
ENEE 646: Digital Computer Design — Project 1 (15%)

Purpose
This assignment has two primary goals: to teach you the rudiments of the Verilog hardware description
language and to get you to start thinking about parallelism. You will write a Verilog-language behavioral
simulator for the RiSC-32 machine code, during which you will learn about non-blocking assignments
and concurrency. Non-blocking assignments are specific to the Verilog language; concurrency is a
powerful concept that shows up at all levels of processor design.

A high-level block diagram of the 32-bit Ridiculously Simple Core (RiSC-32) is shown below. For this
project, the processor model will be a simple sequential implementation—on every cycle, you will
execute an instruction and update the program counter accordingly. The instruction-set architecture is
parallel in two separate ways: first, it is a VLIW architecture (Very Long Instruction Word: i.e., it executes
multiple instructions at once); second, one of its abilities is to execute SIMD operations (Single
Instruction, Multiple Data: i.e., some of its instructions will perform multiple operations in parallel).

1

Project 1: Single-Cycle Verilog CPU (15%)

ENEE 646: Digital Computer Design, Fall 2020
Assigned: Tuesday, Sep 1; Due: Tuesday, Sep 22

PC

Instruction
Memory

 pcUpdate

Instruction

instr0 = instr[31:16] instr1 = instr[15:0]

op_0 rA_0 rB_0 rC_0 op_1 rA_1 rB_1 rC_1

+1

Optional LongImmed

Instruction Fetch (32b instruction)

Scalar
RF

Vector Register File

32b 32b 32b 32b 32b

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Vector
ALU_1

Scalar
ALU_1

Vector
ALU_0 Scalar

ALU_0
Data

Memory

Branch
& Jump
Logic

data

addr

data

addr

RiSC-32 Logical/Functional Block Diagram 128-bit data path

32-bit data path

< 32-bit data path

ENEE 646: Digital Computer Design — Project 1 (15%)

SIMD operations are also called vector operations and perform multiple instances of the same operation
in parallel, on different pieces of data. It was designed for vector and matrix arithmetic, e.g. z = ax + by.

RiSC-32 Instruction Set
This section describes the ISA of the 32-bit Ridiculously Simple Core (RiSC-32), an evolution of the
RiSC-16 design from years past. The RiSC-32 is a 32-bit VLIW (very long instruction word) design
which encapsulates two atomic instructions into a single instruction word, so that the hardware can
execute two things at once. The instruction format and the two register files on which the instructions
operate are illustrated below.

The instructions and data are all 32 bits in length. Each 32-bit instruction is divided into two atoms,
and, depending on its opcode, an atom can operate on either the 16-entry scalar register file, shown on
the right, in blue, or on the 16-entry vector register file, also shown on the right, in red. Additionally, in
some instances, an atom will operate on both register files. The scalar register file has 16 registers, each
of which is 32 bits wide. The vector register file also has 16 registers, but each of these registers is 128
bits wide, which is equivalently a single vector of four 32-bit words.

Below the VLIW Instruction Format shown above is the list of RiSC-32 opcodes. Opcodes are 4-bit
values and can thus encode sixteen different operations. In addition, some opcodes mean different
things depending on whether they appear on the left side of the instruction (atom 0, the high-order
bits) or the right side (atom 1, the low-order bits). These are indicated in the diagram above and shown
graphically in the diagram below. For instance, if the opcode 0111 is found on the left side of an
instruction, the operation is bne; if the opcode 0111 is found on the right side of an instruction, the
operation is blz. Similarly, if the opcode 1110 is found on the left side of an instruction, the operation
is vmov; if the opcode 1110 is found on the right side of an instruction, the operation is vsw.

The individual atoms are illustrated in the figure below. Note that the vmov opcode, if found in the
left-hand atom, indicates that the instruction is a full 32-bit instruction: the bottom 16 bits are not to
be interpreted as a separate independent atom. Thus, the vsw instruction can only occur if the opcode
1110 does not appear in the left-hand atom.

