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Purpose
This project is intended to help you understand in detail how a pipelined microprocessor works. You 
have already looked at two different forms of instruction-level parallelism in the first project, in which 
you have a VLIW (Very Large Instruction Word) processor that can execute two instructions 
simultaneously, as well as a vector or SIMD (Single-Instruction, Multiple-Data) capability that can 
perform a single operation on four different data simultaneously. These are both examples of 
instruction-level parallelism, both fairly different in their approach. VLIW allows the compiler to 
express parallelism by grouping together independent atomic operations into a single monolithic 
instruction. SIMD allows the software to move and operate on data in large sequential chunks, which is 
why it is also called vector processing. 
In this project, you will explore yet another form of instruction-level parallelism: pipelining, in which 
the microprocessor acts as an assembly line, operating on different phases of multiple different 
instructions, all simultaneously. You will build a pipelined RiSC-32, complete with simple branch 
prediction, realistic data movement and forwarding, and rudimentary speculative execution. In addition, 
we will be using a coding style in this project that is more synthesizable than the previous project, so you 
will also get a much better feeling for how data values and control signals are moved around the 
processor. 
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Pipelines
In the previous project, you built a sequential processor. In that example, the entire instruction is 
executed before the following clock edge, at which point the results of the instruction are latched into 
the register file and/or data memory, and the next instruction address is latched into the program 
counter. The hardware would look something like the schematic below: 

Not surprisingly, doing everything in a single clock cycle results in a relatively long clock period, because 
a lot of things must happen all during the same clock cycle: the instruction is fetched, data values are 
read from the register file, ALU operations are performed on the data, perhaps memory is accessed, and 
any results generated are stored to the register file. That requires a long clock period, and long clock 
periods mean slow clock speeds. This is a problem, because the computer market is not fond of slow 
clock speeds: they imply low or inferior performance. One can improve performance by increasing 
clock speed, and one can increase clock speed by decreasing the amount of logic between successive 
latches. The easiest way to do this is to cut the instruction logic into ever-finer pieces or stages: if 
execution is sliced up into smaller stages, the clock speed is limited by the longest stage. Theoretically, a 
pipeline of N stages should run with a clock that is N times faster than a sequential implementation. 
For many reasons, this theoretical limit is never reached, due to latch overhead, sub-tasks of unequal 
length, etc. Nonetheless, extremely fast clock rates are possible. Slicing up the instruction execution this 
way is called pipelining, and it is exploited to great degree in nearly every aspect of modern computer 
design, from the processor core to the DRAM subsystem, to the overlapping of transactions on 
memory and I/O buses, etc. The RiSC-32 pipeline is shown on the next page. 
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In the pipeline figure, shaded boxes represent clocked registers; thick lines represent 128-bit buses; 
medium lines represent 32-bit buses; thin lines represent smaller data paths; and dotted lines represent 
control paths. The figure illustrates how pipelining is achieved: the sub-tasks into which instruction 
execution has been divided are instruction fetch, instruction decode, instruction execute (which includes 
both ALU operations and memory access), and register-file writeback. Each of these sub-tasks, which is 
executed by dedicated hardware called a pipeline stage, produces intermediate results that must be stored 
before an instruction may move on to the next stage. By breaking up execution into smaller sub-tasks, it 
is possible to overlap the different sub-tasks of several different instructions simultaneously. If the 
intermediate results of the various sub-tasks are not stored, they would be lost: during the next cycle 
another instruction would use the same hardware for its own task. For instance, after an instruction is 
fetched, it is necessary to store the fetched instruction somewhere, because the output of the instruction 
memory will be different on the following cycle—the fetch stage will be fetching a completely different 
instruction.  
The storage locations for the intermediate results are called pipeline registers, and the figure illustrates 
their contents. It is common to label a pipeline register by the two stages that it divides. Thus, the 
pipeline register that divides the instruction fetch (IF) and instruction decode (ID) stages is called the 
IF/ID register; the pipeline register that divides the instruction decode (ID) and instruction execute 
(EX) stages is called the ID/EX register; and the register that divides the instruction execute (EX) and 
writeback (WB) stages is called the EX/WB register.  

RiSC-32 Pipeline Registers
To simplify the design, rather than maintaining two separate register files and separating the wiring at 
the topmost level, the two register files are combined into a unified module. Thus, one of the first thing 
that happens in the decode stage is that register identifiers, which are 4 bits in length (each specifies one 
of 16 registers), are appended with a 1-bit demarcation indicating whether the reference is to the scalar 
register file (0) or the vector register file (1). This is a purely internal demarcation, which enables several 
things: first, it allows the various register files to be combined into a single monolithic structure, which 
simplifies wiring and circuit design; second, it makes data forwarding much more straightforward 
(imagine how to solve the forwarding problem otherwise). Thus, the following descriptions talk about 
5-bit register specifiers, even though the specifiers in the instruction word are each 4 bits long. 
Similarly, the opcode represents not just the instruction’s opcode, but it also represents whether the 
instruction is a VMOV type, which spans the entire instruction word. Thus, the following descriptions 
talk about 5-bit opcode specifiers, even though the opcodes in the instruction word are each 4 bits long. 

Program Counter The address of the instruction currently being fetched.

IF/ID Register:

PC Contains the address of the instruction whose state is represented in this pipeline register. This is used by BRANCH 
and JUMP instructions and in handling pipeline interrupts.

EXC In a real implementation, this indicates whether the fetch stage caused an exception or not. Here we ignore it.

INSTR The instruction to execute, with left/right-side atomic components: each with opcode, rA, rB, rC, and immediate 
fields.

ID/EX Register:

PC Contains the address of the instruction whose state is represented in this pipeline register. This is used by BRANCH 
and JUMP operations and in handling pipeline interrupts.

