • B. 
We omit it from consideration when examining subsequent 
predominators since the same interfering stores will pre- 
vent  its elimination. 

When two suitable occurrences of A * B are found for 
which no interfering stores occur, the action taken depends 
on the result operand. Suppose the earlier occurrence has 
the form P = A • B and the later occurrence has the form 
Q = A . B .  I f  P is not stored into at  any interfering 
point, we replace the second text  i tem by  Q = P.  I f  P is 
altered in between, we create a t emporary  variable T, 
insert T = P immediately after the earlier text  item, and 
replace the second i tem by  Q = T. Fur thermore if Q is a 
generated temporary  (which must  be stored only once), 
we immediately eliminate the s ta tement  Q = P or Q = T 
and replace fetches of Q by  P or T, respectively. I f  the 
original sequences were T1 = A * B, X = T1 "t- C in the 
predominat ing block, and T2 = A • B, W = T2 "4- C in 
block K,  we would then replace the second sequence by  
W = T1 d- C in block K and thus set up another common 
expression (T1 -4- C) for elimination (see Figure 6). 

Proliferation of generated temporaries tha t  are busy 
across block boundaries should be avoided since it is 
generally necessary to allocate space for them. I n  the 
above example, T1 becomes busy between two blocks as 
a result of the first expression elimination, but  is then 
eliminated from the later block by  the second. When a 
t empora ry  becomes busy across a block boundary,  we 
should refrain f rom allocating space until we are sure it  
will not re turn to its local status. When space is allocated, 
i t  is best to use any existing variable of the same type  we 
can find which is not busy in the region spanned. 

Eliminating common expressions of the form B(I )  poses 
a problem. I t  m a y  be necessary to store B(I )  into a 
t empora ry  location and fetch the t emporary  later in place 
of B(I) .  Fetching the t emporary  later m a y  not be sig- 
nificantly faster  than  fetching B(I) ,  but  we pay  the 
penal ty  of storing into the t emporary  anyway.  On the 
other hand if we fail to eliminate such a common expres- 
sion, we will fail to recognize any larger common expression 
of which B(I )  m a y  be a part .  

Backward Movement  

An a t t empt  is made to move all loop-independent 
computat ions out of loops. An expression such as A • B 
m a y  be moved from a loop to the corresponding initializa- 
tion block if neither A nor B is stored in the loop. We may  
OR together the store bit  strings for all blocks in the loop 
to identify variables tha t  are unchanged in the loop. 

Suppose A and B are constant  in the loop. A text  i tem 
of the form X = A • B m a y  be moved to the end of the 
initialization block if X is not stored elsewhere in the loop 
and is not busy on exit f rom the initialization block. I f  
such a movement  is made X is identified as constant in 
the loop, thus permit t ing other movements .  

I f  the whole text  i tem cannot be moved, we m a y  create 
a t empora ry  T and insert T = A • B into the initialization 
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block and replace the original text  i tem with X = T. 
I t  is desirable to perform common expression elimination 
before backward movement  since otherwise several tem- 
poraries could be generated when moving different oc- 
currences of a single constant expression out of the loop. 
I n  general, absolute constants and variables tha t  are 
constant within the loop are t reated in the same way 
except tha t  expressions involving only absolute constants 
will be directly evaluated rather  than  moved  out of the 
loop. 

I n  an expression such as A • K1 • K2, where K1 and 
K2 are constant in the loop, the constant  expression 
K1 • K2 would not be so readily detected since the internal 
text  would have the form T1 = A • K1, T2 = T1 * K2. 
To recognize constant parts ,  such expressions must  be 
reordered. 

To  determine when reordering is appropriate,  we m a y  
scan forward through the text  of a block examining 
arithmetic text  i tems involving a constant  interacting with  
a variable. A text  i tem of the form T = V + K,  where K 
is a loop constant, is said to have a result tha t  includes one 
additive constant  unless V is the result of an earlier text  
i tem in the block, in which case it  includes one more 
additive constant than  the earlier text  item. Similarly, a 
text  i tem of the form T = V • K is said to have  a result 
including one multiplicative constant  or one more than  
an earlier text  i tem whose resultant  is V. For  this purpose 
subtraction is regarded as additive and floating-point 
division as multiplicative. When a text  i tem has a result 
t ha t  includes two additive or two multiplicative constants, 
we reorder. 