2

Scalar
RF

Vector Register File

32b 32b 32b 32b 32b

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

01234567890123456789012345678901
00102030

VLIW Instruction Format
atom0 (left) atom1 (right)

01234567890123456789012345678901

00102030

rBrA rCiop4rBrA rCiop4

rAop4rAop4 imm8rB rCi

0000 ADD
0001 ADDI*
0010 AND
0011 MUL
0100 SUB
0101 LW
0110 SW
0111 BNE*/BLZ*

Opcodes:
1000 VADD
1001 VSUM
1010 VAND
1011 VMUL
1100 VXOR
1101 VLW
1110 VMOV/VSW
1111 JALR

* imm=0 in ADDI or BRANCH
=> next word is 32-bit immed

0 1 2 3
3 2 1 0

Big Endian:
Little Endian:

ENEE 646: Digital Computer Design — Project 1 (15%)

The various operations are explained in the tables below. In each instance, the use of a “rX” register
identifier indicates a read/write to the scalar register file, and the use of a “vX” register identifier
indicates a read/write to the vector register file.

Scalar Operations

Inst
Opcode

Assembly
Format Action Verilog Pseudocode

add
0 add rA, rB, rC Add contents of regB with regC,

store result in regA.
R[rA] <= R[rB] + R[rC]

addi
1 addi rA, rB, imm Add contents of regB with imm,

store result in regA.
R[rA] <= R[rB] + sign-extend imm4

and
2 and rA, rB, rC AND contents of regB with regC,

store results in regA.
R[rA] <= R[rB] & R[rC]

mul
3 mul rA, rB, rC Multiply contents of regB with regC,

store result in regA.
R[rA] <= R[rB] * R[rC]

sub
4 sub rA, rB, rC Subtract contents of regB from regC,

store result in regA.
R[rA] <= R[rB] – R[rC]

lw
5 lw rA, rB, imm Load 32-bit value from memory into regA.

Memory address is formed by adding imm with regB.
R[rA] <= m[R[rB] + sign-extend imm4]

sw
6 sw rA, rB, imm Store 32-bit value from regA into memory.

Memory address is formed by adding imm with regB.
R[rA] => m[R[rB] + sign-extend imm4]

3

0123456789012345
0010

ADD

AND

MUL

LW

SW

ADDI*

SUB

BNE*
(left only)

BLZ*
(right only)

Atom Formats

rA0000 rB rC

rA0010 rB rC

rA0011 rB rC

rA0101 rB

rA0110 rB

rA0001 rB

rA0100 rB rC

rA0111 rB

rA0111 imm8

imm4

imm4

imm4

imm4

0123456789012345
0010

VADD

VAND

VMUL

VLW

VSUM

VXOR

JALR

vA1000 vB vC

1010

1011

1101

rA1001

1100

rA1111 rB 0000

0000

imm4

vA

vA

vA

vA

vB

vB

rB

vB

vC

vC

01234567890123456789012345678901
00102030

B1A1 C1CTLB0A0 C01110VMOV
(left only)

00 VEC
01 VLO (bottom 2)
10 VHI (top 2)

CTL Values:

VSW
(right only) rA1110 vB imm4

vB vC

rDvA rE0000rBvA rC1110VEC

0000rA1 00000001vBrA0 00001110VLO

0000rA3 00000010vBrA2 00001110VHI

ENEE 646: Digital Computer Design — Project 1 (15%)

Note that the vec, vlo, and vhi instructions are instances of the vmov instruction, and they take the
entire 32-bit instruction (as illustrated in the previous figure). This is because they require an unusually
large number of register ports:

• The vec instruction moves vectors from the scalar register file into the vector register file. The
instruction reads four values out of the scalar register file and makes a single vector out of them.
The four scalar values are represented by the four rB/rC slots of the full 32-bit instruction; all
four values are read from the scalar register file and written as one value into the vector file.

bne
7

bne rA, rB, imm
(left side only)

If the contents of regA and regB are not the same, branch
to the address PC+imm, where PC is the address of the
bne instruction.

if (R[rA] != R[rB]) {
 PC <= PC + sign-extend imm4
} else {
 PC <= PC + 1 (or 2 if imm4==0)
}

blz
7

blz rA, imm
(right side only)

If the contents of regA and regB are not the same, branch
to the address PC+imm, where PC is the address of the
bne instruction.

if (R[rA] < 0) {
 PC <= PC + sign-extend imm8
} else {
 PC <= PC + 1 (or 2 if imm8==0)
}

jalr
15/0xF jalr rA, rB

Branch to the address in regB.
Store PC+1 into regA, where PC is the address of the jalr
instruction.

PC <= R[rB]

R[rA] <= PC + 1

Inst
Opcode

Assembly
Format Action Verilog Pseudocode

Vector Operations

Inst
Opcode Assembly Format Action Verilog Pseudocode

vadd
8 vadd vA, vB, vC Add contents of vecB with vecC,

store result in vecA.

