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PREFACE

The theory of differential equations and control have been
linked very closely because most of the early applications of con-
trol theory were to engineering problems of the type which are most
naturally described by ordinary differential equations. The
questions of importance in control have helped to revitalize cer-
tain problem areas in differential equations and methods and tools
from control have been useful in obtaining new results in differ-
ential equation theory. On the other hand, going back to the era
of Lie himself, there has been close ties between Lie theory and
differential equations. Thus it is not surprising that one finds
that Lie theory and control are also closely connected. This
"triangle" is the subject of this set of notes.

In control theory, Lie algebras make their appearance as Lie
algebras of vector fields. Topological properties associated with
Lie groups show up in the study of controllability and stability.
Partial differential operators arise in the Fokker-Planck equations
modeling the uncertainty of the enviromment and our uncertainty
about the measurements we make of it. The problems which are of
interest in control frequently require a generalization of the
usual treatment of topics such as existence of geodesics, express-
ions for the spectrum of the Laplacian etc. The modification is,
roughly speaking, to include the possibility of a metric which is
"infinite" in certain directioms, subject only to the condition
that the directions along which it is finite can be combined in
such a way as to make the distance between any two points finite.
These notes contain a brief account of some of these topics, to-
gether with references where complete proofs can be found.

I have included a few exercises for the reader, both to indic-
ate some results which do not exactly fit the format chosen here
and to indicate some partial results and suggestions on additional
problems of interest. Most of the examples are to be found in the
exercises as well.

It is a pleasure to thank Prof. David Mayne for organizing
such a stimulating forum for the exchange of ideas on system theory.
1. THE ALGEBRAIC THEORY OF LINEAR DIFFERENTIAL EQUATIONS
1.1 Lie Algebras and Linear Differential Equations

Clearly any linear differential equation of the form

6y = A@x@®;  x(@® e¢R?

can be expressed as

m
() = ¢ § u (£)A)x(t)
iil i i
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with the Aj constant matrices and the uj(t) scalar functions of
time. 1In view of the fact that the solution of the equation with
a single A, 1.e.
x(t) = u(t)Ax(t)
is t
A{ u(o)do

x(t) = e 0 x(0)
the question arises as to when the solution of the general problem
can be written as the composition of a number of such solutions
A8, (t) Ayg,(t) A g (t)

e e x(0)

for a suitable choice of the gi(-). Otherwise stated, we would
like to know if the solutions of the matrix differential equation

x(t) = e

. m
X(t) = (] ug (£)AX(t); X(0) = I (identity)
Ag. () A,g,(t) A g (t)
X(t) = e 171 e 272 e
for a reasonably wide class of ui(t) and over some interval of time,
say |t| < g.

can be written as

The above question is basically answered by a classical theorem
of Frobenius [1]. However the theorem of Frobenius which applied
here is a theorem in differential geometry. To use the insight
of his result we need to look at the problem posed from a geometrical
point of view. Consider the identity matrix as a point in the set
of all nonsingular n by n matrices. Suppose that the one parameter

curves eAit leave the identity as indicated in figure 1.

Figure 1: Neighborhood of I in the set of all n by n matrices

We regard the set of all poigts Xfathe form

S={X:X= I e i i; a, € R}

i=1

as a subset of the set of all nomsingular n by n matrices. Our
question is, when do the integral curves of the given matrix differ-
ential equation corresponding to a wide class of u,(:) lie in §?
In order for this to be true for all piecewise continuous u's we
require, for example, that

Alt A2t -Alt -A2t

e e " e e
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be expressible as an element of S. To see why this is so we point
out that the choice

-1 t < 0o<2t I
ul(o)= 0 0 O0< t; 2t<0<3t L

1 3t € o< 4t

-1 0<0<t l
u2(0)= 0 t€0<2t; 3t <0<t

1 2t €0 < 3t
ui(c) =0 1i>2

yields AjE Ayt At —Ant '
X(4t) = e " e e e
Geometrically, what we are asking is that in following the 4-sided

path shown in figure 2 we should not be lead out of the set S.

Alt Azt -Alt -Azt
Figure 2: Illustrating the path leading toe ~ e e e

More generally if f. and £, are smooth maps of R® into IR"
and if we apply the abové choicé of u(-) to the system
x(6) = up () £[x(e) Fuy(B)glx ()15 %(0) = x,

then a slightly messy calculation shows that to second order in t
we have

) af _ Qe 2
x(4t) = X + {(ax)x=xo g(xo) (3x)x=x°f(x°)}t
The quantity %& g (x)- %E £(x) is usually written as [f,g] and 1is

called the Lie bracket of f and g. One calls a set of vectors
£5:RM >R™ involutive if the Lie bracket of any two is a linear
combination of the {fi}. Frobenius showed that the set of points
near x, which can be reached from x, along integral curves of

m
x(e) = ] u (O, (x)
i=1
with {fi} involutive can be expressed as
Qm(tm"‘!¢3<t3l ¢2(t2,¢1,x)))"‘)

where ¢i(t,x) are the solutions of

x(t) = fi[x(t)]
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The reason the set {f;} must be involutive is that otherwise the
special choice of u(-) outlined above will, for small t, surely
lead out of set of points expressible as ¢m(tm,¢(tm_l, ...¢(t,x0)).")).

Applying this type of thinking to the linear case, we see first
of all that the Lie bracket of Ajx and Apx is [A1x, Agx]=(A1A2-A9A7)X
That is, the Lie bracket of the vector filelds is expressible as the
cormutator of the matrices. We write [Ai,Aj] for AiAj-Ain. Thus
if the set of matrices {Aj} have the property that

m
(a;,8,1 = kzl Ys ik
then the theorem of Frobenius would imply that for small |t] we can

write o Aigi(t)
X(t)x = 1T e X
o .
i=1
A linear space of square matrices which is closed under [+,:] is a
matrix Lie algebra. Of course if the original set {A4} does not
form a basis for a Lie algebra we simply supplement it with addition-
al A's until it does. If x is of dimension n then there are only
n2 linearly independent matrices so this process always results in
a finite set.

(o]

Wel and Norman [2] have given a direct verification of the
above representation based on the implicit function theorem and have
developed a set of nonlinear differential equations for the g4 (*).
The basis for their derivation is the Baker-Campbell-Hausdorff
formula

fBed = BelA, B+ 4 (A, [A.B1+ 5T A, (4, [A,B]]...]
Thus if one assumes a solution of the form
A.g.(t) Ag,(t) A g (t)
v 1”1 2°2 m°m
X(t)%ﬁ_ e e e
and then differentiates, the result is
Algl(t)eAzgz(t) A g (t)

ses€

}°{(:) Alél(t)e
A g, (t) Ag, (L) A g (t)
+ e 11 Azéz(t)e 2°2 e nm®

A8, (t) Ayg,(t) . A g (t)
e e ...A g (t)e

m°m
Now we must collect all the A's together at the left in order to
compare this expression for X with that given by the differential
equation. The Baker-Campbell-Hausdorff formula provides the means
to do this. To see how this happens, observe that by inserting
~A;g. () A g (t)

+

freely we can arrive at
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Ag.(t) -A.g, (t) A.g.(t) Ag,(t) ~A g, (L)
. ., T1°1 1°1 ., 1°1 2°2 1°1
g,4,18,e Aje +o..g e e coh ...