Thus the final result of an expression such as 
(K1 - t - A ) / K 2  - K3 

would be regarded as including one multiplicative and two 
additive constants. I t  would then be expanded and re- 
ordered as though its form were A / K 2  + ( K 1 / K 2  -- K3).  
The  expression K 1 / K 2  -- K3 would then be recognized as 
a constant tha t  can be moved out of the loop; so one 
addition would be saved in the loop. Since the reordering 
of floating-point computat ions m a y  yield different results, 
the reordering of expressions is invoked only when a 
separate optimization level is specified. 

Absolute constants occurring in subscript expressions 
are normally absorbed into the referencing instruction 
address. However,  an additive port ion of the address 
ari thmetic expression resulting from a subscript may  be 
variable, but  constant  in the loop. Ra the r  than  adding such 
a quant i ty  into the index value within the loop, we m a y  
add it  into the instruction address (or base register on 
System/360) outside the loop. In  FORTRAN H this is done 
when a subscript operator is encountered whose index 
value includes an additive constant.  

The  movement  of some loop-independent expressions to 
the initialization block m a y  result in error conditions. For  
example, a square root function m a y  be evaluated within 
a loop only when the argument  is positive. I f  we move it to 
the initialization block without  determining the sign of 
the argument  an error condition will arise when the argu- 
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ment is negative. Overflows and division by zero may also 
arise in this way. In  FOnTRAN H functions like sine, 
exponentiation, and division may be moved, although 
square root, arcsine, and log may not. The former are less 
likely to cause trouble, but  occasionally error messages 
will result. Any loop-independent expression may be moved 
from the loop entry block without danger since no testing 
can precede it. One approach to solving the problem is 
simply to ignore the interruptions and error conditions 
when a high level of optimization is specified; another is 
to avoid moving an expression past tests involving the 
operands of the expression or to move such tests along 
with the expression. 

Induction Variable Optimization 

An "induction variable" is one that  is altered within a 
loop only by adding to it a constant or a variable tha t  is 
constant in the loop. Such variables are frequently mul- 
tiplied by  constants (or variables constant in the loop) 
as in subscript evaluation, and such multiplications can be 
effectively reduced to additions by introducing new induc- 
tion variables. The only novelty in this t reatment  of 
induction variable optimization is the use of "busy"  
information. 

If I is an induction variable, we may replace an expres- 
sion such as I • K1 by a variable I2  in the following way 
(see Figure 7). At the bot tom of the initialization block 
insert I2 = I • K1. At each point (usually just one) where 
I is incremented by  a statement such as I = I + K2, 
insert 12 = I2 + K3 where K3 = K 1 . K 2  has been 
computed as an absolute constant or inserted into the 
initialization block. The expression I * K1 is then equiva- 
lently replaced by  I2, and the multiplication within the 
loop has been effectively replaced by one addition (some- 
times more). In  principle, exponentiation of the form 
K ** I could be reduced to multiplication in an analogous 
manner. However, there is at present no provision made 
for such a process in FORTRAN H. 

If an expression such as I + K4 occurs (in a context 
other than the incrementing of I)  we may replace it by  
ntroducing a new induction variable 13. We initialize 13 
iy inserting I3 = I + K4 into the initialization block and 
bncrement it in the same way that  I is incremented in the 
ioop. Since this transformation just trades one addition 
for another, it is not useful except when it clears the way 
for eliminating the original induction variable. 

If uses of an induction variable I are replaced by the 
above transformations, it may  be possible to eliminate all 
references to I within the loop. If I is not busy on exit 
from the loop and the only fetches of it in the loop occur 
when I is incremented or compared with a loop constant, 
and, in addition, some other induction variable such as I2  
has been introduced by  transforming I as above, then I 
may  be eliminated. We replace I in any comparison 
operation by  the new induction variable 12 performing the 
lsame transformation on the loop constant to which I was 
compared as was performed on I to initialize I2.  Thus a 
comparison such as I < K5 would be replaced by I2 _< K6, 

12=K 

' ~ T I = ]  

,~I K3=K 

r21) ~ Tl = i 
A=B 

.K2 

IX-K2 K3 =K -X-K2 

Fro. 7. Induc t ion  var iab le  opt imizat ion.  The  first t r ans forma-  
t ion  t rades  an addi t ion for a mul t ip l ica t ion .  The  second eliminates 
the original induct ion var iable .  The  t h i rd  shows fu r ther  improve-  
men t s  from subsumpt ion .  

where K6 = K5 • K1 is either computed, or inserted into 
the initialization block. After such a replacement, the only 
use of I is to increment itself, and that  may  be deleted. 