V[vA.0] <= V[vB.0] + V[vC.0]
V[vA.1] <= V[vB.1] + V[vC.1]
V[vA.2] <= V[vB.2] + V[vC.2]
V[vA.3] <= V[vB.3] + V[vC.3]

vsum
9 vsum rA, vB Sum the four 32-bit values in vecB,

store results in scalar regA.
R[rA] <= V[vB.0] + V[vB.1] + V[vB.2] + V[vB.3]

vand
10/0xA vand vA, vB, vC AND contents of vecB with vecC,

store results in vecA.

V[vA.0] <= V[vB.0] & V[vC.0]
V[vA.1] <= V[vB.1] & V[vC.1]
V[vA.2] <= V[vB.2] & V[vC.2]
V[vA.3] <= V[vB.3] & V[vC.3]

vmul
11/0xB mul vA, rB, rC Multiply contents of vecB with vecC,

store result in vecA.

V[vA.0] <= V[vB.0] * V[vC.0]
V[vA.1] <= V[vB.1] * V[vC.1]
V[vA.2] <= V[vB.2] * V[vC.2]
V[vA.3] <= V[vB.3] * V[vC.3]

vxor
12/0xC vxor vA, vB, vC XOR contents of vecB with vecC,

store result in vecA.

V[vA.0] <= V[vB.0] ^ V[vC.0]
V[vA.1] <= V[vB.1] ^ V[vC.1]
V[vA.2] <= V[vB.2] ^ V[vC.2]
V[vA.3] <= V[vB.3] ^ V[vC.3]

vlw
13/0xD vlw vA, rB, imm

Load 128-bit value vecA from memory.
Memory address is formed by adding imm
with regB.

V[vA] <= m[R[rB] + sign-extend imm4]

vsw
14/0xE

vsw vA, rB, imm
(right side only)

Store 128-bit value vecA to memory.
Memory address is formed by adding imm
with regB.

V[vA] => m[R[rB] + sign-extend imm4]

vec
14/0xE

vec vA, rB, rC, rD, rE
(full 32-bit word)

Read four values from the scalar register
file (rB, rC, rD, rE),
write into the vector register file
at register vecA

V[vA.3] <= R[rB]
V[vA.2] <= R[rC]
V[vA.1] <= R[rD]
V[vA.0] <= R[rE]

vlo
14/0xE

vlo rA0, rA1, vB
(full 32-bit word)

Read 0th and 1st scalars in vecB,
store in scalar regA0 and regA1

R[rA0] <= V[vB.1]
R[rA1] <= V[vB.0]

vhi
14/0xE

vhi rA0, rA1, vB
(full 32-bit word)

Read 2nd and 3rd scalars in vecB,
store in scalar regA0 and regA1

R[rA0] <= V[vB.3]
R[rA1] <= V[vB.2]

4

ENEE 646: Digital Computer Design — Project 1 (15%)

• The vlo and vhi instructions move vectors from the vector register file into the scalar register
file. Note that an entire 4-value move cannot happen in one cycle, because the scalar register file
can only write two values per cycle (atom0 and atom1 can each write a single 32-bit value to
the register file). So these two instructions allow one to move 4-word vectors into the scalar
register file, each operating on two 32-bit words at a time. The vlo instruction moves vec[0]
and vec[1]; the vhi instruction moves vec[2] and vec[3]. These require both of the rA specifiers
of atom0 and atom1, so that two words can be written.

Like the MIPS instruction-set architecture, by hardware convention, register 0 will always contain the
value 0. The machine enforces this: reads to register 0 always return 0, irrespective of what has been
written there. This is true for both the scalar register file and the vector register file.

Pseudo Instructions

In addition to RiSC-32 instructions, an assembly-language program may contain directives for the
assembler. These are often called pseudo-instructions. The assembler directives we will use are nop,
halt, .fill, .space, and .mfill (note the leading periods for .fill, .space and .mfill; this simply signifies that
these pseudo-instructions represent data values, not executable instructions).

The following paragraphs describe these pseudo-instructions in more detail:

• The nop pseudo-instruction means “do not do anything this cycle” and is replaced by the
instruction add r0,r0,r0 (which clearly does nothing).

