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Purpose
This project is intended to help you understand exactly what people mean when they say “the memory 
system is the problem.” Your job is to get a cache system up and running (the cache, the cache 
controller, and the memory controller have all been developed for you; you need only integrate them 
into your P2 pipeline), measure its performance vs. your original P2 pipeline (i.e., quantify the 
overhead of imposing the realistic constraints of having to deal with a slow main memory system), and 
then improve it in any dimension that you feel like, either functionality or efficiency (performance), or 
any other dimension that you propose. You have to quantify the measurement, and it must be “real.” 

Project Overview
The figure below indicates what this is all about: in Project 2 (as well as in P1), we treated memory as 
being infinitely fast, infinitely large, and right next to the processor. Your processor could access 
memory as many times per clock cycle as you wanted and pull out as much data as you wanted, because 
we were focusing on other issues instead, so that you could learn the real implementation details behind 
processor design, including parallel instruction execution, vector processing, and pipelining. In this 
project, we will start focusing on the real implementation details behind memory-system design. 
To begin with, main memory is not near, it is far away, and the access path to it is narrow, with 
relatively little bandwidth. A typical simple processor core has the ability to make two memory 
references per cycle: one in the fetch stage and one (not two) in the memory stage. These accesses are 
not to main memory but are instead to local caches, an instruction cache and a data cache. Each of 
these can provide, for example, a 64-bit word every clock cycle. In a 2GHz processor, that amounts to 
32GB/s. That bandwidth is per-core: i.e., you can have many cores per chip, each asking for 64GB/s. 
When a reference misses a cache, a request goes to the bus interface unit, which sends the request to the 
memory controller handling main memory. Reading data from DRAM typically takes tens of 
nanoseconds, and the round trip can often be in the hundreds of nanoseconds (see graphs on that topic 
later). The memory channel between the processor and the memory controller is often ~10 GB/s total, 
and it is far less than the total cache bandwidth inside the processor (imagine if you had a dozen cores, 
each wanting 32GB/s; now imagine hundreds). 
For Project 3, you start with your P2 solution and modify it to have an interface to memory, which will 
produce the Project 3 baseline, shown in the figure below, on the right. You have been given a unified 
cache (UC) that can process one request at a time (a traditional cache organization), as well as a bit of 
glue logic wrapped around it that gives the appearance of it being dual-ported. The cache has an integral 
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bus interface unit, and so when it receives a request that it cannot handle, it automatically fetches the 
requested block from main memory. All of this has been done already, and you need only to integrate 
the provided code and get it working. Your system will have the RiSC32 core as well as an instantiation 
of main memory, as shown in the “baseline” illustration. The code that integrates the two modules has 
been provided in the test.v file. Your task is first to measure this system against your P2 solution to see 
what sort of overhead a realistic memory system imposes, and then to improve the system, either by 
adding functionality or by making it more efficient and thereby improving its performance. To do this, 
you will first need to understand how the system works and what some of its primary limitations and 
inefficiencies are. 

A Bit of Background
The memory system has become extremely important in recent years—memory is slow, and this is the 
primary reason that computers don’t run significantly faster than they do. In large-scale computer 
installations such as the building-sized systems powering Google.com, Amazon.com, and the financial 
sector, memory is often the largest dollar cost as well as the largest consumer of energy. Consequently, 
improvements in the memory system can have significant impact on the real world, improving power 
and energy, performance, and/or dollar cost.  