EXC In a real implementation, this indicates whether either the fetch stage or the decode stage caused an 
exception, for either atom. In general, if a stage’s incoming EXC value is non-zero, it is passed down, regular operation 
in that stage is disabled, and the instruction is dynamically turned into two NOPs for following stages.
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Pipeline Behavior
The pipeline works on four separate instructions simultaneously and thus can have a clock that is 
roughly 4x faster than that of Project 1 (recall that in the Project 1 implementation, all aspects of 
instruction execution must be finished by the end of the cycle). The pipeline is divided into four stages, 
each of which performs a separate aspect of instruction execution at the same time as the others. 

Fetch Stage & PC Update (including Branch Prediction) 

The fetch stage uses the program counter (PC) to load a single 32-bit instruction from the memory 
system. Its primary input is the PC, and its primary output is the contents of the IF/ID register, 
described above. Note that the PC, along with any exceptional condition encountered, is passed down 
the pipeline along with the instruction being executed. This serves three distinct purposes:  
1. The Program Counter allows branch mispredictions to be corrected later in the pipeline. 
2. The Program Counter supports jump instructions that need to store the return target (PC+1) in 

the register file. 

OP_0/1 Contains each atom’s 5-bit opcode. In most cases, the opcodes are independent, and the op_0/1 fields simply 
reflect each op field of the corresponding atom, with a ‘0’ value appended. However, in the case of a VMOV 
instruction, the opcodes are not independent, and the opcode in instr1 is the actual operation to be performed. 
Thus, the op_0/1 fields are 5 bits wide, where the extra bit indicates whether the opcode in instr0 is a VMOV or 
not. The topmost bit is ‘1’ if instr0.op is VMOV, and it is ‘0’ otherwise. The bottom four bits equal the VMOV sub-
opcode (instr1.op) if instr0.op is VMOV, and they equal the corresponding instr0/1.op otherwise.

rT_0/1 Contains each atom’s 5-bit target-register identifier, or the 5-bit binary value 00000 if the atom has no target (e.g., 
STORE and BRANCH operations). The top bit is ‘0’ if the target is the scalar register file; the top bit is ‘1’ if the target 
is the vector register file.

ARG3_0/1 Contains each atom’s 32-bit immediate operand. If the atom uses a sign-extended immediate value (ADDI, LOAD, 
STORE, BRANCH), that value is available immediately and is stored here. For inst0 (the left-side atom), the 4-bit 
value in rCi is always extended and placed here, whether the atom uses it or not. For inst1 (the right-side atom), if 
the opcode is a BRANCH, the 8-bit value that spans rB and rCi is extended and placed here; otherwise, the 4-bit 
value in rCi is extended and placed here as described for inst0.

S1_0/1 Contains the 5-bit register specifier for each atom’s rB argument; i.e., this identifies for each atom what register its 
first argument wants to read from and is used for data forwarding within the EXECUTE stage. The top bit is ‘0’ if the 
specifier references the scalar register file; the top bit is ‘1’ if the specifier references the vector register file.

ARG1_0/1 Contains the first register operand, called rB within the atom; this is the contents of the register register-file[rB]. This 
is either a 32-bit operand (if the corresponding s1 field contains the value 0xxxx) or a 128-bit operand (if the 
corresponding s1 field contains the value 1xxxx).

S2_0/1 Contains the 5-bit register specifier for each atom’s rC/rA argument; i.e., this identifies for each atom what register 
its second argument wants to read from (whether rC or rA) and is used for data forwarding within the EXECUTE 
stage. The top bit is ‘0’ if the specifier references the scalar register file; the top bit is ‘1’ if the specifier references the 
vector register file.

ARG2_0/1 Contains the second register operand, called rCi within the atom. For most operations, it is the contents of register-
file[rC]. For BRANCH, STORE, and JUMP operations, it is the contents of register-file[rA]. This is either a 32-bit 
operand (if the corresponding s2 field contains the value 0xxxx) or a 128-bit operand (if the corresponding s2 field 
contains the value 1xxxx).

EX/WB Register:

PC Contains the address of the instruction whose state is represented in this pipeline register. This is used to handle 
pipeline interrupts.

EXC In a real implementation, this indicates whether the fetch stage or the decode stage or the execute stage 
caused an exception, for either atom. In general, if a stage’s incoming EXC value is non-zero, it is passed down, regular 
operation in that stage is disabled, and the instruction is dynamically turned into two NOPs for following stages.

The writeback stage handles the exception if the value is non-zero. The only exception we will handle is HALT.

rT_0/1 Contains each atom’s 5-bit target-register identifier, or the 5-bit binary value 00000 if the atom has no target (e.g., 
STORE and BRANCH operations).

RESULT_0/1 Contains the data that will be written to the register file on the following cycle (provided that the atom’s 
corresponding rT field has a non-zero value). 

5
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3. Together the Exception Code and the Program Counter enable support for precise interrupts, 
which allows the Operating System to be invoked if required (the Exception Code indicates what 
the OS should do), and because handling an interrupt involves jumping into the OS, this process 
requires that a return point is stored, which is what the Program Counter is used for. 

Also included in this section is the update of the program counter, including the design of the branch 
predictor. PC update is the decision of which value to put into the program counter for the following 
cycle. There are several possibilities: 

Precedence between these outputs is described in the section below on PC Update Logic. 

