
R. M. McCLURE, Editor

Object Code Optimization

EDWARD S. LOWRY AND C. W. MEDLOCK*
International Business Machines Corp., Poughkeepsie, N. Y.

Methods of analyzing the control flow and data flow of pro-
grams during compilation are applied to transforming the pro-
gram to improve object time efficiency. Dominance relation-
ships, indicating which statements are necessarily executed
before others, are used to do global common expression
elimination and loop identification. Implementation of these
and other optimizations in O S / 3 6 0 FORTRAN H are described.

KEY WORDS AND PHRASES: compilers, data flow analysis, dominancee
efficiency, FORTRAN, graph theory, loop structure, machine instructions,
object code, optimization, redundancy elimination, register assignment,
System/360

CR CATEGORIES: 4.12, 5.24, 5.32

I n t r o d u c t i o n

The implementation of object code optimization tech-
niques in the 0S/360 FORTRAN H compiler is presented
and the potential extensions of these techniques are dis-
cussed.

The compilation process basically converts programs
from a form which is flexible to a form which is efficient in
a given computing environment. Compiler writers are
challenged on the one hand by increasingly complex
hardware and on the other by the fact that much of the
complexity and rigidity of large, costly programs results
from conscious efforts to build in efficiency. Since the
methods of analyzing and transforming programs used in
FORTRAN H are relatively unspecialized, it is hoped that
they will help form a basis for solving the many remaining
problems.

A major novel technique used is the computation of
"dominance" relationships indicating which statements
are necessarily executed before others. This computation
facilitates the elimination of common expressions across
the whole program and the identification of the loop
structure (not depending on DO statements). No distinc-
tion is made between address calculations resulting from
subscripts and other expressions. Another important tech-
nique is the tracing of data flow for unsubscripted variables.

The FORTRAN H compiler performs the most thorough

* Present address: Sun Oil Co., DX Division, Tulsa, Oklahoma

analysis of source code and produces the most efficient
object code of any compiler presently known to the
writers. For small loops of a few statements, it very often
produces perfect code. The efficiency is limited mainly by
the (rather unnecessary) restrictions on the types of data
organization that can be described in FORTRAN and the
inability to combine subprograms in a single compilation.
Of course the optimization does not compensate for in-
efficient source coding except in minor ways. The methods
will apply to almost any other procedural language,
but they are not effective for interpretive systems or for
object code that relies heavily on precoded library sub-
routines.

Most optimization can be optionally bypassed to gain
a 40 percent reduction in compilation time. However,
this expands the object code by about 25 percent, and
execution times are increased threefold.

C o m p i l e r O r g a n i z a t i o n

The optimization within the FORTRAN I-I compiler
proceeds as follows. In a pass through text the arithmetic
translator converts FORTRAN expressions into three-address
text and, at the same time, builds up "connection lists"
which describe the possible forward paths through the
program. The connection lists are then sorted to give the
flow backward as well as forward.

From the connection lists the dominance relations
are computed which provide the information from which
loops are identified along with their initialization blocks.
A scan is then performed for most unsubscripted variables
to determine where in the program the variable is "busy,"
i.e. at what points it contains a value that will be sub-
sequently fetched.

The text is then examined for possible optimizations
starting with the innermost loops and working outward
until the whole program is covered. First, common ex-
pressions are eliminated from each loop. Then loop-in-
dependent expressions are moved out of the loop. Some
statements of the form A = B are eliminated by replacing
references to A with B. Induction variables are then iden-
tified and multiplications of them are reduced to additions
by the introduction of new induction variables. An attempt
is then made to reorder some computations to form addi-
tional constant expressions that may be moved out of
the loop.

When all loops have been processed by the "machine-
independent optimizer" or text optimization phase, a
similar pass is made through the loops doing register

Volume 12 / Number 1 / January, 1969 Communications of the ACMM 13

allocation. For each loop some registers are assigned for
very local usage and other available registers are assigned
each to a single variable across the loop so that no memory
references to that variable occur in the loop. Status bits
are set to indicate which variables, bases, and index
quantities must be loaded into registers or stored for
each text entry.

On the basis of the status bit settings, the amount of
code that will be generated for each text entry can be
calculated; hence, the branch addresses can then be
computed. Finally, the object code is generated from the
text. "The text retains the same format throughout op-
timization except that register numbers and status bits
are set during register allocation.

D i v i s i o n o f t h e P r o g r a m i n t o B l o c k s

In the arithmetic translator phase the program is
broken into computational "blocks" whose relationship
may be represented by a directed graph (see Figure 1)
tha t illustrates the flow of control through the program.

FIG. I. Block structure

Each block consists of a sequence of statements, only the
first of which may be branched to, and only the last of
which contains a branch. Logical IF statements may
produce more than one block. If the statement following
the logical expression is not a GO TO, it will form a
separate block. If the logical expression contains .AND. or
.OR. operators, the statement will generally be broken
down into a set of equivalent statements tha t do not
contain such operators. This transformation considerably
accelerates the execution of logical IF statements by
avoiding evaluation of many logical expressions and re-