= Alul(t)+A2u2(t) + ... + Amum(t)

We apply the Baker-Campbell-Hausdorff expansion to each term on the
left. If the set {A,} is a basis for a Lie algebra then we can
express the result as a linear combination of the A . Since the Aj
are linearly independent we can equate coefficients on each side
and thereby get a set of differential equations for the gy. It is
important to note that the differential equations for the gy only
depend on the Aj through the commutation rules

m

(oA = 1 Yipd

Thus when a differential equation is solved by this method a whole
class of differential equations are solved at the same time -- ome
for each 'set of A's which satisfy the given commutation relation.

Exercises

1. Show that if the Ai in
m
X(t) = } u, (£)AX(t)
i=1 i i

are all upper triangular then it is possible to express the solution
of the differential equations for the gi(°) explicitly in terms of
integrals.

2. Show that the smallest Lie algebra of matrices which contains

Ay and Ap
(o 1\ . _ (oo
A T (o 1) 58y (1 o)

is 4 dimensional.

3. Study the definition of Euler angles from the point of view of
the Wei-Norman equations. In particular explain why it is gener-
ally not possible to obtain a Wei-Norman representation the entire
half-line [0,©) in terms of the degeneracy of the Euler angles.

4. Show that for any square matrix P the set of all solutions of
PA+A'P = 0 from a Lie algebra.

1.2 The x[P] and x(p) Equations

Associated with each linear map of\P\n into W{n are two
families of linear maps which may be described as follows. Choose
a basis in R M and let the original map be represented by the matrix
A. Then we easily see that

n
yi = Zl aijxj
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implies that the n(n+l1)/2 linearly independent terms of the form
yiyj depend linearly on the n(n+1)/2 linearly independent terms of
the” form xjxj. More generally the set of all linearly independent
p-degree terms yiyj...¥Vk depend linearly on the set of all linearly
independent p-degree terms XKiXjo oo Xpo How many linearly indepen-
dent terms of degree p are there in n variables? If we denote
this integer by NP then it is easy to see that
R
ntl “otl

; P n+p-1 . ,

from which an induction gives Nn a ( P ). Thus associated with

each map of R® into R® is a sequence of maps, the pth one mapping
ND NP
R into Rn .
In order to give this family of maps a matrix description we

NP
need to choose a basis in R 0 which is in some way convenient.
The principle which guides our choice of basis is this: let <x,y>
be the ordinary inner product

n
<xX,y> = igl xiyi
1f the map of Fln into “\n defined by A preserves length, we would like

N§ NP
the maps of R into R™n to preserve length as well. To achieve
this we introduce the basis elements

P PP P=P,=+..P P, P P n
1 1 p-1 1.2 n, .
( ) ( ) ...( ) xl Xy eex 3 Z pi P: Py 20
1

1=1
P Py Pp

For example if n=p=3 we have basis elements

2 2 2 2 3 2 2 3
x7, /§x1x2, /3x1x3, /Sklxz, /gxlx2x3, /§xlx3, X35 /§x2x3,/§x2x3,x3

If we denote this vector, ordered lexigraphiislly, by x[p] then the
choice of basis is such that (l|x||=(<x,x>)l )

=Y = | 1x (P

More generally, we have

lpl _lpl,

<x’y>p = <x 4
We denote by A[p] the map, or matrix, which verifies
pl _ ,lp1 [p]
{r]

y = Ax => y

The principle properties of A
theorem.

gheorem 1l: Suppose we are given A and B. A : R™ > R™ and
t R™S R0, Then alP] and BIP) satisty

are covered by the following
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1) Ir[lP] =10

n
ii) (AB) pl _ A[P]B[P]
iii) (Ag)[p] = (A[p])q; q integer; Ad defined

Proof: 1) Clear from definition. ii) Let z=Ay=ABx. Then
z[p]=A[p]y[p]=A[p]B[p]x[p]=[AB]px[p]. jii) This follows from
11) on letting B=A (or B=A-l if A is invertible) and using in-

duction. iv) This follows from the identity <x,y>P=<x[Pjy[P]>
and <x,Ay> = <A'x,y>.

A second series of maps associated with A are the so called
compounds of A which we write as A(P) and define in terms of
matrices as

A(p) - ( matrix of all p by p minors )
of A ordered lexographically

Since there are (n) ways to select the rows and (n) ways to
select the columng in a p by p minor of ann by n"matrix we see
that A(D) is an (n
A(p) are well knoan. See for example [2] or [3].

Theorem 2: Let A and B be given; a: R +anF and B;an - IR™,

P

) by (2) matrix. The following properties of

Then A(P) and B(p) for 0 € p € n maps “\ P/ into and
1) Iip) =1
p
11)  (AB) (®) o AP
iii) (Aq)(p) = (A(p))q q integer; A% defined
1wy @an® - Py

We have used two differeTt points of view in defining A[p] and
A(p). The construction of A p] from A was described in terms of
linear maps whereas in the definition of A P) we used matrices
exclusively. Alternative approaches are available which give

A(P) a geometric meaning in terms of skew symmetric forms of degree
p in n variables.

These two constructions are specializations of the tensog
product in the following way. If A: R® » R® and B: R » RT then
we may identify the tensor product of An and By with an(By)'; i.e.

An © By = An(BY)' = A(nY")B'

If we consider the linear map of the space of n by n matrices into
itself defined by L(Q)=AQB' then LA(Q)=AQA' when restricted tO act
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on symmetric matrices has A[2] as a matrix representation and when
restricted to the complementary space of skew symmetric matrices,
it has A(2) as its matrix representation. Thus if we let = indicate
"gimilar to" then we have

al?l o

A ® A= A()A' = 2)

0 A

One can also see that A @ A ©® A "contains" A[3] and A(S) but
there are more than 2 symmetry types for a 3 index tensor so that
al3] @ A03) 45 only part of A ® 4 ® A. (Check the dimension-
ality; n(n+l) (n+2)/6 and n(n-1)(n-2)/6 does not add up to n3.)
Now consider a linear differential equation in RT
x(t) = A(t)x(t)
Observe that

xIP) (e+ny=(1+nace)) P1x [Pl ey +0 2y
so that

x[p](t+h)°x[p](t)=[(1+hA)(t))[p]—I]x[p](c)+0(h2)
Thus
d—g xPleey = (tl,.i,g%[(HhA(t))[p]_n)‘x[p](t)

(Note that the dimensions of the identity matrices in these equations

are n and NP respectively.) We define A[p] to be the coefficient
matrix in this differential equation.