Performance Perspective—The Problem in Detail 

The three main problem areas of the DRAM system today are its latency, its capacity, and its power 
dissipation. Bandwidth has largely been addressed by increasing datarates at an aggressive pace from 
generation to generation (see the left side of Figure 1) and by ganging multiple channels together. That 
is not to say bandwidth is a solved problem, as many people and applications could easily make use of 
10–100x the bandwidth they currently have. The main point is that, in the past decade, the primary 
issue addressed at the DRAM-system level has been bandwidth: while per-device capacity has grown, 
per-system capacity has remained relatively flat; while bandwidth-related overheads have reduced, 
latency-related overheads have remained constant; while processor power has hovered in the 100W 
range, DRAM-system power has increased, and in some cases can exceed the power dissipation of the 
processor. 
Power we will leave for another day; instead, one of the most visible problems in the DRAM system is 
its performance. As mentioned, bandwidth has been addressed to some extent, but main-memory 
latency, as expressed in processor clock cycles, has been increasing over time, i.e. getting worse. This was 
outlined famously by Wulf & McKee [Wulf & McKee 1995] and termed “the memory wall.” Each 
generation of DRAM succeeds in improving bandwidth-related overhead, but the latency-related 
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Figure 1. Trends showing datarate scaling over time (left), and channel capacity as a function of channel datarate (right).  Figure on 
left taken from [Jacob et al. 2007]; figure on right taken from [Ganesh 2007].
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overhead remains relatively constant [Cuppu et al. 1999]: Figures 2(b) and 2(c) show execution time 
broken down into portions that are eliminated through higher bandwidth and those that are eliminated 
only through lower latency. When following succeeding generations of DRAM (e.g., when moving 
from Fast Page Mode [FPM] to EDO to SDRAM to DDR), one can see that each generation 
successfully reduces that component of execution time dependent on memory bandwidth compared to 
the previous generation—i.e., each DRAM generation gets better at providing bandwidth. However, 
the latency component (the light bars) remains roughly constant over time, for nearly all DRAM 
architectures.  
Several decades ago, DRAM latencies were in the single-digit processor-cycle range; now they are in the 
hundreds of nanoseconds while coupled to processors that cycle several times per nanosecond and can 
process several instructions per cycle. A typical DRAM access is equivalent to roughly 1000 instructions 
processed by the CPU. Figure 3 shows access-latency distributions for two example benchmark 
programs (ART and AMMP, both in the SPEC suite): latencies are giving on the x-axis, in 
nanoseconds, and number of instances is given on the y-axis. An interesting point to note is the degree 
to which clever scheduling can improve latency—for instance the dramatic improvement for ART by 
moving from a simple FIFO scheme to the Wang algorithm—but as the AMMP results show (in which 
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Figure 2. Total execution time including access time to the primary memory system. Figure (a) shows execution time in CPI for all 
benchmarks, using Synchronous DRAM. Figures (b) and (c) give total execution time in units of CPI for different DRAM types. The 
overhead is broken into processor time and memory time, with overlap between the two shown, and memory cycles are divided 
into those due to limited bandwidth and those due to latency. Figure taken from [Cuppu et al. 2001].
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One of the most obvious results is that more than half of the

SPECint ’95 benchmarks (gcc, ijpeg, m88ksim, perl, and vor-

tex) exhibit the same memory-system overhead that has been

reported in the literature for large-footprint applications con-

sidered much more memory-intensive than SPEC: the middle

bars in Figure 10(a) for these benchmarks, which represent

CPU speeds of 1GHz, have non-overlapped DRAM compo-

nents constituting 10–25% of the total execution time. This

echoes published results for DRAM overheads in commercial

workloads such as transaction processing [1, 2, 10, 22].

Another obvious point is that anywhere from 5% to 99% of

the memory overhead is overlapped with processor execu-

tion—the most memory-intensive applications successfully

overlap 5–20%. SimpleScalar schedules instructions extremely

aggressively and hides a fair amount of the memory latency

with other work—though this “other work” is not all useful

work, as it includes all L1 and L2 cache activity. For the 100ns

L2 (corresponding to a 100MHz processor), between 50% and

99% of the memory access-time is hidden, depending on the

type of DRAM the CPU is attached to (the faster DRAM parts

allow a processor to exploit greater degrees of concurrency).

For 10ns (corresponding to a 1GHz processor), between 5%

and 90% of the latency is hidden. As expected, the slower sys-

tems hide more of the DRAM access time than the faster sys-

tems. 

Figures 10(b) and 10(c) show that the more advanced

DRAM designs have reduced the proportion of overhead attrib-

uted to limited bandwidth by roughly a factor of three: e.g.,

looking at the 10ns bars (corresponding to 10GHz CPUs) for

 

3. We do not look at the floating-point benchmarks here because their 
regular access patterns make them easy targets for optimizations 
such as prefetching and access reordering [24, 25].
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the latencies of many requests are reduced, but at the expense of significantly increasing the latencies of 
other requests), such gains are very benchmark-dependent. 
Note that numerous techniques exist in the CPU to tolerate DRAM latency: these are mechanisms 
designed specifically to keep the CPU busy in the face of a cache miss, during which the processor 
would otherwise be stalled for many cycles waiting for the DRAM system. Examples include lockup-
free caches, out-of-order scheduling, multi-threading, and prefetching. As should be intuitively obvious, 
these enable the CPU to get work done while waiting for data to return from main memory; they tend 
to provide this benefit at the cost of increased power dissipation and a need for additional memory 
bandwidth.  
Nonetheless, the most effective mechanism found to date that enables us to overcome a slow back-end 
memory system is a fast cache at the front end. 