Subsumption 

A variable X is said to be "subsumed" by  a variable Y 
if references to X are replaced by references to Y. Text  
items of the form X = Y may sometimes be eliminated 
when X is subsumed by Y. 

In  FORTRAN H, subsumption is limited to a single block 
in which X is either stored into again later in the block or 
is not busy on exit from the block. All fetches of X are 
replaced by  those of Y if they occur after the X = Y text  
i tem but  before any store of X. If  a store into Y occurs 
before such a fetch of X but  after the X = Y text item, 
then the subsumption is not possible. 

More generally, two variables may  be merged if at all 
points where both are busy they have the same value. 

In  induction variable optimization we often replace a 
text  i tem of the form T = I • K by T = I2, and we may 
immediately eliminate the text  i tem by subsuming T. 

Register Allocation 

Effective register assignment is very important  on a 
System/360 computer, where many registers are available 
and base registers must be loaded prior to storage refer- 
ences. The most important  technique used by  FORTRAN H 
is the rather simple one of noting which variables, con- 
stants, and base addresses are referenced most frequently 
within a loop and assigning many  of them to individual 
registers across the loop. 

Before such global assignments are made across the 
entire loop, two passes are made across each block in a 
loop assigning generated temporaries and other variables 
which are both stored and fetched within a block. The first 
pass goes forward through the block building up tables 
used during the subsequent bac~vard  pass, the one which 
actually assigns registers. I t  is more convenient to make 
the pass backward through the block in assigning even-odd 
register pairs, matching result operands to the same reg- 
ister as a fetched operand in a text item, and deciding 
which variables should not be assigned. If very much 
deeply parenthesized computation occurs ia the loop, the 
four floating-point registers will tend to be used up during 
this local register assignment procedure. This is of no 
consequence, however, since globMly assigning floating- 
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Used for All Subtract Operations 

Skeleton 
Instructions 

'L B2,D{0,BD) 
LH R2,D(0,B2) 
LH Ri,D(X, B2) 
:L B3,D(0,BD) 
LCR R3,R3 
LR RI,R2 
LH R3,D(0,B3) 
LCR Ri,R3 
SH RI,D(X,B3) 
SR Ri,R3 
AH R3,D(X,B2) 
AH RI,D(X,B2) 
AR R3,R2 
L B1,D(0,BD) 
STH R1,D{0,B1) 

Status 

0000000011111111 
0000111100001111 
0011001100110011 
0101010101010101 

XXXXXXXX00000000 
0000111100000000 
Ii00000000000000 
XX00XX00XX00XX00 
0010001000000010 
0000110100001101 
0100010001000100 
00010000000000001 
i000100010001000 
0100010101110101 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
0000001000000010 
XXXXXXXXXXXXXXXX 
XXXXKXKKXXXXXXXX 

FIG. 8. Coding skeleton and bit strings for the subtraction 
operator. 

point variables across a loop is only a minor benefit except 
in small loops, in which case the registers will be available 
anyway. A variable locally assigned in a block is generally 
not stored unless it is busy on exit from the block. 

After the local assignment, the most active acceptable 
variables are selected for global assignment across the loop. 
Loads and stores of globally assigned variables are inserted 
at entry and exit to the loop when the variable is busy 
across the loop boundary. Constants in the loop need not 
be stored on exit. 

All registers needed by an inner loop are assigned for 
its use. This may leave no unused registers available for 
global assignment to outer loops. To prevent this, an 
effort is made to extend global assignments in inner loops 
to apply to outer loops as well. Because of the importance 
of having base addresses loaded, provision is also made for 
assigning registers across outer loops to constants (in- 
chiding base addresses) even when the register is differ- 
ently assigned to an inner loop. Such registers must be 
restored on exit from the inner loop. 