Decode Stage 

The decode stage basically sets up the execution stage: it determines what data the operation will 
require and puts it into the correct place so that the data can be used on the following cycle. Each 
instruction requires three pieces of data: 

• one value representing the instruction’s sign-extended immediate value 

• two values read from the register file 
The sign-extended immediate value comes from either the least significant 8 bits (in the case of a 
BRANCH in instr1) or the least significant 4 bits (in all other cases). This value is stored as ARG3 in 
the ID/EX register. Note that it is safe to produce this even if the instruction does not use an immediate 
value (e.g., an ADD instruction). On the following cycle, the ARG3 value would simply go unused if it 
were unneeded. 
The register-file values are specified by the rB value in the instruction and, depending on the opcode, 
either the rA value (in the case of BRANCHES or STORES) or the rC value (all other cases). The rB 
value corresponds to the register file’s src1 output; the rA/rC value corresponds to the register file’s src2 
output. These are stored as ARG1 and ARG2 in the ID/EX register. And, as with the ARG3 value, if 
the instruction does not use both values produced by the register file, it is still safe to produce and store 
them: any unneeded value would simply go unused. 

Branch 
Predictor 
Output

The branch predictor looks at the incoming instruction and scans it for BRANCH opcodes, which can 
be in either instr0 or instr1. If either of the opcodes is a BRANCH, and its corresponding displacement 
is negative (i.e., a ‘1’ bit is found in instr0[3], or a ‘1’ bit is found in instr1[7]), the sign-extended 
displacement is sent to the adder. Otherwise, the default PC update is used, which is a ‘1’ value even if the 
instruction uses a large immediate value. The following explains. 
The interesting part comes when the displacement field is all zeroes, which indicates that the BRANCH 
uses a large immediate value, which is in the following word in memory. That means the immediate value 
has not been fetched yet, and so the branch prediction must not happen until the following cycle. So the 
prediction has to be to continue fetching along this path (we always want to fetch the large immediate; it is 
never jumped over).

Thus, the operation of the branch predictor is as follows. The logic preferentially looks at the 
instruction in the IF/ID register. If that instruction contains a BRANCH with a large immediate, the predictor 
makes its decision based on the currently-fetched 32-bit immediate value and, if the branch is predicted 
taken (has a negative offset), adds that to the PC in the IF/ID register. If the instruction in IF/ID has no 
branches, or branches that have small immediate values, then it is ignored (already predicted), and the 
currently-fetched instruction is examined. If that contains a predicted-taken branch, the current PC and 
currently-fetched offset is used.

Branch Logic 
Output

If a branch is mispredicted in the FETCH stage, then this fact is determined in the EXECUTE stage, at 
which point, the hardware must patch things up. The correct PC is computed, using the PC that has been 
passed down through the pipeline. If the branch is a forward branch (positive displacement), then it 
was predicted non-taken, and therefore the corrected PC would be found by adding the instruction’s 
displacement, found in the ARG3 field, to the PC stored in ID/EX. If the branch is a backward branch 
(negative displacement), then it was predicted taken, and therefore the corrected PC would be found by 
adding ‘1’ to the PC stored in ID/EX if the branch uses a short displacement or ‘2’ to the PC if the branch 
uses a long-form displacement. 

Jump Logic 
Output

If the instruction in the ID/EX register is a JUMP instruction, then it updates the PC from a register in the 
register file. It also stores PC+1 into the register file as well.

6
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Note that the register file output can be either 32 bits or 128 bits (ARG1 and ARG2 are each 128 bits 
wide), depending on whether the instruction reads the scalar register file or the vector register file. The 
choice of register file is determined by the opcode. The decode stage must read the instruction’s two 
opcodes and extend all of the instruction’s 4-bit register specifiers to indicate whether each corresponds 
to a scalar quantity or a vector quantity. This indicates how many bits out of the ARG1 and ARG2 
registers are valid. If the topmost bit of the extended register specifier is a ‘0’ then the value is a 32-bit 
quantity; if the topmost bit of the extended register specifier is a ‘1’ then the value is a 128-bit quantity. 
The decode stage also determines the register targets for the instructions. The values for rT (one each 
for instr0 and instr1) are stored in the ID/EX register, and then they are passed to the writeback stage, 
where they determine where the instruction writes its results. Accordingly, if the instruction does not 
write the register file, then the value should be ‘0’ (the 0th register is read-only). Thus, the rT values are 
5 bits wide, not 4, and the top bit indicates whether the instruction writes the scalar register file or the 
vector register file. 
The decode stage also produces the op_0/1 values that are stored in the ID/EX register to be used 
during execute; these values are also 5 bits wide, not 4 bits: they have an additional bit indicating 
VMOV status. In in most cases the op_0/1 fields in the ID/EX register will simply be the 
corresponding atom’s opcode, and the extra top bit is a ‘0’ value. In the case that instr0.op is VMOV, 
then the top bit of each op_0/1 field is a ‘1’ value, and the bottom 4 bits are the opcodes (and, for 
instr1, in this case, it contains the CTL sub-opcode: ’0’ for VEC, ‘1’ for VLO, and ‘2’ for VHI). 
An op of ‘0’ together with an rT of ‘0’ indicates a nop instruction. 
Lastly, the decode stage handles the one instance of exceptional conditions that we will implement in 
this project: the HALT instruction. It scans the incoming instruction and writes the IDEX.exc register. 
If the incoming instruction has a JALR instruction, the instruction’s immediate bits (the four rCi bits) 
are put verbatim into the IDEX.exc register. If the instruction contains two JALR instructions, then a 
non-zero value wins over a zero value. 