=Pl - A[p]<c)x[P]<:>; p=1,2,3,...

Thus the set of all p-degrees forms in {x ,x2,...,xn} satisfies
a linear differential equation with a coe%ficient matrix which
1s easily derived from A.

Starting with a matrix equation
X(£) = A(£)X(t)

we can make an analogous construction using compound matrices
(round brackets). The estimate

xP) (e4n) = (1+ha(e)) PxP) () + om?)
leads to
2 x® ) « @imdianae) ®-1nx® o
which we write as h0
E% x® ¢y = A(p)(t)x(p)(t); p=1,2,...,n
The special case in which p=n is the basis for well known Able-

Jacobi-Liouville formula obtained by integrating the scalar
equation

qt (det X) = (tr A(t))det X(t)
Thus we see that A[p] and A(p) are infinitesimal versions of
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A[p] and A(p) respectively. As such, they depend linearly on the
elements of A. This has some significant implications.

We also have the infinitesimal version of the tensor product
reduction given above. It takes the form

A[Z] 0
A(H)H(-)A' =1 ® A+A © I=
0 A(z)

There are important relationships between A, A[ 1 and A(pi
which are more or less clear from derivation. Firsg of all, if A
has all distinct eigenvalues {ki} then the solutions of %(t)=Ax(t)

(p) consists

consists of a sum of terms of the form aielit. Thus x
of products, p at a time, of such terms
A AA +FoA )t
<[Pl . B e( 13 i

ij...k ,
Thus the eigenvalues of the (n+§_1)by (n+g_1)matrix Appy are the
(n+g-l)sums over distinct (unordered) index sets

A1+Aj+...kk; p terms

The same is true for the case where A has eigenvalues of higher
multiplicity. Similarly, the eigenvalues of A consist of sums
p at a time of the eigenvalues of A but in this case the indices
i,j,..,k must all be distinct.

A second fact involves the transition matrix ¢A(t) which
satisfies

d(t) = A(E)®(t); ©(0) =T

By the above construction we see that

8, (v =Pl
(p]
8, (0 =0
(P
(Again, the last of these is the Able-Jacobi-Liouville formula if
p=n.)

Finally, if {Ai} is a basis for a Lie algebra and if

and

m
[Ai,Aj] = kleijkAk
then
)
(A A ] = YA
i k'k
(el Jpl =1 ¥ ¥pp]
That is, the {A } form a Lie algebra with the same structural

1p)
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constants. To see this we need to show that

= [A, ,,B
[A’B][p] [ [p] [p]]
but this can be seeg from the approximations
A,B t 2
LAt ey P

= ( )
A, .t B, .t -A, .t
e [p] e [p] e {pl e

A, .,B. .t2
R RIS
where in all cases the approximations are valid up to and includ-

ing terms of second order in t. Identical formulas hold with [p]
replaced by (p).

-B t

[p]

k]

This circle of ideas 1is of great importance in the theory of
representations of Lie algebras; see [4] or [5]. However in con-
trol theory and differential equations there exist many problems
where one can use these ideas, and other ideas from representation
theory, to simplify calculations and to provide insight. A
particular example is the study of the moment equations for
stochastic differential equations. See, for example, reference [6].

Exercises
1. Show that
I::'(l:I . 0 1 l:xl
*2 ~k(t) -1 %,

and
il 0 2 0 X
*z = |-/2k(t) -1 V2 Xy
i3 0 -/2k(t) -1 Xy

are an A, A[2] pair.
2(p)Show that A[p] is orthogonal if A is orthogonal. What about
AN

3. Describe in full the decomposition of A ® A ® A.

4. Give a definition of A[p] for which z = Ax implies z[p]-A[p]x[p]
but which does not require A to be square.

1.3 Matrix Lie Algebras and the Matrix Exponential

In section 1 we saw that the solution of the differential
equation

m
x(t) = (1;.1 ug (£)A)x(e); x(0) = x
could be expressed for small |t] as
Ag,(t) Ag (t) A g (t)
x(t) =et Lt 227  omm x,
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provided the A, form a basis for a Lie algebra. On the strength
of the theorem of Frobenius, similar statements can be made for

m

x(t) = ~21 ug (B, [x(0)]5 x(0) = x_

1=
provided the set of vectors {fi(-)} are involutive. There is a
sort of converse question. If the set {Ai} does not form the
basis for a Lie algebra to what exient is it necessary to add
elements to these sets in order to cover all possibiiities? We
know already that by adding enough elements to {A;} so as to obtain
a basis for a Lic algebra we can he assured of a representation
of the zbove form. However, it might happen that for

K(E) = u) (DA X(E)Fu, (D) Ax(E); x(t) € R®

the smallest Lie algebra which contains Aj and Ay is of dimension
n2. Are all of the n2-2 elements which we add in order to get a
Lie algebra really necessary?

In 1939 Chow [7] published a generalization of an earlier
theorem of Caratheodory proving that if some regularity conditions
hold, then along solution curves of

m
x(r) = igl ug (0, [x(0) 15 x, = x(0)

one can reach the same points as one can along the solution

curves of

m v
k() = J u (Of(x()] + ] v, (t)g[x(t)]
. i i i i
i=1 i=1
where gj(x) are obtained as Lie brackets of the f£j, Lie brackets
of these Lie brackets, etc. Thus on the basis of this '"reach-
ability" theorem of Chow we see that no matter how many elements
we must add to get a basis for a Lie algebra, nothing short of the
full set will suffice.

We formalize this discussion as follows. Let B denote any sub-
space of gf(n). Let {B}, denote the smallest Lie algebra which con-
tains B. Let C be any subset of G%(n) and let {C}G denote the
smallest group which contains C.

Theorem 1: With the above definitions
{exp B}, = {exp {B},},
Perhaps the most elementary proof of this result appears in [8l.

After sufficient insight is built up it is frequently possible
to evaluate {exp {B},}, by inspection. The insight comes from a
handful of special cases and general formulas such as exp A[
(exp A) Pl. The notation for the principle special casesis gﬂis:

We take the field to be W and let J =(_g é).
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gt(n) = {X : X = n by n matrices}
sh(n) = {X: X e g(n); tr x= 0}
so(n) = {X : X € g(n); X'+X = 0}
sp(n) = {X : X e gl(n); X'J+JX = 0}

Matrices satisfying the last condition are often called Hamiltonian
because they take the form familiar in Hamiltonian mechanics

[2 _Q']I; Q =Q'; R=R'

It is very important to keep in mind that Jz = -1 so that J—l = -J.