For large loops it is desirable to assign some variables 
to registers across block boundaries without extending the 
assignment across the whole loop. For this reason local 
assignment is performed by working on small groups of 
blocks. A suitable group should be entered at just one 
point, i.e. M1 predecessors of a member of the group (except 
the first member) should also be members of the group. 

Rather than perform a load of a subscripted variable 
followed by a register-register (RR) instruction, in Sys- 
tem/360 it is preferable to combine these into a register- 
storage (RX) instruction. To accomplish this it is desirable 
to reorder the text so that a subscript text item is usually 
followed immediately by the operation that uses its result. 

One register is reserved and permanently loaded for 
branching, and as many as three others may be preempted 

if the program exceeds the 4K bytes addressable by one 
base register. 

The above discussion only sketches the scope of the 
existing register allocation scheme. This scheme is very 
successful for loops that are not too large, but to be fully 
competitive with hand coding in large loops, a more refined 
iterative procedure is needed. 

Code Generation 

For each text item the code generated will depend on 
what operands are in registers, what operands must be 
preserved in registers, whether a result is to be stored, 
and what base addresses must be loaded to reference 
storage. During register allocation, these conditions are 
expressed in eight status bits for each text item: bits 1 and 
2 give the status of the first fetched operand; bits 3 and 4 
give the status of the second fetched operand; bits 5, 6, 
and 7 indicate whether base registers must be loaded for 
each of the three operands; and bit 8 indicates whether 
the result operand is to be stored or not. 

For a fetched operand, the four settings of the two bits 
have the following meanings: 

00--The operand must be fetched from storage and is 
not retained in registers. 

01--The operand must be fetched from storage and re- 
tained in a register after the operation. 

10---The operand is available in a register whose con- 
tents are erased since the result operand is formed 
in the same register. 

l l - -The  operand is available in a register and it must 
be retained in that register after the operation. 

To provide a compact representation of the best possible 
code for each of the possible status settings, a "coding 
skeleton" is provided for each operator. The status bits 
are used to select a bit string which in turn selects from 
the skeleton those instructions that are actually generated 
for the given text item. The example in Figure 8 gives the 
coding skeleton and bit strings for the subtraction operator. 
The fifteen instructions include, in the order of genera- 
tion, ~11 those that might ever be generated from a sub- 
traction text item. The instructions are expressed in terms 
of half-word integer subtraction, but modification to han- 
dle full-word and floating-point subtraction is straight- 
forward. The bit string that selects instructions from the 
skeleton is formed by taking the first four bits describing 
the fetched operand status and using them to select one 
of the sixteen columns illustrated. The remaining four 
status bits are then inserted into the column (replacing 
X's) to indicate needed base-register loading and the 
storing of the result operand. 

The register allocation and code generation procedures 
are facilitated by the parallelism between RR and RX 
instructions on System/360. 

Additional Optimizations 

For completeness, a number of other kinds of optimiza- 
tion are listed here [4-7]. Only the first three are currently 
used in FORTRAN i .  
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1. Use of in-line coding for many mathematical function 
subprograms. 

2. Use of multiplication for exponentiation to an integer. 
A sequence of square and multiply operations may be 
used based on the bit pattern of the exponent. 

3. If one operand is a power of two, a number of im- 
provements may be possible: Integer multiplication or 
division may become a shift, multiplication by 2.0 becomes 
an addition, and multiplication by one or addition of zero 
disappear. 

4. Simplification of logical expressions using DeIVfor- 
gun's theorem. 

5. Conversion of floating-point division by a constant 
to a (faster) multiplication. 

6. Common factor analysis. A .  B + A .  C becomes 
A • (B + C). 

8. Combination of moves of adjacent fields into a single 
instruction. 

9. Unpacking of certain types of data and repacking it 
after it has been referenced a number of times rather than 
operating on it repeatedly in an inconvenient form. 

10. Reordering of operations within a block to minimize 
the number of registers needed or to maximize the op- 
portunities for parallel execution. 

11. Reordering of sequences of conditional branches 
(using the Huffman code principle) to minimize the average 
time through them. (This depends on frequency informa- 
tion for the different branches.) 