\ BLOCK PACKAGE

CHAIN TO NEXT BLOCK

POINTER TO LIST SUCCESSOR BLOCKS

POINTER TO LIST PREDECESSOR BLOCKS

POINTER TO IMMEDIATE PREDOMINATOR BLOCK

POINTER TO FIRST TEXT ENTRY IN BLOCK

LOOP NUMBER

BIT STRING SHOWING VARIABLES FETCHED IN BLOCK

BIT STRING SHOWING VARIABLES STORED IN BLOCK

BIT STRING SHOWING VARIABLES BUSY ON EXIT FRON

BLOCK

POINTERS TO

- - --'~ POINTER TO
~ PREDECESSOR

"~BLOCKS

TEXT ENTRY

CHAIN TO NEXT TEXT ENTRY

OPERATOR

FIRST OPERAND DICTIONARY POINTER

SECOND OPERAND DICTIONARY POINTER

THIRD OPERAND DICTIONARY POINTER

REGISTER ASSIGNMENT FIELDS

STATUS ; I : .~ ENTR'~-

TEXT ENTRY

~-.,,.~ BLOCK PACKAGE

Fro. 2. Organization of block packages, text entries and connec-
tion lists.

ducing the explicit use of logical variables [1]. For example,
IF (A.LT.B.OR.C.GT.D) GO TO 10

is equivalent to
IF (A.LT.B.) GO TO 10
IF (C.GT.D) GO TO 10.

Internally, a structure of fields called the block pack-
age (see Figure 2) is associated with each block. One field
points to a list of all blocks that could be executed im-
mediately after the given block. Such blocks are called
"successors" of a given block. The lists of successors are
constructed during the arithmetic translator phase, and
they must be complete. Thus errors could be introduced
into the program if the list of s tatement numbers in an
assigned GO TO statement is not correctly provided.
After the lists of successors are completed, they are
sorted to provide lists of predecessors for each block.

"Program entry blocks" are distinguished by their
lack of predecessors, and "re turn blocks" are distin-
guished by their lack of successors.

Three bit strings are also included in each block package.
Each string is 128 bits long and describes the status of
variables in the block. The first string indicates which
variables or constants are fetched in the block. The second
string tells which variables are stored in the block. The
third string, which is set during the data flow analysis,
indicates which unsubscripted variables are busy on exit

14 Communicat ions of the ACM Volume 12 / Number 1 / January, 1969

f rom the block. These strings constitute a significant
space overhead, but they save much scanning.

D o m i n a n c e Re lat ions

The idea of dominance relations between the blocks of
a program was suggested by Prosser [2] and refined by
Medlock. We say tha t a block I "predominates" a block J

f

--)
I

.L
I '

I
• I

I I
I

I i

I I
1 ?

?
I

()
Fro. 3. Dominance relations. Each block points to i ts immedi-
ate predominator .

if every path along a sequence of successors from a pro-
gram entry block to J aLvays passes through I. Con-
versely we may define a post-dominance relationship, but
it is less useful.

The relation is transitive: If I predominates J and J
predominates K, then I predominates K. Further, if block
K is predominated by both blocks I and J , then we can
show that either I predominates J or vice versa. We may
conclude that if a block K is predominated by several
blocks, then one of them, J , is predominated by all the
other predominators of K. We call this block the "imme-
diate predominator" of K.

All the predominance relations in a program may then
be summarized by indicating in each block package the
immediate predominator for tha t block (if there is any).
The set of all predominators of a block is given by scanning
along the chain of immediate predominators. The domi-
nance relations between the blocks of Figure 1 are illus-
t ra ted in the tree-like pat tern of Figure 3.

To compute the immediate predominator for a block K,
we may first lay out some arbitrary nonlooping path
from a program entry block to K. The path contains all
predominators of K and the one closest to K on the path
is its immediate predominator. We then remove from the

path the block nearest to K if we find a chain of prede-
cessors from K to a program entry block or a more remote
block on the path where the chain does not go through the
nearest block. The closest block remaining on the pa th
after repeatedly removing blocks in this way is the im-
mediate predominator.

Loop Analysis

I t is very desirable to move computations and storage
references from frequently executed blocks to infrequently
executed ones whenever possible. In practice, this means
moving loop-independent computations out of loops and
assigning registers to variables across loops. In the
absence of more complete information, we assume that
depth of loop nesting and frequency of execution are
related. Our procedure recognizes only those loops tha t
are entered at one point; but the others pose no serious
problem since, in principle, they can be reduced to single
entry loops by replicating part of the program, and, in
practice, they do not occur often. The optimization makes
no distinction between DO loops and equivalent IF loops.
The loop analysis described here is a slight improvement
on the one actually used in the compiler.

If a loop is entered at only one point, then that loop
entry block must predominate all members of the loop.
We may scan for all blocks J which are branched to from
some block predominated by J (or which is J itself), and
we flag those blocks as loop entry blocks (see Figure 4).
Usually a loop entry block is immediately preceded by an
initialization block for the loop. If the immediate pre-
dominator of a loop entry block has just one successor,

r

I

INITIALIZE LOOP 5

• Y BLOCK, LOOP 3

~ INITIALIZE LOOP l

ENTRY BLOCK, LOOP I

3~4 INITIALIZE LOOP 2

ENTRY BLOCK, LOOP 2

FiG. 4. Loop s t ruc tu re : Membersh ip in four loops is indicated.
(In i t ia l iza t ion blocks are shaded and the in i t ia l iza t ion block for
loop number i has been inserted.) .

V o l u m e 12 / N u m b e r 1 / J a n u a r y , 1969 C o m m u n i c a t i o n s o f t h e ACM 15

then it is a satisfactory initialization block. Otherwise, a
block is inserted to branch or fall through to the loop entry
block. Some of the blocks that are predecessors of the loop
entry block are then changed so they branch or fall through
to the inserted initialization block instead of the loop
entry block. The blocks so changed are those that are not
predominated by the loop entry block (nor are they the
loop entry block itself).