Associated with each of these algebras is a multiplicative
group of matrices which are defined in a corresponding way

G(n) = {X : X is n by n matrix; det X # 0}
S%(n) = {X : X e G2(n); det X = 1}

So(n) = {X : Xe G(n); X'X = I}

Sp(n) = {X : X e G(n); X'JX = J}

These groups are called the general linear group, the special
linear group, the special orthogonal group and the symplectic
group, respectively.

It is easy to verify that in any of these cases exp X belongs
to a particular group if X belongs to the corresponding algebra.
This corresponds to the following well known facts

i) exp M is nonsingular for all M
ii) det(exp M) = exp(tr M) = 1 if tr M = 0 AL
iii) exp A is orthoional if A is skew symmetric since (e) =
eAl = emA = ()"l jf A = -p'. A'. A
iv) exp A is symplectic if A is Hamiltonian since e Je' =

] 1
JeJ A JeA = J if A'J+JA = 0.

Notice that the set of n by n symmetric matrices do not form a Lie

algebra; alternatively, the nonsingular symmetric matrices do not
form a group.

The implication for the study of differential equations is as
follows. 1If X is an n by n matrix which satisfies the equation

X(t) = A(E)X(t)

Then of course the fundamental solution 9,(t) is going to belong
to the general linear group. But if A at all noints in time
belonzs to one of the above subalgebras of gf(n) then &, (t) will
belong to the corresponding subgroun of G2(n). This group-algebra
relationship provides qualitative information about the solution
without actually solving the equations of motion.

To what extent are the above maps of the algebra into the group
actually onto the group? It is well known that a real nonsingular
Mmatrix need not have a real logarithm. Thus as far as the real
field is concerned, exp does not map g&(n) onto G2(n). However if
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the field is either the reals or the complexes, then every matrix
sufficiently close to the identity does have a logarithm in the
appropriate field and it is easy to see that exp maps a neighbor-

hood of zero in the algebra onto a neighborhood of the identity in |

the group in a one to one way.
Exercises

1. Consider the set of n by n matrices whose column sums are zero. ‘
Show that they form a Lie algebra. If we denote this algebra by l
L then characterize {exp L}G- \

2. Let so(p,q) denote the set of matrices satisfying
A'L(p,q) + L(p,)A =0

where L(p,q) is defined by

£(p,q) = [gp _g ]
Show that this set of matricgs forms a Lie algebra and show that
for all matrices M in exp{so(p,q)} we have

Z(p,q) = M'I(p,q)M

These are often called the pseudo orthogonal groups since they
preserve the pseudo length x'I(p,q)x.

1.4 Cones and Semigroups

A semigroup of real n by n matrices is simply a subset of the
n by n matrices which is closed under matrix multiplication. A
cone in a real vector space is a subset closed under addition and
multiplicatioﬁ by positive real numbers. Consider a real Lie
algebra L in the set of n by n matrices. Let K be a conical sub-
set of L. In general K will not be closed under Lie bracketing
but it could be. Let {expK}.. indicate the smallest semigroup
which contains exp K. As we will see, a number of problems in
control lead to the question of characterizing {exp K}.. in terms
of K. The connection between a Lie algebra and its corresponding
Lie group suggests analogous relationships between cones in the
algebra and semigroups in the corresponding group. This kind of
relationship is illustrated in the following example.

Example: Let K be the cone in gl(n) consisting of all nbynn
matrices A such that A'+A is nonnegative definite. Then {exp Klse
includes all orthogonal matrices since all skew symmetric matrices
belong to K. Moreover, all symmetric matrices with eigenvalues
greater than or equal to one belong to {exp K}gg by well known Pro~
perties of the exponential map. Thus by appealing to the fact
that any matrix can be written in polar form M = 6R with 6 orthog~
onal and R positive definite we see that if for all vectors x of
unit length ||[Mx||2 = ||6Rx||2 = ||Rx||? 3 1 then M belongs £
{exp K}g;. It is easy to see that if ||Mx|| < 1 for some X of
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unit length then we can not express M in the required way thus
this condition is necessary and sufficient. We conclude that the
semigroup of "expansive" matrices is the exponential of the non-
negative definite ones. Likewise, the semigroup of (nonsingular)
"contractive" matrices is the exponential of the cone of non-
positive definite matrices.

This example can be generalized somewhat to give a theorem
with broader scope.

Theorem 1: Let K be as above and let Lp be the Lie algebra of
matrices satisfying A'P+PA = O with P'P = I. Then {exp KN Lplge=
{exp K}lge N {exp LP}G i.e. the expansive matrices in {exp Lplg.

Proof: Given any orthogonal matrix P, the group of matrices sat-
isfying M'PM = P has the property that the polar representations

of each element has both its factors in the group. .That is, if
M= eﬂﬁg with ef orthogonal and e™ positive definite and symmetric,
then e Pefl = P, eRpeR = P. To_prove this we note that if

eReft ' PefleRl= P then eRe?' = PeRP'Pe™MP'. However the term of the
right 1s a polar decomposition since Pe~Rp' ig symmetric and
positive definite and Pe~{%P' is orthoional. Thus by uniqueness of
the polar decomposition we see that el = Pe"RP' and ¥ = peflp!
which shows that each factor belongs to the given group.

Now if M has the polar form M = eQeR and if M belongs to

{exp K}SG N {exp LP}G then R > 0 and © and R belong to Lp. Thus Q
belongs to LpN K and so does R.

Typically the relationship between a cone in the Lie algebra
and the semigroup which the exponential maps it into is very
difficult to describe. One problem of this type which has been in-
vestigated extensively arises in probability theory. Let Xg € R
have nonnegative components which sum to one. Suppose that x(t)

evolves in time according to
x(t) = A(t)x(t); x(0) = X
If A(*) has the two properties:

(1) the off-diagonal elements of A(t) are nonnegative for all t
(11) the sums of the columns of A(t) are zero for all t,

then x(t) will have nonnegative components which sum to one for all
t 3 0. This is equivalent to saying that subject to the above re-
strictions on A(*) the solution of the matrix equation

X(t) = A(E)X(t); X(0) = I (*)

is a stochastic matrix; i.e. a matrix with nonnegative entries
whose columns sum to 1. The imbedding problem [9] is that of
determining which stochastic matrices ¢ can be reached from the
identity along solutions of (*) given only that A(t) must satisfy
(1) and (i1). Of course the set of matrices which satisfy (i) and
(11) form a cone and the set of reachable matrices form a semi-
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group. It is not true however that for n > 2 this semigroup con-
sists of all stochastic matrices.