12. Elimination of unnecessary unconditional branches 
by reordering the code. An unconditional branch from 
within a loop to the loop entry block can often be effec- 
tively moved out of the loop by moving the block that ends 
in the unconditional branch so that it precedes the loop 
entry block. The unconditional branch is then deleted 
from that block, and one is inserted into the initialization 
block to branch to the loop entry block. 

Edited Source Listing 
In FoRrmt~ H a documentation aid based on dominance 

relations is provided in the form of an edited source listing 
(see Figure 9). The entries to and exits from loops are 
indicated by the loop numbers in the left-hand margin. 
Each line of code is indented to illustrate the control flow 
more clearly. The basic rule for indenting is that a state- 

c - p R i M  E N U M ~ E ~  r~ROBLEI4  

I lqX, tHI/ICtX. |H?/IqRR.IH3} 
1 o |  1 = 5  

( 0 0 2  3 1 F t I , G T . t O 0 0 )  G O T a  7 
A=t  

. . . .  1 0 2  A=~ t3 r~T  { a I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~o, ~n ~ - ~ = ~ 3 . ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
( o o |  1 o 5  L = I / K  

I l l 6  I F { L * K - - [  ) 1 , 2 , ~  
L C O N T  ~ NtJE 

_ o o l )  . . . .  c 
- - i  E7 . . . .  - ~  ~-Z-T E- TLT~ - t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

...... ~" . . . . .  ¥o~-~ETTz~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

G O T n  3 

002) C 
'#nZTF ( ~ , o )  - - -  - - ~  . . . . . . . . . . . . . . . .  

- - "  "~ ~ T ~  { 6 - . ~ )  - -  
6 F n - ~ A T  { 3 I H  T H i S  iS T H E  F N D  0 F  T H F  p~nG.A~} 

Ioo S~Pr~  
END 

FIG. 9. Ed i t ed  source l is t ing wi th  loop boundar ies  and indent ing  
based on dominance.  

ment $1 is indented one more than the statement $2 
immediately predominating it unless $1 is the last state- 
ment for which $2 is an immediate predominator. If $1 
is the last (or only) statement with $2 as its immediate 
predominator, it is indented the same as $2. The value of 
this system is subjective and not well illustrated in the 
necessarily short program shown. However, it does il- 
lustrate application of the analysis to a very different 
problem. 

A Language Suggestion 
If the dominance relations and loop structure of a 

program are analyzed on every compilation, we can use 
that analysis to give useful meaning to some novel source 
language expressions. One type of expression could have a 
form such as (exprl. AT. 20, expr2. AT. 30, expr3). The 
occurrence of such an expression causes a new variable to 
be introduced--call it T. At the statement with label 20, 
the statement T = exprl is effectively inserted. Similarly, 
T = expr2 is inserted at statement 30. The statement 
T = expr3 is inserted at the bottom of the closest block 
that predominates both the expression and statements 20 
and 30, and is at the same (or shallower) depth of nesting 
as the expression. The expression itself is then replaced by 
the generated variable T. 

The last part of the expression (expr3) then forms an 
initialization of a value that is subsequently modified, 
depending on the flow through the program, and finally 
used. Such expressions could eliminate many housekeeping 
variables whose meaning is not apparent without searching 
out all places where they are set. 

Compiler Development 
The compiler was itself written in FORTRAN and boot- 

strapped three times. The first time was to convert from 
running on the IBM 7094 to System/360---an arduous 
procedure. The second time was to optimize itself, which 
reduced the compiler size from about 550K to about 400K 
bytes. I t  was then rewritten to take advantage of language 
extensions permitting efficient bit manipulation and refer- 
encing of structured data. After the third bootstrapping 
compilation time was reduced by about 35 percent, and 
its capacity was nearly doubled; it is now about 700 
statements using a 256K byte storage, which is the smallest 
storage the compiler will operate in. 

All dictionary and text are retained in main storage 
during compilation. This had a psychological advantage 
during development of the optimization techniques, but 
it now appears unnecessary. The techniques can be applied 
using a smaller storage area where the only text in core at 
any moment is the loop being optimized. There is reason 
to doubt that the optimization features could have been 
included in the compiler and debugged in a reasonable 
amount of time if it had not been written in a higher level 
language. During debugging there was a tendency for some 
optimization features to become disabled. This disability 
often went unnoticed since the test cases still ran correctly. 