We may then associate with each block K an "initializa-
tion block" for the most deeply nested loop which contains
K. To do this, we scan the chain of immediate predomi-
nators of K until we find a loop entry block such that there
is a forward path from K to the loop entry block that does
not include the immediately preceding initialization block.
If such an initialization block is found, it then becomes the
initialization block for K.

If a block has no initialization block, we assign it a
nesting depth of zero. If the initialization block for a block
K has a nesting depth N, then block K has nesting depth
N + 1. Nesting depths are used only in the assignment of
loop numbers, a discussion of which follows.

Blocks are assigned loop numbers so that all blocks with
a common initialization block are assigned the same num-
ber, and the members of a loop have a lower number than
their initialization block (which is not considered a member
of the loop).

In performing text optimization and register assignment,
we start with the lowest loop number (an innermost loop)
working from inner to outer loops until the whole program
has been covered. The last "loop" processed is not a
normal loop since some blocks in it do not lie on a closed
path. When we finish working on a loop, all its member
blocks are marked as completed and each is assigned the
same loop number as its initialization block. This has the
effect of identifying the blocks of the inner loop as a
properly nested part of the next outer loop.

Note tha t the blocks belonging to a loop may not
correspond exactly to the range of an associated DO. A
branch out of the range of a DO will cause other statements
(the extended range of the DO) to be added to the loop if
there is a branch back into the DO range. Both an uncon-
ditional GO TO which branches out of the range of a DO
without returning and possibly some preceding state-
ments will be excluded from the loop.

Data Flow Analysis

We say that a variable is "busy" at a point in the
program if at tha t point it contains data tha t will sub-
sequently be fetched. An unsubscripted variable is not
busy immediately before a store into it because any data
it contains cannot be subsequently fetched as it will be
erased by the store operation (see Figure 5).

Information about where a variable is busy is useful in
the following ways:

1. When a variable is assigned to a register across a
loop, it must generally be loaded on entry to the loop and
stored on exit from it. However, if it is known that the
variable is not busy at a point crossing the loop boundary,

16 Communica t ions of t he ACM

the corresponding load or store may be omitted. Further,
if a variable is altered within a block but is not busy on
exit from the block, it is usually not necessary to return
the variable to storage. Within such a block only register
references to the variable need occur.

2. An induction variable may sometimes be eliminated
from a loop if it is not busy on exit from the loop.

3. We may sometimes move the store of a variable into

()

C--3
FIG. 5. Data flow. The shaded areas and heavy lines indicate
where variable X is busy.

the initialization block of a loop if its not busy-on-entry
to the loop.

4. Statements of the form X = Y may sometimes be
eliminated. If X is stored into just once and Y is not stored
into when X is busy, then all references to X can be re-
placed by Y. Here X is said to be "subsumed" by Y.

5. If two variables are not busy at any common point,
then they may be combined into a single variable. This
facilitates register allocation and saves space for one of the
variables.

The information on where variables are busy is used in
FORTRAN H in each of the above ways except the last.
The combining of external variables to save space has
been done by Yershov [3].

In the arithmetic translation phase the most frequently
referenced variables, constants, arrays, and address con-
stants are each assigned a number from 2 to 127 to identify
their respective positions in the bit strings of the block
package. Other variables and constants get no at tent ion
during optimization.

If two unsubseripted variables of the same type and
length are equivalenced, we t reat them as a single variable.
Otherwise, eqnivalenced variables are excluded from the
set included in the bit strings because of the danger of

Volume 12 / Number 1 / J anua ry , 1969

changing the program logic during optimization. If a
program adheres to USASI Standard FORT~N, this prob-
lem will not arise; but in practice it does. An additional
level of optimization that optimizes equivalenced variables
for those programs conforming to the standard could be
introduced.

Arrays and constants are assumed to be busy everywhere
in the program. For each unsubscripted variable with a
position in the bit strings, a scan is made to determine
which blocks it is busy on exit from. Appropriate bits are
set in the busy-on-exit strings for each block. Using the
fetch and store bit strings, the scan is made starting at
each fetch and working backward along all paths until
stopped by stores. Initially the busy-on-exit strings are
used to indicate whether the store or fetch precedes when
both occur in a block. All COMMON data is assumed
to be both fetched and stored at a CALL, a nonlibrary
function reference, or a return block. If the scan reaches
an entry block to a subprogram, it continues at all return
blocks so that local variables can be remembered from one
execution of the subprogram to the next.

Common Expression Elimination

The first of the global optimizations performed on a
given loop is common expression elimination (see Figure 6).
Common expressions have usually been combined into a
single calculation only when they appear in a single
statement. In the FORT~N H compiler, widely separated
common expressions are found and combined. This means
that the scans must be performed quickly, and that we
must check for statements tha t may change the operand

TI=A~

I

)

FIG. 6. Common expression elimination. Blocks 2 and 10 are
shown before and after the elimination. Shaded areas indicate the
locations of potentially interfering s tores .

values of the expression between the two appearances of
the expression.

The process is particularly important for higher-dimen-
sional subscript expressions in FORTI~AN since these occur
repeatedly and generate extensive address arithmetic.
There is no convenient way to eliminate such common
expressions at the source language level.

At any point we search only for matching expressions
consisting of two operands and an operator, but repeated
application may combine much larger expressions. An
expression such as A • B may be replaced by the result of
an earlier computation of A * B or B * A provided that
the earlier occurrence predominates it and neither A nor
B can be altered between the two evaluations of the
expression.