In control applications there is particular interest in the
case of cones of the form

K={X:X= aA+ZBiBi; o > 0; Bi unrestricted} .

i.e. cones which are half snacesThe first point to make is that by
virtue of theorem 3.1 we may as well assume that the B, form a
basis for a Lie algebra since by adding elements to {Bj} to make
the basis of the Lie algebra generated by {Bi}we do not enlarge
the reachable set. Moreover, it is also clear from theorem 3.1
that

{exp{A,Bi}A}G‘Q {exp K}SG 2 {exP{Bi}A}G

It is more or -less clear that if eAt is periodic then
{exP{A’Bi}A}G = {exp K}SG

and Jurdjevic and Sussmann [10] have shown that this is also true &
if eAt is almost periodic.

It is also true that Ad}iB:L belongs to the Lie algebra renerated
by the B.'s then
* oA
exp K = e {exP{Bi}A}G

For a proof and some generalizations see the thesis of Hirschorn [11],
Exercises

1. Calculate {exp N}g; where N is the conme
= . =2 bj. '
N={X:X [c _a], X+X' < 0}

2. It is well known that the elements of @A(t) are nonnegative
for all t 2 0 if A(t) itself as elements which are nonnegative off
the diagonal -- the diagonals may have any sign. Give an example
which shows that {exp Kl}gg is not the entire semigroup of square
matrices with nonnegative entries if K is the cone of A's described
above. (Find a matrix with positive entires and negative deter-
minant.)

3. Explore the relationship between #2 and the imbedding problem.

II. INPUT-OUTPUT SYSTEMS

In this chapter we consider input/output systems which can be
represented by a pair of equations of the form

. m
X(£) = (a+ ] u (£)BX(t); y(e) = CX(t) )
i=1

Here X is an n by n matrix as are A and B,, B, «..» Bm; the map
C is subject to certain restrictions to be described later. The
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differential equation is said to be of the "right invariant type"
because a multiplication on the right by a fixed element of G2(n)
gives an equation

m

X(EM = (A+ ] u, (t)B,)X(t)H

jo1 1 i
which is again of the same form and with the same coefficient
matrices. This is to be contrasted with an equation such as

m m

X(t) = (a+ ] u ()B)X(E)+X(t) (D+ ] ug (£)E,)

' i=1 i=1
which does not have this invariance property. The basic idea is
to understand as well as possible the properties of input-output
maps which can be represented by equation (*). We will study
controllability, observability and state space isomorphism
theorems.

2.1 Controllability

If u., is an m-dimensional piecewise continuous function of
time and iIf ty is a nonnegative number, then we given the pairs
(ui,ti) a semigroup structure by defining

(ul’tl) ° (uy,t,) = (ulluz,tl+t2)
whereby ullu2 = u, we mean
“B(t) = ju(e); 0< < £t
uz(t-tl); b, St

This is the concatenation semigroup with due regard for the domain
of gﬁfinition of the functions being concatenated. We denote it
by .

Consider the time invariant control system
x(t) = £[x(t),u(t)] ; x(t) e R® (#%)

with f well enough behaved so as to guarantee the existence of a
unique solution for each starting point x_ € R"™ and each

(u,t) € UB, Let T" be the semigroup of ome to onme continuous maps
of R™ into R™ with composition as the semigroup operation. Then
the control system (**) defines a homomorphism of U" into T®. We
denote this homomorphism by ¢ and, by analogy with automata theory,
call the image of U™ under ¢ the Myhill semigroup of the system.

The main thing which is special about bilinear systems is
that the Myhill semigroup is easily identified with a matrix semi-
8roup. That is, if we have a system in RT

m
x(t) = (A+ ) u, (£)B,)x(t)
i=1
then the matrix equation
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. m
X(t) = (a+ } u, (£)B)X(E); X(0) = 1
i=1
describes the relationship between U™ and T -- each matrix being
associated with an element of T" in the standard way
M+ f(x) =M

If A is absent in the above equation then it is clear that
the Myhill semigroup is actually a group since %f u(+) € U™ steers
the system from I to M at time t; then v(*) € U and defined by

v(t) = -u(tl-t)
steers the system to M-1 at t = tl.

Given an initial state X the set of states reachable from
X can be identified with the set of points which x, is mapped
into by the various elements of the Myhill semigroup. That is,
the Myhill semigroup acts on the state space

S:Z+1L

The reachable set from X is the "orbit'" through e defined by
this action.

We now give various examples of reachability theorems.

Theorem 1: There exists a control which steers the system
. m
X(t) = (] u,(£)BX(E)
i=1

from Xo to X; in time tj > 0 if and only if xlx;l belongs to
{exp{BikA}c-
Proof: This is an immediate consequence of Theorem 1.3.1.

It is also easy to see that if A belongs to {Bi}A then the

reachable set for o

() = (a+ [ u (£)BX(E)
i=1

is just the same as it would be if A were absent.

Notice that the reachable set does not depend on t] as long
as t; is positive. If A is absent and if one restricts the con-
trols to be bounded, say lui(t)| € 1 then all points of the above
form are reachable after a suitably long time but the time re-
quired will depend on the point to be reached.

A second result which we want to use in a moment is this.
Theorem 2: The reachable set at time t for

. m
X(t) = (A+ ) ug ()B)X(E); X(0) = L
1=1

1. A0 ~ _ [0 B,
A [oo] By [ 1]

and
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with A square is

_ At o
§(t) = e {expfAdA,Bi}A}G
Here {Adé B.}, indicates the smallest Lie algebra which contains

’
{Bi}A and id 2losed under the action of Adg.

Proof: See reference [8], Theorem 7.

We can combine theorems 1 and 2 in an obvious way to get the
following more general result.

Theorem 3: The reachable set at time t for

. ~ m -~ ~
X(t) = Ax(t)+ ] u, (£)B X(t)+ 3 v, (£)C,X(t)
i=1 i=1
where .
~ A0, % _[00] . = _ [0cC
A= 1o o]’ By = [o Bi] PG [o o?]

with A and Bi square is
~ av
R(t) = exp At{exp{Ad:, B.» Ci}A}G
Finally, one can get additional results by using a nice lemma
of Jurdjevic and Sussmann [10].

Theorem 4: The reachable set for the R" system at time t start-
ing from x=0 at t=0 and governed by

m
() = (a+ ] u (£)B)x(e)+ E v (E)g;s x(t) € R®
i=1 i=]
is the vector space genmerated by {L¥g, } where k indicates powers
and Ly is a basis for the associative algebra generated by {A,Bi}.