Execute Stage 

The execute stage is the heart of the pipeline and does most of the heavy lifting. Its primary input is the 
ID/EX register, and its data output is the contents of the EX/WB register. It also has control output 
that determines the next state of the Program Counter, as well as the IF/ID and ID/EX registers.  
Due to the fact that this is a VLIW pipeline (there are multiple parallel pipelines, supporting multiple 
instruction issue), the data forwarding within the pipeline is already more complex than that of a 
single-issue pipeline by a factor of n2. Thus, two design decisions were made to offset this as much as 
possible. First, all aspects of execution occur in a single cycle: namely, load/store operations are not 
divided into separate address-generation and memory-access stages but are instead combined in the same 
stage. Thus, unlike the classic 5-stage MIPS pipeline, the RiSC-32 4-stage pipeline has no need to stall 
on load-use interlocks (indeed, it does not stall at all, except for cache misses), and its data-forwarding is 
reduced by one stage of comparisons. Second, branch resolution is done in the execute stage and not at 
the end of the decode stage. This also reduces data-forwarding by one stage of comparisons. The net 
result is that, as compared to the MIPS pipeline and RiSC-16 pipeline, which have three stages of 
comparison (to perform data forwarding, one must look at the three instructions ahead of the current 
instruction), the RiSC-32 pipeline only looks one stage ahead. The disadvantage of this is that the 
branch/jump penalty is increased to two clock cycles. The branch prediction described above addresses 
the branch-penalty issue. One could install a branch-target buffer to address the jump penalty as well. 
The data operations are carried out by two SIMD ALUs and the data memory. The ALU inputs are 
two 128-bit data busses and the function to be performed on them. Note that vector operations will be 
full 128-bit operations, and scalar operations will only use the least significant 32 bits of each 128-bit 
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bus. The ALU-function input determines how much data is processed. Similarly, each ALU has a 128-
bit data-output bus, and sometimes only 32 bits of that bus will be valid. 
The data memory has two independent ports; each port takes as input a 16-bit data address (the 
memory is 256KB total), a read-enable signal (indicates whether or not IDEX contains a load 
instruction), a write-enable signal (indicates whether or not IDEX contains a store instruction), and a 
control signal indicating whether the I/O operation is a vector operation (128-bit) or a scalar operation 
(32-bit). Each port has a 128-bit data input that is bi-directional (outputs data on load operations; 
reads data in on store operations). 
The ultimate output of the execute stage is four-fold: 
1. Result data produced by the ALUs and/or data memory is stored in the 128-bit result fields of the 

EX/WB pipeline register, along with the 5-bit target-register specifiers that determine where, if 
anywhere, that data is to be stored on the following cycle. 

2. Branch mispredictions and jump instructions cause the execute stage to override the PC Update 
process. 

3. Branches and jumps also cause the IF/ID and ID/EX registers to be zeroed out as nops.  
4. Similarly, instructions that may have large immediate values stored in the following memory 

address (ADDI and BRANCH instructions are allowed to do so) will cause the ID/EX register to 
become zeroed out as two nops whenever a large-immediate value is in fact used. When the 
instruction is in the execute stage, its large immediate value is found in the 32-bit instr field of the 
IF/ID pipeline register. It is important that this 32-bit value not be interpreted as an instruction, 
and so in these instances, the output of the decode stage is nullified, and zeroes are stored in the 
ID/EX register, signifying nop instructions. 

The multiplexers of the stage manage the flow of data in and between the ALUs and data memory, and 
their operation is described below for each instruction. The following describes these operations: 

Scalar Instructions:

add 
0

The fwd muxes select whichever register value is the most recent. If either of the rT fields in the EX/WB register matches 
either of the s1 or s2 fields of the ID/EX register, then take the corresponding data from the EX/WB register. Otherwise, 
select the data from the arg1 or arg2 field of ID/EX.
The link mux selects the output of the fwd1 mux.
The alu2 mux selects the output of the fwd2 mux, because the instruction does not use an immediate value. 
The resultMux mux chooses the output of the ALU to send to the EX/WB register.
All data busses should have the bottom 32 bits valid.

addi 
1

The fwd1 mux selects whichever register value is the most recent. If either of the rT fields in the EX/WB register matches 
the s1 field of the ID/EX register, then take the corresponding data from the EX/WB register. Otherwise, select the data 
from the arg1 field of ID/EX.
The link mux selects the output of the fwd1 mux.
The fwd2 mux can be ignored because the second input is an immediate; the alu2 mux selects the appropriate immediate 
value (either the value stored in the arg3 field of ID/EX, or the instr field of IF/ID if the bottom 4 bits of arg3 are zero).
The resultMux mux chooses the output of the ALU to send to the EX/WB register.
All data busses should have the bottom 32 bits valid.

and 
2

(same as add)

mul 
3

(same as add)

sub 
4

(same as add)

8
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lw 
5

The fwd1 mux selects whichever register value is the most recent. If either of the rT fields in the EX/WB register matches 
the s1 field of the ID/EX register, then take the corresponding data from the EX/WB register. Otherwise, select the data 
from the arg1 field of ID/EX.
The link mux selects the output of the fwd1 mux.
The fwd2 mux can be ignored because the second input is an immediate; the alu2 mux selects the output of the arg3 
field of ID/EX.
The we input of Data Memory should be ‘0’ and the vec input of Data Memory should be ‘0’.
The bottom 32 bits of the ALU output are tied to the address input of the Data Memory.
The resultMux mux chooses the output of the Data Memory to send to the EX/WB register. The bottom 32 bits of the 
bus should be valid.

sw 
6

The fwd muxes select whichever register value is the most recent. If either of the rT fields in the EX/WB register matches 
either of the s1 or s2 fields of the ID/EX register, then take the corresponding data from the EX/WB register. Otherwise, 
select the data from the arg1 or arg2 field of ID/EX.
The fwd2 mux cannot be ignored even though the second input is an immediate, because STORE operations have three 
arguments. The output of the fwd2 mux will be the data input to the Data Memory. The bottom 32 bits of the bus should 
be valid.
The link mux selects the output of the fwd1 mux.
The alu2 mux selects the output of the arg3 field of ID/EX.
The we input of Data Memory should be ‘1’ and the vec input of Data Memory should be ‘0’.
The bottom 32 bits of the ALU output are tied to the address input of the Data Memory.
The resultMux mux can be ignored because the rT field should be ‘0,’ indicating no data is to be written to the register 
file.