The search for an expression matching the expression
A • B which occurs in a block K is then limited to text
items preceding it in both block K and other blocks in the
same loop that predominate K, but are not in inner loops
that were processed earlier. For the following reason there
is no need to search outside the loop containing K: If
there is any possibility of replacing A • B by the result of
an earlier computation done outside the loop, it is also
possible to move the expression outside the loop into the
initialization block. The movement outside the loop will
be done later, and the common expression that remains
will be found when processing the outer loop.

The scanning for common expressions could grow in
proportion to the square of the program size; so to prevent
very long scans only the first ten predominating blocks
are examined. Only blocks whose bit strings indicate tha t
both A and B are fetched are considered. A hash-table
technique could be used to shorten the scan. The hash
index would be formed from the two operand pointers and
the operator.

Every expression in block K is first compared with every
other expression in block K. Then every expression in
block K is compared with expressions in the immediate
predominator of K, and then its immediate predominator,
and so on. At each stage the "store" bit strings for all
blocks between K and the predominating block are 0R'ed
together to easily determine which variables might have
been changed.

To identify the set of "interfering blocks" between K
and its immediate predominator, we search backward from
block K marking blocks along all paths without passing
through the immediate predominator. When looking for
matches in the second predominator of K, we search
backward from the immediate (or first) predominator and
mark additional blocks without passing through the second
predominator, and so on.

To make rapid scans backward from a block along all
paths, an auxiliary, working vector may be used in which a
list of all blocks reached is developed. Two pointers to the
list are maintained between which one can locate at any
time the set of all blocks already reached by the scan, but
whose predecessors have not yet been examined.

If we find a store into A or B, either above the expression

V o l u m e 12 / Number I / J anuary , 1969 C o m m u n i c a t i o n s o f t h e ACM 17

A • B in block K or in an interfering block at any stage,
we may flag as unmovable the text i tem containing A • B.
We omit it from consideration when examining subsequent
predominators since the same interfering stores will pre-
vent its elimination.

When two suitable occurrences of A * B are found for
which no interfering stores occur, the action taken depends
on the result operand. Suppose the earlier occurrence has
the form P = A • B and the later occurrence has the form
Q = A . B . I f P is not stored into at any interfering
point, we replace the second text i tem by Q = P. I f P is
altered in between, we create a t emporary variable T,
insert T = P immediately after the earlier text item, and
replace the second i tem by Q = T. Fur thermore if Q is a
generated temporary (which must be stored only once),
we immediately eliminate the s ta tement Q = P or Q = T
and replace fetches of Q by P or T, respectively. I f the
original sequences were T1 = A * B, X = T1 "t- C in the
predominat ing block, and T2 = A • B, W = T2 "4- C in
block K, we would then replace the second sequence by
W = T1 d- C in block K and thus set up another common
expression (T1 -4- C) for elimination (see Figure 6).

Proliferation of generated temporaries tha t are busy
across block boundaries should be avoided since it is
generally necessary to allocate space for them. I n the
above example, T1 becomes busy between two blocks as
a result of the first expression elimination, but is then
eliminated from the later block by the second. When a
t empora ry becomes busy across a block boundary, we
should refrain f rom allocating space until we are sure it
will not re turn to its local status. When space is allocated,
i t is best to use any existing variable of the same type we
can find which is not busy in the region spanned.

Eliminating common expressions of the form B(I) poses
a problem. I t m a y be necessary to store B(I) into a
t empora ry location and fetch the t emporary later in place
of B(I) . Fetching the t emporary later m a y not be sig-
nificantly faster than fetching B(I) , but we pay the
penal ty of storing into the t emporary anyway. On the
other hand if we fail to eliminate such a common expres-
sion, we will fail to recognize any larger common expression
of which B(I) m a y be a part .

Backward Movement

An a t t empt is made to move all loop-independent
computat ions out of loops. An expression such as A • B
m a y be moved from a loop to the corresponding initializa-
tion block if neither A nor B is stored in the loop. We may
OR together the store bit strings for all blocks in the loop
to identify variables tha t are unchanged in the loop.

Suppose A and B are constant in the loop. A text i tem
of the form X = A • B m a y be moved to the end of the
initialization block if X is not stored elsewhere in the loop
and is not busy on exit f rom the initialization block. I f
such a movement is made X is identified as constant in
the loop, thus permit t ing other movements .

I f the whole text i tem cannot be moved, we m a y create
a t empora ry T and insert T = A • B into the initialization

18 C o m m u n i c a t i o n s o f t h e ACM

block and replace the original text i tem with X = T.
I t is desirable to perform common expression elimination
before backward movement since otherwise several tem-
poraries could be generated when moving different oc-
currences of a single constant expression out of the loop.
I n general, absolute constants and variables tha t are
constant within the loop are t reated in the same way
except tha t expressions involving only absolute constants
will be directly evaluated rather than moved out of the
loop.

I n an expression such as A • K1 • K2, where K1 and
K2 are constant in the loop, the constant expression
K1 • K2 would not be so readily detected since the internal
text would have the form T1 = A • K1, T2 = T1 * K2.
To recognize constant parts , such expressions must be
reordered.