• The halt pseudo-instruction means “stop executing instructions & print current machine state”
and is replaced by jalr r0, r0 with a non-zero immediate having the value 13 decimal. Therefore
the halt instruction is the hexadecimal number 0xF00D.

• The movi pseudo-instruction is replaced by addi.l rA, r0, immed | nop. It wastes a potential
instruction-issue slot for the sake of readability (presumably, the movi directives mostly occur at
initialization time).

• The .fill directive tells the assembler to put a number into the place where the instruction
would normally be stored. The .fill directive uses one field, which can be either a numeric value
(in decimal, hexadecimal, or octal) or a symbolic address (i.e. a label). For example, “.fill 32”
puts the value 32 where the instruction would normally be stored; “.fill 0x20” also puts the
value 32 (decimal) where the instruction would normally be stored in the assembler provided).
Using .fill with a symbolic address will store the address of the label.

• The .space directive tells the assembler to put a bunch of zeroes into the place where the
instruction would normally be stored. The number of zeroes is given by the numeric value.

• The .mfill directive tells the assembler to put a bunch of values into the place where the
instruction would normally be stored. The values can be specified; the number of values to use

Assembly-Code Format Meaning

nop do nothing

halt stop machine & print state

movi rA, immed put value immed into scalar register rA

.fill immed initialized data with value immed

.space length an array that is length words long, each element having value 0

.mfill length, immed[, stride] an array that is length words long, each element having value immed
(if stride is present, the values start at immed and increase by stride each element)

5

ENEE 646: Digital Computer Design — Project 1 (15%)

can be specified; and if a linear pattern is desired, then that can be specified as well. For
instance, the directive “.mfill 1024, 4, 8” creates a vector of length 1024 words, where the first
word has the value 4, the second has the value 12 (= 4 + stride 8), the third has the value 20,
the fourth has the value 28, etc. Note that both .fill and .space are simply special instances of
the .mfill directive.

Word Addressing & Memory Access

All scalar addresses in the RiSC-32 architecture are word-based (i.e., memory address 0 corresponds to
the first 32 bits, or four bytes, of main memory, address 1 corresponds to the second four bytes of main
memory, etc.). The machine can perform two scalar memory operations per cycle.

All vector offsets (immediate values for VLW and VSW instructions) in the RiSC-32 architecture are
also word-based — i.e., address offset of 1 corresponds to 4 bytes beyond the address, address offset of 2
corresponds to 8 bytes beyond the address, etc. The machine can perform two vector loads but only
one vector store per cycle, and the vsw instruction is only valid on the right side (even though you
might want to, you cannot perform two vsw operations simultaneously, but you can perform two vlw
operations).

Large Immediate Values

The architecture’s 4-bit immediate values can represent numbers in the range [-8 .. 7]. Because this is
relatively limited, the instruction set allows for larger values for addi and BRANCH instructions (but
not load/store instructions). If an immediate for an addi or BRANCH instruction is desired that is
outside the specified range, it is specified by placing a 0 value in the instruction’s immediate field. The 0
value is chosen because, for example, an addi instruction wishing to add a zero value to a register could
simply have used the add instruction and referenced register 0, which is always zero. When a 0 value is
in the addi’s immediate field, the following 32-bit value is not an instruction but a full 32-bit
immediate value. This is signaled to the assembler by putting a “.l” (dot el) at the end of an addi, bne,
or blz instruction.

Thus, we have the following translation to machine code:
addi r1, r2, 7 | and r4, r5, r6
add r7, r8, r9 | vxor v10, v11, v12

=> 0x 1127 2456
 0x 0789 cabc

as well as the following:
addi.l r1, r2, 0xc0ffee | and r4, r5, r6
add r7, r8, r9 | vxor v10, v11, v12

=> 0x 1120 2456
 0x 00c0 ffee
 0x 0789 cabc

Make sure you understand how this machine code came from the example assembly code. Note that
the choice of 4-bit opcodes and 4-bit register specifiers makes the hexadecimal relatively easy to decode
by sight: “1127” is the same as “1 1 2 7” which translates to opcode 1 (addi), rA=1, rB=2, imm=7.