Caches & Data Alignment 

The textbook goes into great detail on the structure of caches, and you were doubtlessly introduced to 
them in your Organization class, so we don’t dwell too much here on the fundamentals. This document 
tries only to bring out things the textbook doesn’t cover, and which are important to this project.  
One aspect is that of data alignment. Figure 4 illustrates the main concept: you have been able to think 
about main memory as a sequence of words up to this point, and your SIMD vectors have been able to 
start at any random location. That model does not work with caches, because the cache reads and 
writes data a block or line at a time, and that is nearly always a large number of words (typically, main 
memory is byte-addressed, and cache blocks are 32 bytes, 64 bytes, or larger). What this means in a 
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Figure 3. Range of access latencies for ART (one of the SPEC benchmarks), under two different scheduling heuristics: first-come, 
first-served (left) and Wang scheduling (CPRH, right). Figure taken from [Jacob et al. 2007].
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problems with the CPRH scheduling algorithm for 
other workloads. Figure 15.38 shows the latency dis-
tribution curve for 188.ammp, and 188.ammp was 
one workload that points to possible issues with the 
CPRH algorithm. Figure 15.38 shows that the CPRH 
scheduling algorithm resulted in longer latencies for 
a number of transactions, and the number of trans-
actions with memory-access latency greater than 400 
ns actually increased. Figure 15.38 also shows that 
the increase of a small number of transactions with 
memory-access latency greater than 400 ns is offset 
by the reduction of the number of transactions with 
memory transaction latency around 200 ns and the 
increase of the number of transactions with mem-
ory-access latency less than 100 ns. In other words, 
the CPRH scheduling algorithm redistributed the 
 memory-access latency curve so that most memory 
transactions received a modest reduction in access 
latency, but a few memory transactions suffered a 
substantial increase in access latency. The net result 
is that the changes in access latency cancelled each 
other out, resulting in limited speedup for the CPRH 
algorithm over the FCFS algorithm for 188.ammp. 

15.5 A Latency-Oriented Study
In the previous section, we examined the impact 

of transaction ordering on the memory-access 
latency distribution for various applications. Memory 
 controller schedulers typically attempt to maximize 
performance by taking advantage of memory applica-
tion access patterns to hide DRAM-access penalties. 
In this section, we provide insight into the impact that 
DRAM architectural choices make on the average read 
latency or memory-access latency. We briefl y examine 
how the choice of DRAM protocol impacts memory 
system performance and then discuss in detail how 
aspects of the memory system protocol and confi gu-
ration contribute to the observed access latency.4

15.5.1 Experimental Framework
This study uses DRAMSim, a stand-alone memory 

subsystem simulator. DRAMSim provides a detailed 
execution-driven model of a Fully Buffered (FB) 
DIMM memory system. The simulator also sup-
ports the variation of memory system parameters of 
interest, including scheduling policies and memory 
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4Some of this section’s material appears in “Fully-Buffered DIMM memory architectures: Understanding mechanisms, 
overheads and scaling,” by B. Ganesh, A. Jaleel, D. Wang, and B. Jacob. In Proc. 13th International Symposium on High 
Performance Computer Architecture (HPCA 2007). Phoenix, AZ, February 2007. Copyright IEEE. Used with permission.
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practical sense is that you need to “pad” your code so that vectors always start on an address that == 0 
mod 4. An example of this can be found in the vcode1.s file in the project directory. As an aside, all 
modern compilers do this sort of thing automatically: data structures are always padded to align on 
cache-block boundaries. 