To determine when reordering is appropriate, we m a y
scan forward through the text of a block examining
arithmetic text i tems involving a constant interacting with
a variable. A text i tem of the form T = V + K, where K
is a loop constant, is said to have a result tha t includes one
additive constant unless V is the result of an earlier text
i tem in the block, in which case it includes one more
additive constant than the earlier text item. Similarly, a
text i tem of the form T = V • K is said to have a result
including one multiplicative constant or one more than
an earlier text i tem whose resultant is V. For this purpose
subtraction is regarded as additive and floating-point
division as multiplicative. When a text i tem has a result
t ha t includes two additive or two multiplicative constants,
we reorder.

Thus the final result of an expression such as
(K1 - t - A) / K 2 - K3

would be regarded as including one multiplicative and two
additive constants. I t would then be expanded and re-
ordered as though its form were A / K 2 + (K 1 / K 2 -- K3).
The expression K 1 / K 2 -- K3 would then be recognized as
a constant tha t can be moved out of the loop; so one
addition would be saved in the loop. Since the reordering
of floating-point computat ions m a y yield different results,
the reordering of expressions is invoked only when a
separate optimization level is specified.

Absolute constants occurring in subscript expressions
are normally absorbed into the referencing instruction
address. However, an additive port ion of the address
ari thmetic expression resulting from a subscript may be
variable, but constant in the loop. Ra the r than adding such
a quant i ty into the index value within the loop, we m a y
add it into the instruction address (or base register on
System/360) outside the loop. In FORTRAN H this is done
when a subscript operator is encountered whose index
value includes an additive constant.

The movement of some loop-independent expressions to
the initialization block m a y result in error conditions. For
example, a square root function m a y be evaluated within
a loop only when the argument is positive. I f we move it to
the initialization block without determining the sign of
the argument an error condition will arise when the argu-

V o l u m e 12 / N u m b e r I / J a n u a r y , 1969

ment is negative. Overflows and division by zero may also
arise in this way. In FOnTRAN H functions like sine,
exponentiation, and division may be moved, although
square root, arcsine, and log may not. The former are less
likely to cause trouble, but occasionally error messages
will result. Any loop-independent expression may be moved
from the loop entry block without danger since no testing
can precede it. One approach to solving the problem is
simply to ignore the interruptions and error conditions
when a high level of optimization is specified; another is
to avoid moving an expression past tests involving the
operands of the expression or to move such tests along
with the expression.

Induction Variable Optimization

An "induction variable" is one that is altered within a
loop only by adding to it a constant or a variable tha t is
constant in the loop. Such variables are frequently mul-
tiplied by constants (or variables constant in the loop)
as in subscript evaluation, and such multiplications can be
effectively reduced to additions by introducing new induc-
tion variables. The only novelty in this t reatment of
induction variable optimization is the use of "busy"
information.

If I is an induction variable, we may replace an expres-
sion such as I • K1 by a variable I2 in the following way
(see Figure 7). At the bot tom of the initialization block
insert I2 = I • K1. At each point (usually just one) where
I is incremented by a statement such as I = I + K2,
insert 12 = I2 + K3 where K3 = K 1 . K 2 has been
computed as an absolute constant or inserted into the
initialization block. The expression I * K1 is then equiva-
lently replaced by I2, and the multiplication within the
loop has been effectively replaced by one addition (some-
times more). In principle, exponentiation of the form
K ** I could be reduced to multiplication in an analogous
manner. However, there is at present no provision made
for such a process in FORTRAN H.

If an expression such as I + K4 occurs (in a context
other than the incrementing of I) we may replace it by
ntroducing a new induction variable 13. We initialize 13
iy inserting I3 = I + K4 into the initialization block and
bncrement it in the same way that I is incremented in the
ioop. Since this transformation just trades one addition
for another, it is not useful except when it clears the way
for eliminating the original induction variable.

If uses of an induction variable I are replaced by the
above transformations, it may be possible to eliminate all
references to I within the loop. If I is not busy on exit
from the loop and the only fetches of it in the loop occur
when I is incremented or compared with a loop constant,
and, in addition, some other induction variable such as I2
has been introduced by transforming I as above, then I
may be eliminated. We replace I in any comparison
operation by the new induction variable 12 performing the
lsame transformation on the loop constant to which I was
compared as was performed on I to initialize I2. Thus a
comparison such as I < K5 would be replaced by I2 _< K6,

12=K

' ~ T I =]

,~I K3=K

r21) ~ Tl = i
A=B

.K2

IX-K2 K3 =K -X-K2

Fro. 7. Induc t ion var iab le opt imizat ion. The first t r ans forma-
t ion t rades an addi t ion for a mul t ip l ica t ion . The second eliminates
the original induct ion var iable . The t h i rd shows fu r ther improve-
men t s from subsumpt ion .

where K6 = K5 • K1 is either computed, or inserted into
the initialization block. After such a replacement, the only
use of I is to increment itself, and that may be deleted.

Subsumption

A variable X is said to be "subsumed" by a variable Y
if references to X are replaced by references to Y. Text
items of the form X = Y may sometimes be eliminated
when X is subsumed by Y.

In FORTRAN H, subsumption is limited to a single block
in which X is either stored into again later in the block or
is not busy on exit from the block. All fetches of X are
replaced by those of Y if they occur after the X = Y text
i tem but before any store of X. If a store into Y occurs
before such a fetch of X but after the X = Y text item,
then the subsumption is not possible.

More generally, two variables may be merged if at all
points where both are busy they have the same value.

In induction variable optimization we often replace a
text i tem of the form T = I • K by T = I2, and we may
immediately eliminate the text i tem by subsuming T.