Example Assembly Code & Assembler Output

The following is a C-language routine that performs a dot product of two vectors of 256 entries each.
int A[256], B[256];
int sum=0;
int *a = &A[0], *b = &B[0], *end = &A[256];
while (a != end) {
 sum += (*a) * (*b); /* parens are not necessary; just there for clarity */
 a++;
 b++;
}

6

ENEE 646: Digital Computer Design — Project 1 (15%)

Here is some RiSC-32 assembly code that roughly corresponds to the C code above:
 movi r1, A # r1 = pointer to A element
 movi r2, B # r2 = pointer to B element
 movi r3, 0 # r3 = sum
 movi r10, B # r10 = end
loop: lw r11, r1, 0 | lw r12, r2, 0
 mul r11, r11, r12 | addi r1, r1, 1
 add r3, r3, r11 | addi r2, r2, 1
 bne r1, r10, loop | nop
 halt
A: .mfill 256, 1, 1
B: .mfill 256, 256, -1

And here is the corresponding machine-level routine (note the absence of “0x” characters):
11000000
0000000d
12000000
0000010d
13000000
00000000
1a000000
0000010d
5b105c20
3bbc1111
033b1221
71ad0000
f00d0000
00000001
00000002
00000003
…

Here is the same machine code, annotated (use the “-annotate” flag in the assembler to get this kind of
output):

11000000 - movi r1, A
0000000d - [long data]
12000000 - movi r2, B
0000010d - [long data]
13000000 - movi r3, 0
00000000 - [long data]
1a000000 - movi r10, B
0000010d - [long data]
5b105c20 - loop: lw r11, r1, 0 | lw r12, r2, 0
3bbc1111 - mul r11, r11, r12 | addi r1, r1, 1
033b1221 - add r3, r3, r11 | addi r2, r2, 1
71ad0000 - bne r1, r10, loop | nop
f00d0000 - halt
00000001 - via mfill
00000002 - via mfill
…

Again, make sure you understand how the above assembly-language program got translated to this
machine-code program.

The Power of Parallelism
One of the important things we will discuss in this course is how to improve performance, especially in
ways that do not increase power dissipation (well, at least not too significantly). Parallelism, at both the
instruction level and at the task level, is the most common way to improve behavior at relatively low
cost. The RiSC-32’s use of VLIW and SIMD provides two important introductions to the concept of
parallelism.

First is VLIW, in which two operations are performed simultaneously, thereby doubling instruction-
execution bandwidth for all cycles during which one can find two independent operations to perform
(meaning: if one of the two operations is a nop instruction, then your code isn’t 2x faster during that
cycle). It should be relatively obvious that, as compared to a processor that can execute but one
operation per cycle, the VLIW nature of RiSC-32 allows it to execute roughly twice as fast. For
instance, here is just the VLIW loop body of the dot-product code above:

loop: lw r11, r1, 0 | lw r12, r2, 0
 mul r11, r11, r12 | addi r1, r1, 1
 add r3, r3, r11 | addi r2, r2, 1
 bne r1, r10, loop | nop

7

ENEE 646: Digital Computer Design — Project 1 (15%)

And here is the same dot-product loop body, but written for a machine that executes one instruction at
a time (called a single-issue architecture):

loop: lw r11, r1, 0
 lw r12, r2, 0
 mul r11, r11, r12
 add r3, r3, r11
 addi r1, r1, 1
 addi r2, r2, 1
 bne r1, r10, loop

The VLIW loop body is four instructions long and takes four cycles per iteration to execute, per loop
iteration. The single-issue loop body is 7 instructions and takes 7 cycles to execute, per loop iteration.
So the VLIW architecture, on this code, is 7/4 faster, almost a factor of two. The result is application-
dependent, but in general, a 2-way VLIW will outperform a single-issue machine by almost a factor of
two.

The second item is the use of SIMD, or vector operations. Below, we have re-written the VLIW code
fragment from above to make use of the SIMD instructions in the RiSC-32 instruction set. Whereas
each loop body above performs one “tap” of the dot product (as in the terminology for an FIR filter),
each execution of the loop body below performs four taps by using the 4-way SIMD operations, which
perform four separate operations simultaneously.

 movi r1, A # r1 = pointer to A element
 movi r2, B # r2 = pointer to B element
 movi r3, 0 # r3 = sum
 movi r10, B # r10 = end
loop: vlw v11, r1, 0 | vlw v12, r2, 0
 vmul v11, v11, v12 | addi r1, r1, 4
 vsum r4, r11 | addi r2, r2, 4
 bne r1, r10, loop | add r3, r3, r4
 halt
A: .mfill 256, 1, 1
B: .mfill 256, 256, -1

The code, like the VLIW loop before, is four instructions long, and it takes four cycles to execute, per
loop iteration. The difference is that, this time, a single loop body performs four times as much work as
in the previous code example. When the program runs, 4x fewer loop iterations are executed. This
program is thus 4x faster than the original VLIW program above, and it is almost 8x faster than the
single-issue loop code. This is precisely what Intel’s AVW-512 architecture does, only on a slightly
smaller scale than Intel’s design: the AVX-512 architecture is an 8-wide vector machine operating on
64-bit operands, whereas the RiSC-32 is 4-wide operating on 32-bit operands.