bne 
7

Left-side operation when the opcode is BRANCH (‘7’):
The fwd muxes select whichever register value is the most recent. If either of the rT fields in the EX/WB register matches 
either of the s1 or s2 fields of the ID/EX register, then take the corresponding data from the EX/WB register. Otherwise, 
select the data from the arg1 or arg2 field of ID/EX.
The link mux selects the output of the fwd1 mux.
The alu2 mux selects the output of the fwd2 mux, because the instruction’s immediate value is used as an offset to the 
Program Counter and is not used for data comparison in the ALU.
The resultMux mux can be ignored because the rT field should be ‘0,’ indicating no data is to be written to the register 
file.

blz 
7

Right-side operation when the opcode is BRANCH (‘7’):
The fwd2 mux selects whichever register value is the most recent. If either of the rT fields in the EX/WB register matches 
the s2 field of the ID/EX register, then take the corresponding data from the EX/WB register. Otherwise, select the data 
from the arg2 field of ID/EX. The alu2 mux selects the output of the fwd2 mux.
The fwd1 mux can be ignored because the ALU internally will compare the alu2 input to zero.
The link mux selects the output of the fwd1 mux.
The resultMux mux can be ignored because the rT field should be ‘0,’ indicating no data is to be written to the register 
file.

jalr 
15/0xF

In the DECODE stage the rCi field of the atom should get inserted into the EXC field of the EX/WB register.
The fwd1 mux selects whichever register value is the most recent. If either of the rT fields in the EX/WB register matches 
the s1 field of the ID/EX register, then take the corresponding data from the EX/WB register. Otherwise, select the data 
from the arg1 field of ID/EX. The bottom 32 bits of the output of the fwd1 mux are used by the Jump Logic to update the 
Program Counter.
The fwd2 mux can be ignored because JALR does not have a second register argument.  The alu2 mux chooses the PC 
field of the ID/EX register, and in the ALU, this is incremented by 1 and stored to the scalar register file during writeback.
The link mux chooses either 1 or 2 based on whether the instruction (the atom next to the JALR) uses a large immediate 
value or not. For all other instructions, the link mux chooses the output of the fwd1 mux. 
The resultMux mux chooses the output of the ALU to send to the EX/WB register. The bottom 32 bits of the bus 
should be valid.

Vector Instructions:

vadd 
8

The fwd muxes select whichever register value is the most recent. If either of the rT fields in the EX/WB register matches 
either of the s1 or s2 fields of the ID/EX register, then take the corresponding data from the EX/WB register. Otherwise, 
select the data from the arg1 or arg2 field of ID/EX.
The link mux selects the output of the fwd1 mux.
The alu2 mux selects the output of the fwd2 mux, because the instruction does not use an immediate value.
The resultMux mux chooses the output of the ALU to send to the EX/WB register.
All data busses should have all 128 bits valid.

9
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Writeback Stage 

The writeback stage has two responsibilities: first, it updates the register file; second, it handles 
exceptions. The register-file update is relatively simple: if an instruction uses a non-zero rT target 
specifier, then it writes the register file (e.g., there is no need for a separate write-enable signal). As 
mentioned earlier, the 4-bit register specifier is extended in the decode stage to a 5-bit specifier, wherein 
the top bit identifies whether the instruction writes a 128-bit value to the vector register file (the top bit 
of the rT target specifier is ‘1’) or writes a 32-bit value to the scalar register file (the top bit of the rT 
target specifier is ‘0’). 
The exception handling is also simple: if the EXWB.exc register is non-zero, halt the processor. 

vsum 
9

The fwd1 mux selects whichever register value is the most recent. If either of the rT fields in the EX/WB register matches 
the s1 field of the ID/EX register, then take the corresponding data from the EX/WB register. Otherwise, select the data 
from the arg1 field of ID/EX. All 128 bits should be valid.
The link mux selects the output of the fwd1 mux.
The fwd2 and alu2 muxes can be ignored because the instruction has no second argument.
The resultMux mux chooses the output of the ALU to send to the EX/WB register. Only 32 bits should be valid.

vand 
10/0xA

(same as vadd)

vmul 
11/0xB

(same as vadd)

vxor 
13/0xC

(same as vadd)

vlw 
12/0xD

The fwd1 mux selects whichever register value is the most recent. If either of the rT fields in the EX/WB register matches 
the s1 field of the ID/EX register, then take the corresponding data from the EX/WB register. Otherwise, select the data 
from the arg1 field of ID/EX.
The link mux selects the output of the fwd1 mux.
The fwd2 mux can be ignored because the second input is an immediate; the alu2 mux selects the output of the arg3 
field of ID/EX.
The we input of Data Memory should be ‘0’ and the vec input of Data Memory should be ‘1’.
The bottom 32 bits of the ALU output are tied to the address input of the Data Memory.
The resultMux mux chooses the output of the Data Memory to send to the EX/WB register. All 128 bits of the bus 
should be valid.

vsw 
12/0xE

The fwd muxes select whichever register value is the most recent. If either of the rT fields in the EX/WB register matches 
either of the s1 or s2 fields of the ID/EX register, then take the corresponding data from the EX/WB register. Otherwise, 
select the data from the arg1 or arg2 field of ID/EX.
The fwd2 mux cannot be ignored even though the second input is an immediate, because STORE operations have three 
arguments. The output of the fwd2 mux will be the data input to the Data Memory. All 128 bits of the bus should be valid. 
The link mux selects the output of the fwd1 mux.
The alu2 mux selects the output of the arg3 field of ID/EX.
The we input of Data Memory should be ‘1’ and the vec input of Data Memory should be ‘1’.
The bottom 32 bits of the ALU output are tied to the address input of the Data Memory.
The resultMux mux can be ignored because the rT field should be ‘0,’ indicating no data is to be written to the register 
file.