Proof: To begin we observe that if x., is reached at t=t; starting
from x=0 at t=0 using the control (u,V) then the control (u,av)
steers the system to ox] at t=t,. Also, we know that if we write
the system as

_d x(e)] _ [A o] [B o] [o gq) x(t)
1) <oo+“i(t) o ol *vilo &)%)
then the reachable set has a noneﬁpty interior in

R= {exp{A, B, é}LA}G [ﬂ

vhere 1
" A O ~ B 0] ~ [0 g]
A= . = . =
[o o] s By [oi ol 3 % =0 ot
There exists a nonzero control of the form (0,v) which steers the
system back to zero at time t=t., from 0 at t=0 -- use u=0 and

invoke standard linear theory. “According to lemma 6.1 of ([10]

We obtain on taking perturbations about this control an open set
in R containing 0. Using the cone property mentioned in the first.
Sentence we see that the reachable set is a vector space. Lie
algebras tell us which one.
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A particular problem in controllability theory which has re-
ceived a good deal of attention is

2(t) = Ax(E)+u(t)b<c,x(e)> 5 x(t) € R?

where u(*) is a scalar, and b is a column vector. Of course the
linear system
%(t) = Ax(t)+bv(t)

is controllable in ™ if and only if (b,Ab,..;A" 1) is of full
rank. If the linear system is controllable it might be supposed
that the bilinear one is also controllable since if v is a control
which drives the state of the linear system from X, to x, then the
control

u(t) = v(t)/Kc,x(t)>

drives the bilinear system from x, to x,. This argument has the
obvious fallacy that <e,x(t)> might vanish along the trajectory leav-
ing u(t) undefined. In particular, if x(0) = 0 then of course X
vanishes identically for all future time. Thus the most one could
hope for is that any nonzero state could be steered to any nonzero
state. It turns out that this is too much to hope for also. A
simple pair of examples which illustrate that no amount of work can
salvage this argument and which at the same time suggest the nature
of the problem are these.

Consider the system

\i}'cl(t)jl - [o 1] [xl(:;)}+ a(e) [o OHixl(t:):\
iz(t) 1 0 xz(t) 0 1 xz(t)
which has the form

%(t) = Ax(t) + u(t)b<c,x(t)>

with [A,b,c] a minimal realization of s/(sz—l). However for any
given x_ there exists xj such that x, is not reachable from x,
because regardless of k, the off-diagonal elements of (A+k(t)bc5
are always positive so that ¢(t,t°), the transition matrix, has
all entries nonnegative for t > t_. Thus if x(0) has nonnegative
entries for all t > 0. This argument shows that the system is not
controllable.

Consider the system

Fl(t)] _ [o 1] [xl(t)il k() [o o] x, (£)
5{2(1:) -1 0 xz(t) 0 1 xz(t)
which has the form x(t) = Ax(t)+k(t)bcx(t) with (A,b,c] a minimal

realization of s/ész+l). In this case we see that the system is
controllable on R4-{0}. (See reference [12] for details.)

Exercises
1. Show that the Myhill semigroup for the linear system

x(t) = Ax(t)+bu(t); x(t) ¢ R®
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can be identified with the multiplicative matrix semigroup

e
0

2. Consider a bilinear system
x(t) = Ax(t) + u(t)Bx(t)

on ﬂ{n -{0}. 1Is it true that if there exists any state x_ such
that all points in [R™ - {0} are reachable from x then all states
have this property?

At e
S={X:X-= [ l] ; t>0; x € span(b,Ab,...A 1b)}

3. Consider the linear system

X(t) = A X(E)+X(t)A_ + 1£1ui(t)31
Here X(t) is an n by q matrix and A, and Ar are n by n and q by q
respectively; the B, are n by q. gh

ow that the Myhill semigroup
equation can be iden%ified with

4 [sl(:) Sa(t)} i ([Az 0 } . xi\ o) [o Bi]> [sl(:) S4(t)
dt 0 Sz(t) 0 Ar i=1 i 0 0 0 Sz(t)
Show that the reachable get at time t for the Myhill equation is
exp At-exp{AdA,Bi}

2.2 Observability

We now consider systems with an output

m
X(t)=(A(t)+ ] ug (0B, (£))X(t)5 y(t) = C(X(t)); X(t) € Gi(n)

i=1
The exact nature of the output map is not essential. We give the
output space no structure -- it is just a set. The critical

assumption is that there should exist subgroups H
such that C(Xl) = C(Xz) if and only if

HyXjHy = X
for some H, in Hy and some Hy in Hy. Under this assumption Cc(x)
identifies™X to within a multiplication on the left by an element
of Hy and a multiplication on the right with an element of H..
We call systems of this form homogeneous.

o and Hp of GL(n)

In such a set up, the observation of y, even over a period of
time, can at most determine X to within a right multiplication by
an element of H_. Thus we might as well regard the system as
evolving on the coset space GL(n)/H,. Whether or not the cbser-
vation of y and the knowledge of u over the interval [0,») serves
to identify uniquely an element of X/H, as a starting state is then
Subject to investigation.

%ﬂiEESE_l: Consider the above system with H, and Hy given. Let R
énote the set of X's reachable from I. Suppose that R is a group.

|
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Then two points XjH, and XpHp in Gl(n)/Hy give rise to the same
input/output map if and only if for each Ry in R there exists
H1(R) in H, such that

-1
R Hl(R)Rler = X2Hr
If we denote by P the subgroup
Ps{x:n'lxneng; ¥ Re S}

then any two elements of the form xlﬂr and PyX;H. with P; in P are
not distinguishable.

Proof: If XjHy and X,Hr are to be indistinguishable as starting
states we must have

HoRiX1Hy = HpRyXpH,

for all R, in R. Since Hy and H, are groups and since R is a
subgroup of GIn), the above condition is equivalent to asking that
for each Ry in R there exist H1(R) in Hg such that

-1
Ry Hy RORKH, = XoH,
The remainder of the conclusions are clear.
Exercises ’
1. Assuming that the evolution equations are of the form
m
%(t) = Ax(t) + § u (£)B x(t); y(t) = Hyx(t)H
i=1 i i r
with
Hy = {exp{Ci}A}G; H = {exP{Di}A}G
give an observability condition in terms of Lie algebras. (See
ref. [8] for some results along this line.)

2. Apply the results of problem 1 to the bilinear problem
m
x(t) = ax(t) + § u (£)Bx(t); y(t) = clx(e)]
{=1 i i

by identifying [R™ with the n dimensional affine group modulo
G2(n).

2.3 Isomorphic Systems

The two scalar realizations

£(0) = x(DHruD)x(t); y(&) = xo(8); x(0) =1
and
2(t) = 3z(t)+3u(t)z(t); y(t) = z(t); 2z(0) =1

realize the same input-output map. They are each controllable on
(0,) and any two reachable states are distinguishable. They are
related by the automorphism of the multiplicative group (0,)
defined by 3

z = X
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Thus despite the apparent differences between these two realizations
they are closely related. The following theorem describes a gen-
eral result of this type.