The SIMD assembly code above translates to the following annotated machine code:
11000000 - movi r1, A
0000000d - [long data]
12000000 - movi r2, B
0000010d - [long data]
13000000 - movi r3, 0
00000000 - [long data]
1a000000 - movi r10, B
0000010d - [long data]
db10dc20 - loop: vlw v11, r1, 0 | vlw v12, r2, 0
bbbc1114 - vmul v11, v11, v12 | addi r1, r1, 4
94b01224 - vsum r4, r11 | addi r2, r2, 4
71ad0334 - bne r1, r10, loop | add r3, r3, r4
f00d0000 - halt
00000001 - via mfill
00000002 - via mfill
00000003 - via mfill
…

The two VLIW examples are included in the project directory, so that you can experiment with them.

Endianness
The question of endianness comes up when dealing with vectors. A vector that has sequential 32-bit
values of 1, 2, 3, 4 … will have the following layout in memory (within each row below, addresses
increase left to right):

000: 00000001 00000002 00000003 00000004
004: 00000005 00000006 00000007 00000008
008: 00000009 0000000a 0000000b 0000000c
012: 0000000d 0000000e 0000000f 00000010

8

ENEE 646: Digital Computer Design — Project 1 (15%)

016: 00000011 00000012 00000013 00000014
020: 00000015 00000016 00000017 00000018

What will be the result of the following instruction? It loads a 4-word vector from address 0 (the value
read from r0) into the first vector register, v1. What will vector register v1 look like when this finishes?

vlw v1, r0

This instruction treats the first four words of memory as a short 4-word array (four words, from the 0th
word in memory to the 3rd word in memory) and loads them into vector register v1. How it does so
can make a significant difference. There are two ordering options when these four words of memory are
brought into register v1, corresponding to “big endian” and “little endian,” which computer engineers
have argued over for decades. These correspond to whether the 0th location is considered the high-
order word of the vector or the low-order word. Is the vector in memory stored such that the most
significant word comes first, or last?
Here are the two options, as they would be viewed in the 128-bit register file:

v1 - 00000001000000020000000300000004 [big endian]

v1 - 00000004000000030000000200000001 [little endian]

As can be seen, little endian makes more mathematical sense (the low-order words in the array
correspond to the low-order words in the vector register), and big endian is more easily read (the layout
in memory “looks like” the layout in the register file, because we tend to print things left to right).
Due to its overwhelming support during a class vote in 2018 :), we will implement a little endian
design.
Some related details regarding vec, vlo, and vhi instructions. Assume the following:

r1 = 0x11111111
r2 = 0x22222222
r3 = 0x33333333
r4 = 0x44444444

Then we have the following behaviors for vec, vlo, and vhi instructions:
vec v1, r1, r2, r3, r4
-> v1 = 11111111222222223333333344444444

vec v1, r4, r3, r2, r1
-> v1 = 44444444333333332222222211111111

vec v1, r4, r3, r2, r1
vlo r11, r12, v1
-> r11 = 22222222, r12 = 11111111

vec v1, r4, r3, r2, r1
vhi r11, r12, v1
-> r11 = 44444444, r12 = 33333333

In other words, the registers are read left-to-right as most significant to least significant quantities.

Verilog Implementation
The heart of the project is to create in Verilog a CPU model of the RiSC-32 instruction set. As
mentioned, the model is to be single-cycle, sequential (non-pipelined) execution. This means that
during every cycle, the CPU will execute a single instruction and will not move to the next instruction
until the present instruction has been completed and the program counter redirected to a new
instruction (the next instruction). This is the simplest form of processor model, so it should require
very little code to implement. My solution, which is not particularly efficient, adds 200 lines to the
skeleton code shown below. You should be able to develop your processor model well within two weeks.