VMOV Instructions:

vec
14/0xE
+0

The resultMux_0 mux (which in the Verilog is just the definition for EXWB_rfdata_0__in, the input to the rfdata 
field of the EX/WB register) selects an aggregation of values: the four outputs of the four fwd muxes are ganged together 
into a single 128-bit value and stored into the rfdata field of the EX/WB register. Note that the least-significant 32 bits of 
each MUX output are used.

vlo 
14/0xE
+1

The resultMux_0/1 muxes (which in the Verilog are just the definitions for EXWB_rfdata_0/1__in, the inputs to the 
rfdata_0/1 fields of the EX/WB register) select the bottom half (least significant 64 bits) of the 128-bit vector output 
of the fwd1 muxes (which both read the same register). The resultMux_0 mux selects the least significant word of the 
vector, and the resultMux_1 mux selects the next-least significant word of the vector.

vhi 
14/0xE
+2

The resultMux_0/1 muxes (which in the Verilog are just the definitions for EXWB_rfdata_0/1__in, the inputs to the 
rfdata_0/1 fields of the EX/WB register) select the top half (most significant 64 bits) of the 128-bit vector output of the 
fwd1 muxes (which both read the same register). The resultMux_1 mux selects the most significant word of the vector, 
and the resultMux_0 mux selects the next-most significant word of the vector.

10



ENEE 646: Digital Computer Design — Project 2 (15%)

Control Modules 
These are the descriptions of the various CONTROL modules, which are represented in the diagram as 
circles. The list starts in the upper left-hand corner and moves counter-clockwise around the diagram.

EXC Control and 
EXC Handler

These modules are responsible for detecting error situations and reporting them to the operating system. 
Each module monitors the behavior of its stage and also considers the incoming EXC value. In general, if a 
stage’s incoming EXC value is non-zero, it is passed down, regular operation in that stage is disabled, and 
the instruction operation is dynamically turned into two NOPs for following stages. 
In real processors, this facility is the heart of the machine’s ability to run operating systems. In this project, 
we will only use it to handle HALT instructions. In the decode stage, the module scans the incoming 
instruction and writes the IDEX.exc register. If the incoming instruction has one or more JALR 
instructions, the instruction’s immediate bits (the four rCi bits) are put verbatim into the corresponding 
IDEX.exc register. In the writeback stage, a non-zero EXC value indicates that the processor should 
shut down.

0/1-side Control These modules control the RF muxes that decide which of rC or rA to use as a register specifier (for 
BRANCH, STORE, and JUMP instructions, rA is used; for all others, rC is used), and they also extend the 
read- and write-register specifiers with 0 or 1 based upon whether the instruction reads/writes the scalar 
register file (extend with a ‘0’) or reads/writes the vector register file (extend with a ‘1’). 
Note that a very few operations interact with both register files, such as the VSUM operation, which reads a 
single vector from the vector register file and writes a scalar result to the scalar register file, and the VEC 
operation, which reads four scalar values from the scalar register file and writes them as a single vector to 
the vector register file.

Op Control These modules perform the tasks that are opcode-specific and are independent of the instruction’s other 
atom. The module determines the FUNCalu signal that tells the ALU what operation to perform. We have 
simplified the ALU input so that it takes simply the opcode, and it determines internally what operation to 
perform. The module also drives the control signals of the Data Memory port, including the Write-Enable 
signal (if the opcode is LOAD), and the Vector signal, which indicates whether the LOAD or STORE value is 
a 32-bit scalar (VEC=0) or a 128-bit vector (VEC=1). 

Fwd/Imm Logic The module handles data forwarding by driving the two MUXes that determine the ALU’s input. For the 
ALU1 input, the choices are the Program Counter (for JUMP instructions), the ARG1 output from the 
previous stage (value read from the register file), or one of the two RESULT outputs of the previously 
executed atoms, which are currently stored in the EX/WB register. 
For the ALU2 input, the choices are the 32-bit sign-extended immediate value stored in ARG3, the 32-bit 
large-immediate value found in the instruction word immediately following the present one (which, at this 
point, is the 32-bit value held in the INSTR field of the IF/ID pipeline register), the ARG2 output from the 
previous stage (value read from the register file), or one of the two RESULT outputs of the previously 
executed atoms, which are currently stored in the EX/WB register. 

Branch Logic The branch-prediction logic in the FETCH stage scans the incoming instruction, and if it finds a backwards 
branch (opcode is BRANCH; top bit of displacement is ‘1’), then it predicts that branch to be taken. Any 
other branch is predicted to be non-taken. This module in the execute stage verifies whether or not that 
prediction was correct. Thus, if it is seen that a backwards branch was in either atom, and it was determined 
to be NOT TAKEN, or if a forward branch was in either atom, and it was determined to be TAKEN, then 
this module indicates to the STOMP and PC UPDATE logic blocks that this is the case. It uses the Program 
Counter and either the value ‘1’ or the displacement held in the ARG3 field of ID/EX to generate the 
correct program counter value. 
If there are two branches in the instruction, then this logic prioritizes only if both are determined to be 
taken. If both are non-taken, then it is as if the instruction has but one branch. If one branch indicates 
TAKEN and the other indicates NOT-TAKEN, then the TAKEN path is chosen, regardless of which atom 
produces the result. If both atoms have TAKEN branches, then the left-side atom (instr0) takes precedence.

Jump Logic This module determines if a JUMP operation is in the instruction, or if the operation contains an 
EXTENDED operation such as HALT (a JUMP instruction with a non-zero rCi value). If the instruction 
contains two JUMP operations, and both try to update the PC, then the left-most (instr0) takes 
precedence. Otherwise, the one updating the program counter is active. 
If the instruction contains a HALT operation, the logic sets the X field of the EX/WB pipeline register, so 
that in the Writeback stage the HALT can take affect.