Some of the Hairy Details 

[ excerpts taken from The Memory System: You Can’t Avoid It; You Can’t Ignore It; You Can’t Fake It ] 
A further note on alignment: it can cause incredibly significant issues with performance. As you will see 
when you run your Verilog code, every time the required data is not in the cache, the entire processor 
stalls, waiting for the request to come back from the memory system. Imagine if your data layout causes 
problems you didn’t intend. 
When dealing with the cache as well as the with DRAM system, knowledge of your address patterns 
can help tremendously with application debugging and performance optimization, because different 
access patterns yield different latencies and different sustainable bandwidths. 
Both caches and DRAMs have strong relationships with powers-of-two dimensions: turning memory 
addresses into resource identifiers (which bank, which row, which column, etc.) is much easier if the 
numbers and sizes of the resources are all powers of two, because that means one can simply grab a 
subset of the binary address bits to use as an identifier. Otherwise, one would have to do multiple passes 
of modulo arithmetic on every single cache or main-memory access. The power-of-two thing is 
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Figure 4. Main memory is typically introduced as a linear sequence of address locations … but that is just its logical structure. The 
reality, when caches are introduced, is that main memory must be thought of as a linear sequence of block-sized structures, because 
the cache block is the fundamental unit of transfer between the cache and main memory. Thus, if you have a data structure, such as a 
SIMD vector, that overlaps cache blocks, it will take two memory requests to fetch, and you will not be able to access it all at once.
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important because software designers often like to use powers of two to define the sizes of their data 
structures, and this coincidence can ruin performance. As an example, consider the following code: 

#define ARRAY_SIZE (256 * 1024) 

int A[ARRAY_SIZE]; 
int B[ARRAY_SIZE]; 
int C[ARRAY_SIZE]; 

for (i=0; i<ARRAY_SIZE; i++)  
 A[i] = B[i] + C[i]; 

Assuming that “int” indicates a 4-byte data quantity, each of these arrays is 1MB in size. Because they 
are defined by the programmer one after another in the code, the compiler will arrange them 
contiguously in (virtual) memory. Therefore, if array A is located at the address 0x12340000, then array 
B will be found at location 0x1244000, and C will be found at 0x12540000.  
This addressing is a critical issue when trying to access the items in those arrays. When the C code is 
executed on a general-purpose processor, the processor will first look inside its caches to see if the data is 
there. Assume the first-level cache is direct-mapped 64KB with 16-byte cache blocks; for the first 
iteration of the loop (accessing the first 4-byte words of each array), the hardware starts with a read to 
item B[0], takes address 0x12440000 and uses the address-subset 0x000 to index into the cache—this 
is the set of 12 bits between the ‘4’ of the address and the trailing ‘0’. That’s all that is used to determine 
where in the cache the controller will look for the data, and if the data is brought in from main 
memory, that is where that block will be placed in the cache. The hardware does the same for item 
C[0], so it uses the address 0x000 to find the datum. When the processor writes datum A[0] to the 
cache, address 0x000 is used as well. All three requests to item 0 if arrays A, B, and C all go to the same 
spot in the cache. Since the cache is direct-mapped, it cannot hold all of these requests, so all will miss 
the cache.  
It gets worse.  
16 bytes were fetched into the cache to satisfy each of these 4-byte requests, which means that, in a 
normal cache scenario, we should only have to bring in one data-fetch to satisfy three following 
requests. That is the main point of organizing caches into large blocks: when we move sequentially 
through memory, the following requests should “hit” in the cache, even if the first request misses. 
However, because each successive request to each different array overwrites the same cache block, when 
the processor gets around to the second iteration of the loop, in which it accesses datum B[1], that 
datum will not be found in the cache, and instead A[0] will be found there, which will cause the 
hardware to fetch B[1]. Furthermore, A[0] is recently-written data, and this data will have to be written 
out before B[1] can be fetched.  
The end result: in the first four iterations of the loop, the block containing B[0], B[1], B[2], and B[3] is 
fetched into the cache four times. The block containing C[0], C[1], C[2], and C[3] is fetched into the 
cache four times. The block containing A[0], A[1], A[2], and A[3] is fetched into the cache four times 
and then written out to memory four times. In an ideal cache, there would have been three reads (or, in 
some caches, just two) and one write. In our case, there was four times that amount of memory traffic. 
Note that you can see this first-hand by playing around with the vcode1.s file and change the sizes of the 
two arrays to make them overlap, or not (as the code is written right now, there is no overlap). 
The problem gets a bit better out at the L2 (level 2) cache, because further out the caches are often set 
associative. This means that a cache is able to place several different cache blocks at the same location, 
not just one. So a four-way set-associative cache would not fall prey to the problems above, but a two-
way cache would. 
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Once we move to the off-chip L3 cache, all addresses are certainly physical addresses, instead of virtual 
ones . The operating system manages virtual-to-physical mappings at a 4K granularity, and for all *
intents & purposes in the steady state the mappings are effectively random (for more detail on virtual 
memory, see [Jacob & Mudge 1998a, 1998b, and 1998c] and the Virtual Memory chapter in [Jacob et 
al. 2007]). The compiler works in the virtual space, but (for general-purpose machines) at compile time 
it has no way of knowing the corresponding physical address of any given virtual address; in short, the 
compiler’s notion of where things are in relationship to one another no longer holds true at the L3 
cache. So, for instance, datum A[0] is almost certainly not located exactly 1MB away from datum B[0] 
in the physical space, just as datum A[1024] is almost certainly not located exactly 4KB away from A[0] 
in the physical space. 
The end result is that this changes the rules significantly. Virtual memory, in the steady state (i.e., after 
the operating system has allocated, freed, and reallocated most of the pages in the memory system a few 
times, so that the free list is no longer ordered), effectively randomizes the location of code and data. 
While this undoes all of the compiler’s careful work of ensuring non-conflicting placement of code and 
data (e.g., see [Jacob et al. 2007], chapter 3), it also tends to smear out requests to the caches and 
DRAM system, so that you reduce the types of resource conflicts described above that happen at the L1 
cache—in particular, at both the L3 cache level and the DRAM level (the DRAM’s analogue to cache 
blocks is an open row of data, and these can be many kilobytes in size), the code snippet above would 
not experience the types of pathological problems seen at the L1 level.  
However, plenty of other codes do cause problems. Many embedded systems, as well as high-
performance (supercomputer-class) installations, use direct physical addressing or have an operating 
system that simply maps the physical address equal to the virtual address, which amounts to the same 
thing. Sometimes operating systems, for performance reasons, will try to maintain “page-coloring” 
schemes [Taylor et al. 1990; Kessler & Hill 1992] that map virtual pages to only a matching subset of 
available physical pages, so that the virtual page number and the physical page number are equal to 
each other, modulo some chosen granularity.  
More commonly, algorithms access data in ways that effectively convert what should be a sequential 
access pattern into a de facto strided access pattern. Consider the following code snippet: 