9

ENEE 646: Digital Computer Design — Project 1 (15%)

There are two main points to this exercise: (1) to begin your investigation of some advanced
architecture concepts, and (2) to teach you the rudiments of the Verilog modeling language. Future
projects will further the investigation of advanced architecture concepts by focusing on some of the
more important implementation details such as pipelining and memory access.

You have been given a skeleton Verilog file that looks like the following:
//
// RiSC-32 Skeleton
//

//
// Opcodes
//
`define ADD 4'd0
`define ADDI 4'd1
`define AND 4'd2
`define MUL 4'd3
`define SUB 4'd4
`define LW 4'd5
`define SW 4'd6
`define BLZ 4'd7
`define BNE 4'd7
`define VADD 4'd8
`define VSUM 4'd9
`define VAND 4'd10
`define VMUL 4'd11
`define VXOR 4'd12
`define VLW 4'd13
`define VSW 4'd14
`define VMOV 4'd14
`define EXTEND 4'd15
`define JALR 4'd15

//
// Sub-opcodes
//
`define VEC 4'd0
`define VLO 4'd1
`define VHI 4'd2

`define INSTRUCTION_OP 15:12 // opcode
`define INSTRUCTION_RA 11:8 // rA
`define INSTRUCTION_RB 7:4 // rB
`define INSTRUCTION_RC 3:0 // rC
`define INSTRUCTION_IM4 3:0 // immediate (4-bit)
`define INSTRUCTION_IM8 7:0 // immediate (8-bit)
`define INSTRUCTION_SB4 3 // immediate's sign bit
`define INSTRUCTION_SB8 7 // immediate's sign bit

`define WORD0 31:0 // word 0 of 128-bit vector
`define WORD1 63:32 // word 1 of 128-bit vector
`define WORD2 95:64 // word 2 of 128-bit vector
`define WORD3 127:96 // word 3 of 128-bit vector

`define ZERO 32'd0
`define HIZ 32'Z

`define HALTINSTRUCTION { `EXTEND, 4'd0, 4'd0, 4'd13 }

module RiSC32 (clk);
 input clk;
 reg [31:0] pc;
 reg [31:0] rf[0:15];
 reg [127:0] vrf[0:15];
 reg [31:0] m[0:65535]; // NOTE: only use bottom 16 bits of address

 wire [31:0] pc1 = pc+1; // dedicated adder

 wire [31:0] instr = tell me again, how does one fetch from memory?
 wire [15:0] instr0 = instr[31:16];
 wire [15:0] instr1 = instr[15:0];

 wire [3:0] op_0 = instr0[`INSTRUCTION_OP];
 wire [3:0] rA_0 = instr0[`INSTRUCTION_RA];
 wire [3:0] rB_0 = instr0[`INSTRUCTION_RB];
 wire [3:0] rC_0 = instr0[`INSTRUCTION_RC];
 wire [3:0] imm4_0 = instr0[`INSTRUCTION_IM4];
 wire sb8_0 = instr0[`INSTRUCTION_SB8];
 wire sb4_0 = instr0[`INSTRUCTION_SB4];

 wire [3:0] op_1 = instr1[`INSTRUCTION_OP];
 wire [3:0] rA_1 = instr1[`INSTRUCTION_RA];
 wire [3:0] rB_1 = instr1[`INSTRUCTION_RB];
 wire [3:0] rC_1 = instr1[`INSTRUCTION_RC];
 wire [7:0] imm8_1 = instr1[`INSTRUCTION_IM8];
 wire [3:0] imm4_1 = instr1[`INSTRUCTION_IM4];
 wire sb8_1 = instr1[`INSTRUCTION_SB8];
 wire sb4_1 = instr1[`INSTRUCTION_SB4];

 // YOUR CODE GOES HERE

 always @(negedge clk) begin
 rf[0] <= `ZERO;
 vrf[0] <= { `ZERO,`ZERO,`ZERO,`ZERO };
 end

 always @(posedge clk) begin

 // YOUR CODE GOES HERE

 if (instr0 == `HALTINSTRUCTION) $finish;

10

ENEE 646: Digital Computer Design — Project 1 (15%)

 if (instr1 == `HALTINSTRUCTION) $finish;
 end

endmodule

The file contains a number of definitions that will be helpful. For instance, the top group of definitions
are the various instruction opcodes. The second group are fields of the instruction, such that the
following statement:

instr0[`INSTRUCTION_OP];

would yield the opcode of the left-side atom contained in instr. This is what the various op_0, op_1,
rA_0, rA_1, etc. definitions are for.