Stomp Logic This module controls the STOMP logic: it handles branch mispredictions and JUMP operations. The 
module’s inputs are the outputs of the BRANCH and JUMP modules above. If either a JUMP or a branch 
misprediction happens, the two instructions following the JUMP/BRANCH are canceled (turned into NOP 
instructions: 32-bit ‘0’ values).

PC Update Logic This module controls the operation of the pcUpdate mux. It handles branch mispredictions and JALR 
instruction execution. The module’s inputs are the Branch and Jump modules. If both are active, i.e. both 
contain an atom that is trying to redirect the PC, then the prioritization is as follows: BRANCH TAKEN 
takes precedence; JUMP is next; BRANCH NOT TAKEN is last. So if one instruction is a mispredicted 
TAKEN branch, and the other is a JUMP, the BRANCH takes precedence. If one instruction is a 
mispredicted NON-TAKEN branch, and the other is a JUMP, the JUMP takes precedence. 

11
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12

0123456789012345
0010

ADD

AND

MUL

LW

SW

ADDI*

SUB

BNE*
(left only)

BLZ*
(right only)

Atom Formats

rA0000 rB rC

rA0010 rB rC

rA0011 rB rC

rA0101 rB

rA0110 rB

rA0001 rB

rA0100 rB rC

rA0111 rB

rA0111 imm8

imm4

imm4

imm4

imm4

0123456789012345
0010

VADD

VAND

VMUL

VLW

VSUM

VXOR

JALR

vA1000 vB vC

1010

1011

1101

rA1001

1100

rA1111 rB 0000

0000

imm4

vA

vA

vA

vA

vB

vB

rB

vB

vC

vC

01234567890123456789012345678901
00102030

B1A1 C1CTLB0A0 C01110VMOV
(left only)

00 VEC
01 VLO (bottom 2)
10 VHI (top 2)

CTL Values:

VSW
(right only) rA1110 vB imm4

vB vC

rDvA rE0000rBvA rC1110VEC

0000rA1 00000001vBrA0 00001110VLO

0000rA3 00000010vBrA2 00001110VHI

Scalar 
RF

Vector Register File

32b 32b 32b 32b 32b

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

01234567890123456789012345678901
00102030

VLIW Instruction Format
atom0 (left) atom1 (right)

01234567890123456789012345678901

00102030

rBrA rCiop4rBrA rCiop4

rAop4rAop4 imm8rB rCi

0000 ADD
0001 ADDI* 
0010 AND
0011 MUL
0100 SUB
0101 LW
0110 SW
0111 BNE*/BLZ*

Opcodes:
1000 VADD 
1001 VSUM
1010 VAND
1011 VMUL
1100 VXOR
1101 VLW
1110 VMOV/VSW
1111 JALR

* imm=0 in ADDI or BRANCH 
=> next word is 32-bit immed

0 1 2 3
3 2 1 0

Big Endian:
Little Endian:
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RiSC-32 Instruction Set
Here we reproduce the Instruction-Set information from Project 1. The various operations are 
explained in the tables below. 

Scalar Operations

Inst 
Opcode

Assembly 
Format Action Verilog Pseudocode

add 
0 add rA, rB, rC Add contents of regB with regC,  

store result in regA.
R[rA] <= R[rB] + R[rC]

addi 
1 addi rA, rB, imm Add contents of regB with imm,  

store result in regA.
R[rA] <= R[rB] + sign-extend imm4

and 
2 and rA, rB, rC AND contents of regB with regC,  

store results in regA.
R[rA] <= R[rB] & R[rC]

mul 
3 mul rA, rB, rC Multiply contents of regB with regC,  

store result in regA.
R[rA] <= R[rB] * R[rC]

sub 
4 sub rA, rB, rC Subtract contents of regB from regC,  

store result in regA.
R[rA] <= R[rB] – R[rC]

lw 
5 lw rA, rB, imm Load 32-bit value from memory into regA.  

Memory address is formed by adding imm with regB.
R[rA] <= m[ R[rB] + sign-extend imm4]

sw 
6 sw rA, rB, imm Store 32-bit value from regA into memory.  

Memory address is formed by adding imm with regB.
R[rA] => m[ R[rB] + sign-extend imm4]

bne 
7

bne rA, rB, imm 
(left side only)

If the contents of regA and regB are not the same, branch 
to the address PC+imm, where PC is the address of the 
bne instruction.

if ( R[rA] != R[rB] ) { 
   PC <= PC + sign-extend imm4 
} else {  
   PC <= PC + 1 (or 2 if imm4==0) 
}

blz 
7

blz rA, imm 
(right side only)

If the contents of regA and regB are not the same, branch 
to the address PC+imm, where PC is the address of the 
bne instruction.

if ( R[rA] < 0 ) { 
   PC <= PC + sign-extend imm8 
} else {  
   PC <= PC + 1 (or 2 if imm8==0) 
}

jalr 
15/0xF jalr rA, rB 

Branch to the address in regB.  
Store PC+1 into regA, where PC is the address of the jalr 
instruction. 

PC <= R[rB] 

R[rA] <= PC + 1

Vector Operations

Inst 
Opcode Assembly Format Action Verilog Pseudocode

vadd 
8 vadd vA, vB, vC Add contents of vecB with vecC,  

store result in vecA.

V[vA.0] <= V[vB.0] + V[vC.0] 
V[vA.1] <= V[vB.1] + V[vC.1] 
V[vA.2] <= V[vB.2] + V[vC.2] 
V[vA.3] <= V[vB.3] + V[vC.3]

vsum 
9 vsum rA, vB Sum the four 32-bit values in vecB,  

store results in scalar regA.
R[rA] <= V[vB.0] + V[vB.1] + V[vB.2] + V[vB.3]

vand 
10/0xA vand vA, vB, vC AND contents of vecB with vecC,  

store results in vecA.