struct polygon { 
 float x, y, z; 
 int value; 
} pArray[MAX_POLYGONS]; 

for (i=0; i<MAX_POLYGONS; i++) { 
 pArray[i].value = transform(pArray[i].value); 
} 

This walks sequentially through a dynamic list of data records—sequential access pattern, right? 
Effectively, no: the distance from each access to the next is actually a stride: a non-zero amount of space 
lies between each successively accessed datum. In this example, the code skips right over the x, y, and z 
coordinates and only accesses the int values of each polygon. This means that, for every 16 bytes loaded 
into the processor, only 4 get used. We chose the struct organization for convenience of thinking about 
the problem and perhaps convenience of code-writing, but we’re back to the pathological-behavior case. 
Better to do the following: 

struct polygon { 
 struct coordinates { 
  float x, y, z; 
 } coordinate[MAX_POLYGONS]; 
 int value[MAX_POLYGONS]; 
} Poly; 

 L2 caches in most processors today are still on-chip and, though they are typically physically indexed, can be virtually indexed.*
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for (i=0; i<MAX_POLYGONS; i++) { 
 Poly.value[i] = transform(Poly.value[i]); 
} 

This is a well-known transformation, called turning an array of structs into a struct of arrays. The name 
comes from the fact that, in the general case, e.g., if there are no groups of data items that are always 
accessed together, one might do something like the following: 

struct polygon { 
 float xArray[MAX_POLYGONS]; 
 float yArray[MAX_POLYGONS]; 
 float zArray[MAX_POLYGONS]; 
 int vArray[MAX_POLYGONS]; 
} Poly; 

This would make sense if one were to perform operations on single coordinates instead of the x,y,z 
triplet of each polygon.  
The notion works even for dynamic data structures such as lists and trees. These data structures 
facilitate rapid searches through large quantities of (changing) data, but merging the indices with the 
record data can cause significant inefficiencies. Consider the following code:  

struct record { 
 struct record *left; 
 struct record *right; 
 char key[KEYSIZE]; 
 /* ... many bytes, perhaps KB, of record data ... */ 
} *rootptr = NULL; 

struct record *findrec(char *searchKey) 
{ 
 for (struct record *rp = rootptr; rp != NULL; ) { 
  int result = strncmp(rp->key, searchKey, KEYSIZE); 
  if (result == 0) { 
   return rp; 
  } else if (result < 0) { 
   rp = rp->left; 
  } else {  // result > 0 
   rp = rp->right; 
  } 
 } 
 /* if we fall out of loop, it’s not in the tree */ 
 return (struct record *)NULL; 
} 