In building an optimizer there are many temptations to 
waste effort on insignificant problems. 
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Conclusion 

A number of questions remain which cannot be fully 
answered at present. Which methods are the most fruitful? 
Can they be adapted to much smaller, faster compilers? 
What should haw? been done differently? Can less general 
methods be nearly as effective? Are the methods applicable 
to other than FOIITRAN coding? 

The following opinions are offered. Probably the global 
common expression elimination and register allocation 
were the most important techniques but taken as a whole 
many minor ones were significant. The flow analysis con- 
tributed substantially to the effectiveness of most op- 
timizations. A significantly smaller compiler could prob- 
ably have the same abilities. One reason is that the op- 
timization (as applied during boot strapping emphasizes 
speed rather than space). The main defects in the present 
design are probably the slowness of scanning for common 
expressions and the excessively cautious handling of 
equivalenced and complex variables. The general methods 
used seem to provide a valuable (but probably not very 
wide) margin of efficiency over more specialized ap- 
proaches to optimization of scientific programs. The 
practical effect has been to show that very good code can 
be compiled for System/360. 

The writers are inclined to see the technical value of 
thorough flow analyses of programs more in terms of the 
potential extensions discussed below. Three desirable de- 
velopments seem easily attainable. 

(1) I t  should be possible to code almost any program at 
a level substantially higher than assembler language with- 
out penalty in object code efficiency. The main exception 
would be when no computer of sufficient capacity is 
available for optimizing compilation. This is based on the 
observation that almost any deficiency in the object code 
of FORTRAN t-I could be overcome by judiciously tinkering 
within the established analytic framework. 

(2) Optimizing compilers could be economically con- 
structed for several source languages on a single machine 
type by preprocessing each into a machine-dependent 
intermediate text which would then be compiled using a 
common optimizer. This is based on the observation that 
the optimization procedures in the FOi~TRAN H compiler 
were almost completely independent of the features of the 
source language. The slowness of such compilations would 
not be a serious limitation when high speed nonoptimizing 
compilers are also available. 

(3) The analyses required to optimize may be extended 
to detect irregularities in the control flow and data flow of 
programs. In any sizable program there are a number of 
categories of data that may interact only in restricted 
ways, e.g. a temperature may not be meaningfully added 
to an acceleration, or two address quantities may not be 
multiplied together. Given some declarations defining such 
categories and their interactions, the data flow analysis 
could check large programs for consistency, e.g. before a 
field in a record is used it may be logically necessary to 
check a control field to interpret it or before using a pointer 
in a chained list it may be logically necessary to check for 

an end of chain. With the help of suitable declarations we 
can make sure that such checking is actually included in 
the program. In effect we may go beyond checking for 
syntactic correctness of the source program to assure that 
the processing does not violate "syntactic relations" be- 
tween the data being processed. 

Less immediate applications of program analysis will 
involve extensive restructuring of programs by automatic 
or semiautomatic means. Very flexible programs can be 
written using list processing languages, e.g. Lisp, SNOBOL, 
COMIT but there is no practical automatic way to transform 
such programs to use compact data organizations and 
avoid redundant scanning. Efficient programs tend to be 
inherently inflexible since equivalent data is often carried 
in more than one form for rapid use. This necessitates 
carefully coordinated changes. The temporaries used in the 
FORTRAN H compiler are a restricted method of introduc- 
ing equivalent forms of data. Automatic design of inter- 
mediate tables is a logical extension which would greatly 
enhance machine independence. These considerations sug- 
gest that progress toward flexibility in programming de- 
pends more on compilation techniques than language 
improvements. 

Other challenges in this area are the adaptation of 
programs to hierarchies of storage speed and to parallel 
CPU's. In these problems and in the reduction of redun- 
dant scanning the main objective is to reduce randomness 
of data referencing, or more specifically, to process the 
data in focus as much as possible before moving on to 
other data. This suggests that a unified assault on these 
problems is appropriate. 

The writers feel that the area of analysis and transforma- 
tion of programs is extremely fruitful for programming 
research. The present economic value of the next few steps 
is unmistakable, and the first serious technical stumbling 
blocks have yet to be encountered. 
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