Theorem 1l: Consider the two homogeneous realizations of the same
input-output map

m
X(t) = (a+ ] u ()B)X(t); y(t) = c[X(t)]
i=1

m
z(t) = (F+ [ v, (£)6)2(t); y(t) = h(Z(1)]
i=1

which evolve in G&(nj) and Gl(nz) respectively and which have
reachable sets from the identity, R and R, which are groups.
Suppose Hy, H, and Hy, H, are given subgroups of G2(n;) and G%(n2)
respectively such that ¢ and h are one to one on HgRH; and HgRHp
and such that the systems are observable on RH, and RHy. Finally,
suppose that there is no normal subgroup of R which has a non-
trivial intersection with R (\ H, and the same for R and fl,. Then
there exists an isomorphism ¢ : R + R such that
B .t G, t
0% = 5 pety=et

Proof: Suppose that there exists a control (u,T) in U™ which takes
the first system from I to D#I and takes the second system from

I to I. Let D denote the set of all such points. By virtue of

the observability hypothesis we see that D is a subset of H_ and,
in fact, a subgroup of H,.. Moreover it is easily seen to be a
normal subgroup of R and hence of RN H.. By hypothesis D is
trivial. This implies that there is a one to one correspondence
between points in RN\ H,. and RN H, which is, in fact, a homomor-
phism.

We see that R and R are both homomorphic images of ", If a
pre-image of R in U™ is in U_ then what is the image under the
action of the second system of UR? It is clearly R or else a sub-
group of R. If it is a subgroup then the subgroup must contain
RN Hy but there is_a one to one and onto correspondence between
R/RN H,. and R/R N H, and an isomorphism between RN Hy and Rnfl,
Using the properties of the system maps we see that the above map
must be onto R and thus it establishes an isomorphism. The re-
maining claims then follow.

Exercises
1. Develop the Lie algebra analog of Theorem 1.

2. Apply the above results to bilinear systems of the form
m
k(t) = Ax(t)+ ] u (©)Bx(t); y(£) = ex(e); x(0) = x
i=1 °

TTZ]P. d'Alessandro, A. Isidori and A. Ruberti [13] and Brockett
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III. OPTIMAL CONTROL

This chapter is quite brief due to the absence in the liter-
ature of results relating specifically to the Lie group case. We
discuss only two problem areas -—- the question of existence of
optimal controls in the bang bang case and questions centering
around minimum "energy' transfer.

3.1 Bang-Bang Theorems

It is well known that under very weak assumptions on the
matrices A(*) and B(.) the linear system

*(t) = A(t)x(t)+B(t)u(t); x(0) = given
with controls constrained by
|ui(t)| =1

has a set of reachable points at any time tj > 0 which is the
same as the set of points reachable with the constraint relaxed to

|uft)| <1

This is called a "bang-bang theorem' because the controls u; need
only take on their extreme values and not intermediate ones. Some
generalizations of this have been investigated by Krenner [15] and
Sussmann [16]. We examine only an easy case here.

Theorem 1: Let X satlsfy the differential equation in G(n)

m
() = AX(e) + ([ Byu (£))X(t)
i=1

Then if [Adk(B ),B.] is zero for all i and j- and k=0,l,...n2-l then
the set of States Peachable at time t for lui(t)| = 1 is the same
as the set reachable for |ui(t)| < 1.

Proof: 1In view of the commutativity condition we can express the

solution of the given equation as
tm -AC
z e B

eAcui(U)dG
At ‘0 i=1
e e

X(t) = X(0)

See [8] Theorem 7 for details. Now since the bang-bang theorem
is valid for the linear system

i

. m
F(t) = z e_AtBieAtui(t)
i=1

1=
and since X(t) = eAteF(ﬁ we see that it holds for the systems de-
fined here as well.

Exercises

1. The solution of the scalar differential equation
x(t) = ult)x(t)+v(t)
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t t
is J u(o)do u(p)dp
o

x(t) = e 0 x() + | e v(0)do
0
Is the bang-bang theorem valid if we regard u and v as controls?

2. Is the bang-bang theorem valid for the pair of scalar
equations

z(t) u(t)z(t)
x(t) = (u(e)+v(e))x(t)
3. Show that the bang~bang theorem is valid for
x(t) = u(t)x(t)
y(t) = -y(t)+u(t)

Generalize this result.

3.2 Least Squares Theory

Under the assumption used in the previous section we can
develop a satisfactory theory for minimizing

t m 2
n = f I ui(t)de
0i=1 *
subject to the constraint that the system

m
X(t) = (A+ [ u (©)B)X(t) (*)
i=1
should be transferred from the state Xo at t=0 to the state X1
at t=t..
1

Theorem 1: Let X(t) satisfy the Gl(n) equation (*).2 Suppose
that [AdiBi’Bj] = 0 for all i and j and k=0,1,2,...n"-1. Suppose
that

1

- Aty
XX, ee {exp{AdA,Bi}A}G

Then there exists a control u(:) which steers the system from X
at t=0 to X; at t=t; and minimizes n. This control is the same
as the control which steers the linear system

. m

F(t) = z e—AtBieAtu.(t)

i=1 *
from 0 at £=0 to 2n(e_At1X1X-1) at t=t, and minimizes n where in
denotes the real solution g£§
e = e lX X-l
10
which results in the smallest value of n. The optimal control is
of the form
At At

ui(t) = tr(Mie— Bie )
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for some constant matrices Mj.

Proof: As in the proof of the bang-bang theorem we see that

X(t) = eAteF(t)
where F(t) satisfies
. m -
F(t) = ] e AtBieAtui(t)

From this point %;leverything follows from standard linear theory.
See [17], section 22.