Even though this might not seem amenable to optimization, especially for large databases, it can be. If 
the record size is on the order of a kilobyte (not unreasonable), then each record structure would 
occupy a kilobyte, and it only takes 1000 records to reach 1MB, which is significantly larger than an L1 
cache. Any database larger than 1000 records will fail to fit in the L2 cache; anything larger than 
10,000 records will fail to fit in even an 8MB L3 cache. However, what if we do the following to the 
data: 

struct recData { 
 /* ... many bytes, perhaps KB, of record data ... */ 
}; 

struct recIndex { 
 struct recIndex *left; 
 struct recIndex *right; 
 char key[KEYSIZE]; 
 struct recData *datap; 
} *rootptr = NULL; 

If the key value is small, say 4 bytes, then the recIndex structure is only 16 bytes total. This means that 
one could fit the entire binary index tree for a 2000-record database into a 32KB level 1 cache. An 
8MB L3 cache could hold the entire index structure for a half-million-record database. It scales beyond 
the cache system: this technique of partitioning index from data is common practice for the design of 
very large databases, in which the indices are designed to fit entirely within main memory, and the 
record data is held on disk.  
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Lastly, another way the strided-v-sequential access issue manifests itself is in the implementation 
of nested loops. Writing code is deceptively simple: the coder is usually working very hard at the 
intellectual problem of making an algorithm that works correctly. What is not immediately 
obvious is that the structure of the code frequently implies an access pattern of the data. 
Consider the following two code snippets: 

int pixelData[ HEIGHT * WIDTH ]; 

for (i=0; i<HEIGHT; i++) { 
 for (j=0; j<WIDTH; j++) { 
  compute( &pixelData[i * WIDTH + j] ); 
 } 
} 

for (j=0; j<WIDTH; j++) { 
 for (i=0; i<HEIGHT; i++) { 
  compute( &pixelData[i * WIDTH + j] ); 
 } 
} 

The only difference is that the loops have been exchanged. Assuming no hidden consequences 
from the compute() function, both code snippets should do exactly the same thing. And because 
both loops iterate one step at a time, it is tempting to think that both code snippets walk through 
memory sequentially, one integer at a time. However, while the first snippet walks through the 
pixelData array one integer at a time, the second snippet walks through the pixelData array 
touching one integer out of every WIDTH integers. For example, if the image size is 2000x3000 
pixels, then the access pattern (in array indices) of the first code snippet is the following: 

0, 1, 2, 3, … 

This is sequential. It is predictable, and it uses every byte fetched from the memory system. By contrast, 
the access pattern of the second code snippet is the following: 

0, 3000, 6000, 9000, …, 5994000, 5997000, 1, 3001, 6001, … 

It should be clear that, while predictable, this sequence is hardly sequential, and it only uses one integer 
out of every cache block fetched. 

Project Details
Your job is to implement a cache and main memory system in your P2 pipeline, and then, once you 
have it working, characterize it and improve it. You may (should) work in teams, and you should use a 
project design that received all “perfect!” results on the P2 autograder. 
In the project directory there is a set of files, about half of which are the same as previously, and about 
half of which are either new or changed from Project 2. 
In particular, two of the new files are cache.v and memory.v, where you will find the cache and main-
memory structures. The cache_wrapper module should be added to your risc32 pipeline, and it simply 
replaces the SRAM module, keeping all of the original MEM_xxx wires intact—see the PIPELINE.diff 
file for the changes; very few modifications are required. The biggest changes are in the risc32 interface 
to the outside world: it now communicates with a main memory system over a 64-bit bus, and so the 
test.v file needs to instantiate both CPU and memory, and connect the two. 