V[vA.0] <= V[vB.0] & V[vC.0] 
V[vA.1] <= V[vB.1] & V[vC.1] 
V[vA.2] <= V[vB.2] & V[vC.2] 
V[vA.3] <= V[vB.3] & V[vC.3]

vmul 
11/0xB mul vA, rB, rC Multiply contents of vecB with vecC,  

store result in vecA.

V[vA.0] <= V[vB.0] * V[vC.0] 
V[vA.1] <= V[vB.1] * V[vC.1] 
V[vA.2] <= V[vB.2] * V[vC.2] 
V[vA.3] <= V[vB.3] * V[vC.3]

vxor 
12/0xC vxor vA, vB, vC XOR contents of vecB with vecC,  

store result in vecA.

V[vA.0] <= V[vB.0] ^ V[vC.0] 
V[vA.1] <= V[vB.1] ^ V[vC.1] 
V[vA.2] <= V[vB.2] ^ V[vC.2] 
V[vA.3] <= V[vB.3] ^ V[vC.3]

13
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Endianness (a reminder from Project 1)
The question of endianness comes up when dealing with vectors. A vector that has sequential 32-bit 
values of 1, 2, 3, 4 … will have the following layout in memory (within each row below, addresses 
increase left to right): 

000: 00000001 00000002 00000003 00000004 
004: 00000005 00000006 00000007 00000008 
008: 00000009 0000000a 0000000b 0000000c 
012: 0000000d 0000000e 0000000f 00000010 
016: 00000011 00000012 00000013 00000014 
020: 00000015 00000016 00000017 00000018 

What will be the result of the following instruction? It loads a 4-word vector from address 0 (the value 
in r0) into the first vector register, v1. What will vector register v1 look like when this finishes? 

vlw v1, r0 

This instruction treats the first four words of memory as a short 4-word array (four words, from the 0th 
word in memory to the 3rd word in memory) and loads them into vector register v1. How it does so 
can make a significant difference. There are two ordering options when these four words of memory are 
brought into register v1, corresponding to “big endian” and “little endian,” which computer engineers 
have argued over for decades. These correspond to whether the 0th location is considered the high-
order word of the vector or the low-order word. Is the vector in memory stored such that the most 
significant word comes first, or last? 
Here are the two options, as they would be viewed in the 128-bit register file: 

v1 - 00000001000000020000000300000004 [big endian] 

v1 - 00000004000000030000000200000001 [little endian] 

As can be seen, little endian makes more mathematical sense (the low-order words in the array 
correspond to the low-order words in the vector register), and big endian is more easily read (the layout 
in memory “looks like” the layout in the register file, because we tend to print things left to right). 
Due to its overwhelming support during a class vote in 2018 :), we will implement a little endian 
design. 
Some related details regarding vec, vlo, and vhi instructions. Assume the following: 

r1 = 0x11111111 
r2 = 0x22222222 
r3 = 0x33333333 
r4 = 0x44444444 

vlw 
13/0xD vlw vA, rB, imm

Load 128-bit value vecA from memory.  
Memory address is formed by adding imm 
with regB.

V[vA] <= m[ R[rB] + sign-extend imm4 ]

vsw 
14/0xE

vsw vA, rB, imm 
(right side only)

Store 128-bit value vecA to memory.  
Memory address is formed by adding imm 
with regB.

V[vA] => m[ R[rB] + sign-extend imm4 ]

vec 
14/0xE

vec vA, rB, rC, rD, rE 
(full 32-bit word)

Read four values from the scalar register 
file (rB, rC, rD, rE),  
write into the vector register file  
at register vecA

V[vA.3] <= R[rB] 
V[vA.2] <= R[rC] 
V[vA.1] <= R[rD] 
V[vA.0] <= R[rE]

vlo 
14/0xE

vlo rA0, rA1, vB 
(full 32-bit word)

Read 0th and 1st scalars in vecB, 
store in scalar regA0 and regA1

R[rA0] <= V[vB.1] 
R[rA1] <= V[vB.0]

vhi 
14/0xE

vhi rA0, rA1, vB 
(full 32-bit word)

Read 2nd and 3rd scalars in vecB, 
store in scalar regA0 and regA1

R[rA0] <= V[vB.3] 
R[rA1] <= V[vB.2]

Inst 
Opcode Assembly Format Action Verilog Pseudocode

14
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Then we have the following behaviors for vec, vlo, and vhi instructions: 
vec v1, r1, r2, r3, r4  
->  v1 = 11111111222222223333333344444444 

vec v1, r4, r3, r2, r1  
->  v1 = 44444444333333332222222211111111 

vec v1, r4, r3, r2, r1  
vlo r11, r12, v1  
-> r11 = 22222222, r12 = 11111111 

vec v1, r4, r3, r2, r1  
vhi r11, r12, v1  
-> r11 = 44444444, r12 = 33333333 

In other words, the registers are read left-to-right as most significant to least significant quantities. 

Verilog Implementation
On the course website is a skeleton Verilog file that includes definitions for all data structures that you 
will need, both registers and busses. You will not need to define any new registers, but feel free to define 
as many new wires as you see fit (e.g., to more finely break down logic blocks). The skeleton file 
contains definitions for all of the grey blocks shown in Figure 1 (pipeline registers, register file, memory, 
and ALU), and it contains instantiations of many of the control lines and multiplexer outputs—
however, for most it does not give their combinational-logic definitions. 
All of the registers are built as modules, each with a clock input, data input and output, reset signal, and 
a write-enable control signal. Your Verilog code will not need any register assignments; i.e., you need 
not put any code whatsoever into the “always @(posedge clk)” block at the end of the program, which 
is simply there to halt processing. 
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