Register Allocation

Effective register assignment is very important on a
System/360 computer, where many registers are available
and base registers must be loaded prior to storage refer-
ences. The most important technique used by FORTRAN H
is the rather simple one of noting which variables, con-
stants, and base addresses are referenced most frequently
within a loop and assigning many of them to individual
registers across the loop.

Before such global assignments are made across the
entire loop, two passes are made across each block in a
loop assigning generated temporaries and other variables
which are both stored and fetched within a block. The first
pass goes forward through the block building up tables
used during the subsequent bac~vard pass, the one which
actually assigns registers. I t is more convenient to make
the pass backward through the block in assigning even-odd
register pairs, matching result operands to the same reg-
ister as a fetched operand in a text item, and deciding
which variables should not be assigned. If very much
deeply parenthesized computation occurs ia the loop, the
four floating-point registers will tend to be used up during
this local register assignment procedure. This is of no
consequence, however, since globMly assigning floating-

V o l u m e 12 / N u m b e r I / J a n u a r y , 1969 C o m m u n i c a t i o n s o f t h e ACM] 9

MINUS:

r 7
I I
~Index]

1
2
3
4

5
6
7
8

9

I0
ii
12
13

15

Used for All Subtract Operations

Skeleton
Instructions

'L B2,D{0,BD)
LH R2,D(0,B2)
LH Ri,D(X, B2)
:L B3,D(0,BD)
LCR R3,R3
LR RI,R2
LH R3,D(0,B3)
LCR Ri,R3
SH RI,D(X,B3)
SR Ri,R3
AH R3,D(X,B2)
AH RI,D(X,B2)
AR R3,R2
L B1,D(0,BD)
STH R1,D{0,B1)

Status

0000000011111111
0000111100001111
0011001100110011
0101010101010101

XXXXXXXX00000000
0000111100000000
Ii00000000000000
XX00XX00XX00XX00
0010001000000010
0000110100001101
0100010001000100
00010000000000001
i000100010001000
0100010101110101
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0000001000000010
XXXXXXXXXXXXXXXX
XXXXKXKKXXXXXXXX

FIG. 8. Coding skeleton and bit strings for the subtraction
operator.

point variables across a loop is only a minor benefit except
in small loops, in which case the registers will be available
anyway. A variable locally assigned in a block is generally
not stored unless it is busy on exit from the block.

After the local assignment, the most active acceptable
variables are selected for global assignment across the loop.
Loads and stores of globally assigned variables are inserted
at entry and exit to the loop when the variable is busy
across the loop boundary. Constants in the loop need not
be stored on exit.

All registers needed by an inner loop are assigned for
its use. This may leave no unused registers available for
global assignment to outer loops. To prevent this, an
effort is made to extend global assignments in inner loops
to apply to outer loops as well. Because of the importance
of having base addresses loaded, provision is also made for
assigning registers across outer loops to constants (in-
chiding base addresses) even when the register is differ-
ently assigned to an inner loop. Such registers must be
restored on exit from the inner loop.

For large loops it is desirable to assign some variables
to registers across block boundaries without extending the
assignment across the whole loop. For this reason local
assignment is performed by working on small groups of
blocks. A suitable group should be entered at just one
point, i.e. M1 predecessors of a member of the group (except
the first member) should also be members of the group.

Rather than perform a load of a subscripted variable
followed by a register-register (RR) instruction, in Sys-
tem/360 it is preferable to combine these into a register-
storage (RX) instruction. To accomplish this it is desirable
to reorder the text so that a subscript text item is usually
followed immediately by the operation that uses its result.

One register is reserved and permanently loaded for
branching, and as many as three others may be preempted

if the program exceeds the 4K bytes addressable by one
base register.

The above discussion only sketches the scope of the
existing register allocation scheme. This scheme is very
successful for loops that are not too large, but to be fully
competitive with hand coding in large loops, a more refined
iterative procedure is needed.

Code Generation

For each text item the code generated will depend on
what operands are in registers, what operands must be
preserved in registers, whether a result is to be stored,
and what base addresses must be loaded to reference
storage. During register allocation, these conditions are
expressed in eight status bits for each text item: bits 1 and
2 give the status of the first fetched operand; bits 3 and 4
give the status of the second fetched operand; bits 5, 6,
and 7 indicate whether base registers must be loaded for
each of the three operands; and bit 8 indicates whether
the result operand is to be stored or not.

For a fetched operand, the four settings of the two bits
have the following meanings:

00--The operand must be fetched from storage and is
not retained in registers.

01--The operand must be fetched from storage and re-
tained in a register after the operation.

10---The operand is available in a register whose con-
tents are erased since the result operand is formed
in the same register.

l l - -The operand is available in a register and it must
be retained in that register after the operation.

To provide a compact representation of the best possible
code for each of the possible status settings, a "coding
skeleton" is provided for each operator. The status bits
are used to select a bit string which in turn selects from
the skeleton those instructions that are actually generated
for the given text item. The example in Figure 8 gives the
coding skeleton and bit strings for the subtraction operator.
The fifteen instructions include, in the order of genera-
tion, ~11 those that might ever be generated from a sub-
traction text item. The instructions are expressed in terms
of half-word integer subtraction, but modification to han-
dle full-word and floating-point subtraction is straight-
forward. The bit string that selects instructions from the
skeleton is formed by taking the first four bits describing
the fetched operand status and using them to select one
of the sixteen columns illustrated. The remaining four
status bits are then inserted into the column (replacing
X's) to indicate needed base-register loading and the
storing of the result operand.

The register allocation and code generation procedures
are facilitated by the parallelism between RR and RX
instructions on System/360.