Cache Implementation & Limitations 

The cache that has been provided to you is extremely simple. It has 8 blocks and a single port. Each 
block is the size of one 128-bit (4-word) vector. The cache_wrapper that is implemented around it tries 
to make its one port look like two, so that the cache can satisfy two “simultaneous” requests from the 
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pipeline: one from instruction fetch, and one from a data operation in the execute stage. It does this by 
delaying and buffering, which obviously adds overhead, and it isn’t simultaneous access at all. 
Additional limitations: 
1. The cache_wrapper cannot handle two data requests at the same time, thus instructions of the form 

lw r2, r3, 4 | lw r5, r6, 7 

are not allowed, unless you modify your system to handle it. As an example, I have modified the 
code in the vcode.s file for you so that it adheres to this limitation; a version that only does one 
load at a time is in the vcode1.s file. 

2. The cache_wrapper cannot handle stores properly. The Cache module can handle them and writes 
them through to main memory (it is a write-through cache), but the cache_wrapper does not. Thus, 
you cannot use SW or VSW instructions unless you modify your system to handle them. 

What this means in practical terms is that code that works on your P2 pipeline will not necessarily work 
on your P2+cache pipeline. Again, take a look at the vcode1.s file. 

Cache-Miss Operations & Timing 

As mentioned, the cache block is 128 bits (4 words) long, and the interface to main memory is 64 bits. 
That means that it takes several cycles to transmit a single cache block. In modern systems, cache blocks 
are often 64 bytes, and the bus width is 64 bits. meaning that it takes 8 cycles to transmit one block. As 
you step through your code simulations, you should get a good idea of just how painful this is. 
The protocol between our cache and main memory is shown below: 

It is relatively straightforward; when a request is made to the cache, and the corresponding block is not 
in the cache, then the cache makes a request to main memory. It raises a request, mreq, which indicates 
the size of the request (128-bit or 32-bit), whether the request is read or write (note: all reads are treated 
by the memory system as 128-bit), and the validity of the request. When the memory controller sees 
this, it responds with a grant signal, and the CPU responds by sending out the desired data address, 
and, if the request is for a store operation (not supported by the cache_wrapper, but implemented in 
the cache), then the data as well. For the read operation, the internal states are also given in the figure. 

Reminder: Data-Alignment Issues 

One last reminder: if you try to use a VLW instruction that has an address with the bottom two bits 
not equal to ‘0’ then you will get an unpleasant surprise. Go back and look at Figure 4 again. 
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Suggestions for Your Consideration re: Optimizations 

Example improvements/optimizations you could perform: 
1. Improve the protocol between the CPU and the memory controller to reduce the number of cycles 

required. 
2. Improve the operation of the “cache wrapper” glue logic to reduce the number of cycles required. 
3. Implement a split-cache structure, with separate I- and D-caches, to allow true simultaneous 

instruction fetch and data operations. 
4. Add support for three simultaneous requests (e.g., two LW atoms in one instruction bundle, which 

need to be handled at the same time as an instruction fetch). 
5. Add support for store operations. 
6. Make the cache access lockup-free. 
7. Change the associativity of the cache (it is currently direct-mapped). 
8. Double the block size, which will require messing with the bus protocol. 
Some of these examples improve functionality; others improve performance. Feel free to suggest a 
completely different type of improvement. However, the improvement should not be trivial, such as 
making a bus wider or increasing the number of blocks in the cache (you can increase the number of 
blocks; just don’t count that as your sole improvement).  
Some of you will note, especially after reading the test.v file, that the bus protocol and memory-
controller design are set up for multicore. That is Project 4 (it rhymes), where you will look into 
multitasking and cache coherence. Feel free to explore optimizations that anticipate that direction. 

Project Submission & Grading
You have three deliverables for this project: 
1. Submit your working project as a tarball of all your files, including a README file in PDF that 

includes diagrams of what you have done. Your documentation need not be elaborate, but it must 
cover everything you did. Use the on-line submit facility and number this as assignment #3. 

2. Do three performance characterizations (your graph/table can be included in the README file): 
a. Your P2 design — this represents an unrealistic, ideal performance 
b. Your initial P3 design (Project 3 baseline) — this represents a realistic performance 
c. Your improved P3 design — this represents your optimized performance 
The measurements should be done using a fairly substantial program as a benchmark … for 
instance, you can use the program in vcode1.s, but modify it to use longer vectors (the example 
on the website is short so that everything fits in the cache and is easy to analyze). 

3. One person from your team will give a 10-minute presentation in class on what you did, Thursday 
November 19th. You will all grade each other on what your teams implemented as improvements. 
Your team’s grade will be the average of the scores you receive from the rest of the class, and 
everyone on your team will receive the same grade.
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