The HALTINSTRUCTION definition allows you to decide when to halt; when you encounter an
instruction that matches this value, you can either $stop (which exits to the simulator debugger level)
or $finish (which exits to the UNIX shell).

The RiSC module contains the definition of the CPU core. This is the module that you will
implement. So far it contains only the registers, program counter, and memory; you implement the
actual code that does the work. All processor activity should be driven on the positive edge of the clock,
so that the statements returning the two zero-registers to 0-values on the negative edge will work
correctly.

Finally, the input to the RiSC module is the clock signal, which indicates that the module is not free-
standing—it must be instantiated elsewhere to run. That is the function of test modules. You have also
been given a file called “test.v” which instantiates the RiSC32 … it looks like this:

//
// test module for RiSC-32 cpu
//

module top ();
 reg clk;

 RiSC32 cpu(clk);

 integer cycle = 0;
 integer i;

 initial begin
 $readmemh("init.dat", cpu.m);

 cpu.rf[0] = 32'd0;
 cpu.rf[1] = 32'd0;
 cpu.rf[2] = 32'd0;
 […]
 cpu.rf[15] = 32'd0;

 cpu.vrf[0] = 128'd0;
 cpu.vrf[1] = 128'd0;
 cpu.vrf[2] = 128'd0;
 […]
 cpu.vrf[15] = 128'd0;

 cpu.pc = 0;
 #10000 $stop;
 end

 always begin
 #1 clk = 0;
 #1 clk = 1;

 cycle <= cycle + 1;

 $display("--------------------- %d", cycle);
 $display("PC: %h", cpu.pc);

 $display("Instructions:");
 $display(" p0 - %h - %h %h %h %h", cpu.instr0, cpu.op_0, cpu.rA_0, cpu.rB_0, cpu.rC_0);
 $display(" p1 - %h - %h %h %h %h", cpu.instr1, cpu.op_1, cpu.rA_1, cpu.rB_1, cpu.rC_1);

 $display("Scalar Register Contents:");
 $display(" r0 - %h", cpu.rf[0]);
 $display(" r1 - %h", cpu.rf[1]);
 $display(" r2 - %h", cpu.rf[2]);
 $display(" r3 - %h", cpu.rf[3]);
 […]
 $display(" rF - %h", cpu.rf[15]);

 $display("Vector Register Contents:");
 $display(" v0 - %h", cpu.vrf[0]);
 $display(" v1 - %h", cpu.vrf[1]);
 $display(" v2 - %h", cpu.vrf[2]);
 $display(" v3 - %h", cpu.vrf[3]);
 […]
 $display(" vF - %h", cpu.vrf[15]);
 end

11

ENEE 646: Digital Computer Design — Project 1 (15%)

endmodule

The module instantiates a copy of the RiSC32 module and feeds it a clock signal. It also prints out
some of the RiSC32’s internal state—note the naming convention used to get at the RiSC32’s internal
variables. Note that the “initial” block executes before all else, where it initializes the RiSC32’s registers
and memory. The $readmemh call tells the simulator to overwrite the memory system with the
contents of the file “init.dat” ... and then the initial block tells itself to halt execution 1000 cycles into
the future. This is to stop any runaway processes due to design bugs; you can set this to larger values if
you like.

Running Your CPU

First, “tap cadenceIC618” to get access to the simulator. Then you can invoke the simulator to run your
code this way:

xmverilog test.v RiSC.v

Use the a32.pl assembler to generate the init.dat file that the test.v file will try to open up:
a32.pl prog.s > init.dat

Submitting Your Project
Submit your files through the on-line submit facility. When you submit your code to me, I only want
your RiSC32.v file (or whatever name you have given it). I do not need anything else. For example, I
do not need your test.v file (I will use my own). Do not change any of the variable names within the
RiSC32.v file, for hopefully obvious reasons.

Do not worry about creating code that is synthesizable or efficient; future projects will focus on those
aspects of design. For this project, just get it to work.

12

	Project 1: Single-Cycle Verilog CPU (15%)
	ENEE 646: Digital Computer Design, Fall 2020
	Assigned: Tuesday, Sep 1; Due: Tuesday, Sep 22

	Purpose
	RiSC-32 Instruction Set
	The Power of Parallelism
	Endianness
	Verilog Implementation
	Submitting Your Project