Additional Optimizations

For completeness, a number of other kinds of optimiza-
tion are listed here [4-7]. Only the first three are currently
used in FORTRAN i .

20 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 12 / Number 1 / J anua ry , 1969

1. Use of in-line coding for many mathematical function
subprograms.

2. Use of multiplication for exponentiation to an integer.
A sequence of square and multiply operations may be
used based on the bit pattern of the exponent.

3. If one operand is a power of two, a number of im-
provements may be possible: Integer multiplication or
division may become a shift, multiplication by 2.0 becomes
an addition, and multiplication by one or addition of zero
disappear.

4. Simplification of logical expressions using DeIVfor-
gun's theorem.

5. Conversion of floating-point division by a constant
to a (faster) multiplication.

6. Common factor analysis. A . B + A . C becomes
A • (B + C).

8. Combination of moves of adjacent fields into a single
instruction.

9. Unpacking of certain types of data and repacking it
after it has been referenced a number of times rather than
operating on it repeatedly in an inconvenient form.

10. Reordering of operations within a block to minimize
the number of registers needed or to maximize the op-
portunities for parallel execution.

11. Reordering of sequences of conditional branches
(using the Huffman code principle) to minimize the average
time through them. (This depends on frequency informa-
tion for the different branches.)

12. Elimination of unnecessary unconditional branches
by reordering the code. An unconditional branch from
within a loop to the loop entry block can often be effec-
tively moved out of the loop by moving the block that ends
in the unconditional branch so that it precedes the loop
entry block. The unconditional branch is then deleted
from that block, and one is inserted into the initialization
block to branch to the loop entry block.

Edited Source Listing
In FoRrmt~ H a documentation aid based on dominance

relations is provided in the form of an edited source listing
(see Figure 9). The entries to and exits from loops are
indicated by the loop numbers in the left-hand margin.
Each line of code is indented to illustrate the control flow
more clearly. The basic rule for indenting is that a state-

c - p R i M E N U M ~ E ~ r~ROBLEI4

I lqX, tHI/ICtX. |H?/IqRR.IH3}
1 o | 1 = 5

(0 0 2 3 1 F t I , G T . t O 0 0) G O T a 7
A=t

. . . . 1 0 2 A=~ t3 r~T { a I .

~o, ~n ~ - ~ = ~ 3 . ~ .
(o o | 1 o 5 L = I / K

I l l 6 I F { L * K - - [) 1 , 2 , ~
L C O N T ~ NtJE

_ o o l) c
- - i E7 - ~ ~-Z-T E- TLT~ - t .

...... ~" ¥o~-~ETTz~ .

G O T n 3

002) C
'#nZTF (~ , o) - - - - - ~

- - " "~ ~ T ~ { 6 - . ~) - -
6 F n - ~ A T { 3 I H T H i S iS T H E F N D 0 F T H F p~nG.A~}

Ioo S~Pr~
END

FIG. 9. Ed i t ed source l is t ing wi th loop boundar ies and indent ing
based on dominance.

ment $1 is indented one more than the statement $2
immediately predominating it unless $1 is the last state-
ment for which $2 is an immediate predominator. If $1
is the last (or only) statement with $2 as its immediate
predominator, it is indented the same as $2. The value of
this system is subjective and not well illustrated in the
necessarily short program shown. However, it does il-
lustrate application of the analysis to a very different
problem.

A Language Suggestion
If the dominance relations and loop structure of a

program are analyzed on every compilation, we can use
that analysis to give useful meaning to some novel source
language expressions. One type of expression could have a
form such as (exprl. AT. 20, expr2. AT. 30, expr3). The
occurrence of such an expression causes a new variable to
be introduced--call it T. At the statement with label 20,
the statement T = exprl is effectively inserted. Similarly,
T = expr2 is inserted at statement 30. The statement
T = expr3 is inserted at the bottom of the closest block
that predominates both the expression and statements 20
and 30, and is at the same (or shallower) depth of nesting
as the expression. The expression itself is then replaced by
the generated variable T.

The last part of the expression (expr3) then forms an
initialization of a value that is subsequently modified,
depending on the flow through the program, and finally
used. Such expressions could eliminate many housekeeping
variables whose meaning is not apparent without searching
out all places where they are set.

Compiler Development
The compiler was itself written in FORTRAN and boot-

strapped three times. The first time was to convert from
running on the IBM 7094 to System/360---an arduous
procedure. The second time was to optimize itself, which
reduced the compiler size from about 550K to about 400K
bytes. I t was then rewritten to take advantage of language
extensions permitting efficient bit manipulation and refer-
encing of structured data. After the third bootstrapping
compilation time was reduced by about 35 percent, and
its capacity was nearly doubled; it is now about 700
statements using a 256K byte storage, which is the smallest
storage the compiler will operate in.

All dictionary and text are retained in main storage
during compilation. This had a psychological advantage
during development of the optimization techniques, but
it now appears unnecessary. The techniques can be applied
using a smaller storage area where the only text in core at
any moment is the loop being optimized. There is reason
to doubt that the optimization features could have been
included in the compiler and debugged in a reasonable
amount of time if it had not been written in a higher level
language. During debugging there was a tendency for some
optimization features to become disabled. This disability
often went unnoticed since the test cases still ran correctly.

In building an optimizer there are many temptations to
waste effort on insignificant problems.

V o l u m e 12 / N u m b e r 1 / J a n u a r y , 1969 C o m m u n i c a t i o n s o f t i l e ACM 21

Conclusion

A number of questions remain which cannot be fully
answered at present. Which methods are the most fruitful?
Can they be adapted to much smaller, faster compilers?
What should haw? been done differently? Can less general
methods be nearly as effective? Are the methods applicable
to other than FOIITRAN coding?

The following opinions are offered. Probably the global
common expression elimination and register allocation
were the most important techniques but taken as a whole
many minor ones were significant. The flow analysis con-
tributed substantially to the effectiveness of most op-
timizations. A significantly smaller compiler could prob-
ably have the same abilities. One reason is that the op-
timization (as applied during boot strapping emphasizes
speed rather than space). The main defects in the present
design are probably the slowness of scanning for common
expressions and the excessively cautious handling of
equivalenced and complex variables. The general methods
used seem to provide a valuable (but probably not very
wide) margin of efficiency over more specialized ap-
proaches to optimization of scientific programs. The
practical effect has been to show that very good code can
be compiled for System/360.

The writers are inclined to see the technical value of
thorough flow analyses of programs more in terms of the
potential extensions discussed below. Three desirable de-
velopments seem easily attainable.

(1) I t should be possible to code almost any program at
a level substantially higher than assembler language with-
out penalty in object code efficiency. The main exception
would be when no computer of sufficient capacity is
available for optimizing compilation. This is based on the
observation that almost any deficiency in the object code
of FORTRAN t-I could be overcome by judiciously tinkering
within the established analytic framework.

(2) Optimizing compilers could be economically con-
structed for several source languages on a single machine
type by preprocessing each into a machine-dependent
intermediate text which would then be compiled using a
common optimizer. This is based on the observation that
the optimization procedures in the FOi~TRAN H compiler
were almost completely independent of the features of the
source language. The slowness of such compilations would
not be a serious limitation when high speed nonoptimizing
compilers are also available.

(3) The analyses required to optimize may be extended
to detect irregularities in the control flow and data flow of
programs. In any sizable program there are a number of
categories of data that may interact only in restricted
ways, e.g. a temperature may not be meaningfully added
to an acceleration, or two address quantities may not be
multiplied together. Given some declarations defining such
categories and their interactions, the data flow analysis
could check large programs for consistency, e.g. before a
field in a record is used it may be logically necessary to
check a control field to interpret it or before using a pointer
in a chained list it may be logically necessary to check for

an end of chain. With the help of suitable declarations we
can make sure that such checking is actually included in
the program. In effect we may go beyond checking for
syntactic correctness of the source program to assure that
the processing does not violate "syntactic relations" be-
tween the data being processed.

Less immediate applications of program analysis will
involve extensive restructuring of programs by automatic
or semiautomatic means. Very flexible programs can be
written using list processing languages, e.g. Lisp, SNOBOL,
COMIT but there is no practical automatic way to transform
such programs to use compact data organizations and
avoid redundant scanning. Efficient programs tend to be
inherently inflexible since equivalent data is often carried
in more than one form for rapid use. This necessitates
carefully coordinated changes. The temporaries used in the
FORTRAN H compiler are a restricted method of introduc-
ing equivalent forms of data. Automatic design of inter-
mediate tables is a logical extension which would greatly
enhance machine independence. These considerations sug-
gest that progress toward flexibility in programming de-
pends more on compilation techniques than language
improvements.

Other challenges in this area are the adaptation of
programs to hierarchies of storage speed and to parallel
CPU's. In these problems and in the reduction of redun-
dant scanning the main objective is to reduce randomness
of data referencing, or more specifically, to process the
data in focus as much as possible before moving on to
other data. This suggests that a unified assault on these
problems is appropriate.

The writers feel that the area of analysis and transforma-
tion of programs is extremely fruitful for programming
research. The present economic value of the next few steps
is unmistakable, and the first serious technical stumbling
blocks have yet to be encountered.

Acknowledgments. Many people contributed to the code
optimization of the FORTRAN i compiler. Thanks are
due particularly to: G. Lomax, T. C. Schwarz, D. H.
Fredricksen, R. K. Stevens, D. Widrig, E. W. Filteau,
R. W. Holliday, and J. C. Laffan.

RECEIVED NOVEMBER, 1967; REVISED MARCH, 1968

REFERENCES
1. HUSKEr, H. D., AND WATTENI~URG, W. H. Compiling tech-

niques for Boolean expressions and conditional statements in
ALGOL 60. Comm. ACM $, 1 (Jan. 1961), 70-75.

2. PROSSER, R.T. Applications of Boolean matrices to the anal-
ysis of flow diagrams. Proc. Eastern Joint Comput. Conf.,
Dec. 1959, Spartan Books, New York, pp. 133-138.

3. YERSHOV, A .P . ALPHA--an automatic programming system
of high efficiency. 3. ACM 18, 1 (Jan. 1966), 17-24.

4. NIEVERGEL% J. On the automatic simplification of computer
programs. Comm. A CM 8, 6 (June 1965) 366-370.

5. GSAR, C.W. High speed compilation of efficient object code.
Comm. ACM 8, 8 (Aug. 1965) 483-488.

6. ALLARD, R. W., WOLF, K. A., ANn ZEMLIN, R.A. Some effects
of the 6600 computer on language structures. Comm. ACM 7,
2 (Feb. 1964), 112-119.

7. ALLEN, F. E. Program optimization. In Annual Review in
Automatic Programming, Vol. 5, Pergamon, New York (in
press).

22 C o m m u n i c a t i o n s o f t h e ACM Volume 12 / Number 1 / J a n u a r y , 1969