Exercises

1. Consider the system
x(t) = x(t)+u(t)
y(t) = u(t)y(t)

Suppose we want to steer this system from (a,B) to (Y,8) in t,
units of time and to minimize

t
n= I 1 uz(t)dt
0

If §/B is positive this transfer is possible and the u(-) which
achieves the optimal is of the form aet+b. Generalize Theorem 1
in such a way as to capture this example.
2. If B1 and B, commute, describe the solutions of

\Y Blui B2vi

I (e e

i=]

) =N

IV. STOCHASTIC DIFFERENTIAL EQUATIONS

Stochastic processes on spheres has been of interest in
physics for some time. Debye [18] in his book on statistical
mechanics gives one application of S stochastic processes.
Nuclear magnetic resonance Bhenomena account for some more recent
interest in diffusions on S“. See Chapter 15 of the recent text
[19]. The French mathematical physicist Perin wrote a classical
paper [20] on diffusion on SO(3). Recent interest in physics re-
garding models of the type under study here is discussed in Fox
[21]. Transmission of electromagnetic waves through random media
leads to stochastic processes on the symplectic group -- distance
playing the role usually assumed by time. Tutubalin [22] can be
consulted for recent results and references. Carrier [23] has
examined an equation of this general type in connection with a
gravity wave propagation problem. One can think of this study as
a stochastic process on the two dimensional symplectic group. An
engineering problem for which the theory is potentially interesting
is the randomly switched electrical circuit.
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4.1 Bilinear Stochastic Equations

In this paper all stochastic differential equations are to be
interpreted in the Ito sense. All Wiener processes are of unity
variance and Wiener processes with distinct indices are assumed to
be uncorrelated. The reader is encouraged to study Clark [24] for
more details on stochastic calculus.

Under what circumstances does the Ito equation

dx(t) = Ax(t)dt + Z dw, (t)B,x(t) (*)
i_
evolve on the manifold defined by x'Qx = constant? If we expand

to second order keeping in mind that dwidwj l Gljdt we get
m

dx'Qx = x'"(A'Q+QA)xdt + E x'(BQ + QB )xdW+ Z x'BiQB x dt

Thus in order for the derivative of x'Qx to vanish we require
’ m

[ ]
A'Q+0A+ ] B,QB,
i=1
and also we require
]

BiQ + QBi
We see that the drift term A needs to be '"corrected" by a term
coming from the white noise. For example, if we want equation (*)
to evolve on a sphere then A is not skew symmetric as it would be
in the deterministic case but rather it has a correction term

whose size depends on the Bi' On the other hand, the By must be
skew symmetric.

In order to evolve on the symplectic group it is a skew
symmetric form which must be preserved. Repeating the above with
Hamiltonzan matrices gives rise to the conditions that Bj and

A+ = {B should be Hamiltonian.

Exerc1ses
1. Show that the Ito equation

r d
[dxl dxz] } [a B][xl xz] de + [xl xz] [dwl wz]
dx3 dx4 Yy § Xy X, X3 X, dw3 —dwl
evolves on the special linear group S&(2) if suitable restrictions

are placed on a, B, Yy, S.

2. Generalize the previous problem to S%(n).
4.2 The Moment Equations
Associated with the stochastic equation

dx(t) = Ax(t)dt + Z B;x(t)dw, (t) (*)
i=1
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is a family of higher order equations analogous to those given in

section 1.2. These are the equations for x Pl. 1In order to dis- [
play their form it is necessary to work out section 1.2 using the |
Ito calculus. As an alternative, suggested to me by Martin Clark,

one can convert (*) into an analogQus$ Stratonovich equation, use

the ordinary calculus to get the x.Pl] equation, and then convert

back to the Ito form. This idea is particularly attractive in the *
present setup since we have the deterministic results already. l

The Stratonovich analog of (%) is simply

1§ .2 v
dx(t) = (a- = T BHx(t)de + ] Bx(t)da,(€)
2 421 i =1 i i
where & indicates Stratonovich differentials. Applying ordinary
calculus we get

(P = (a- L 382 xlPlace ] B, xP)
&Pl (o) (A—zilei)[p]x dt+i£lBi{p]x ()&, (t)

Now if we want to convert this back to an Ito form we must correct
the drift term to get

dx[p](t)=[(A- 3 ) B2) +1§ 4] )z]x[p](t)dt+ ? B, . x'Pl(e)aw (t)
2 i=1 1 [p] {i=1 i[‘p] i=1 ﬂ?] i
We can easily take expgctations tg get the moment equation
d (p] 1 2 2, o [P}
— (& a[(A- 5 B + B g
& (Ex T (EN=[a- 3 121 lp] 121( qpp 1EXT (O
Notice that the apparﬁntly more generalmequation
dx(t) = Ax(t)dt + § B.x(t)aw (t)+ J e dw,(t) (%)
=1 * -
is covered by these equations as well. To see this we let

5 [%]
then x satisfies an equation of &he form

dk(t) = Ax(t)dt + [ (B4C)R(t)dw (£)
i=1

There are many papers in the literature which analyze the stability of
of these equations under various assumptions -- particular emphasis
being placed on the case p=2. See, e.g. [25]. In reference [6] it
is shown that under a suitable hypothesis all the moment equations
are stable.

1. Show that in the scalar case the moment equations for

dx(t) = a(t)x(t)dt + B(t)x(t)dw(t)
are 2 aP) = pa®- 5 82N+ 3 p28%(t)1 &xP(v)
Notice that if o and B # O are constant then it can never happen that
all moment equations are stable.

2. A problem of interest in geophysics leads to the stochastic
equation
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[dxl(t)} [ 0 dt] [dxl(t)] _ [xl(O) R
dx,(t) I-deredw(t) 0] lax ()] 7 [x,(0) 0

Show that the autocorrelation is, for small €, approximated by
2 2
= o(ET/8)(t+T) ~(e°/4) |t-T|
gxl(t)xl(r) ~ e e

cos (t-T)
(See Carrier [23]).
4.3 Fokker-Planck Equations
Associated with the Ito equation
m
dx(t) = Ax(t)dc + ] dv B x(t)
i=1 *
is the formal Fokker-Plank equation
p 1 T 32
- = Int — e e - =
3t 2 "(ilei"x P T x, Yo~V phx = 0

However, if x evolves on a manifold then this equation will not

be especially useful unless the redundant variables are eliminated.
In order to carry out this reduction it is necessary to coordinatize
the manifold in some natural way. This coordinatization necessarily
proceeds in a case by casg way. To illustrate we work out four

cases on the two-sphere S§<.

Consider the stochastic equations (Compare with McKean [26]
who considers case b, case a being classical.)

— - "'_ _ _
dxl dt dw3 dw2 x1 4\;3

dx2 = dw3 -dt -dwl Xy (a)
_dx3_J _-dwz dwl -dt ‘_x3 ¢ Il
L - 1 -

dx1 - E-dt l0 dw2 X, :

dx2 = 0 -3 de --tftw1 X, (b) AN : %
.dx3_ _-dwz dwl ~-dt ] X3 ~N

- - 1

[dx, - 3 dt Idt dw, |, %

dx2 = +dt - E-dt -dwl x, (c)

d - -
L dXq | | -aw, dwy deflx,

Figure 3:
~dx1 F 0 -dt 0 x, Spherical Coordinates
d| = a - % dt  -aw. || x, | (d)
1 1l[ "2
Ldxy | o au) - 3 dtf|x,
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We introduce polar coordinates according to figure 3.
The Fokker-Planck equations corresponding to the above cases are
then )

2

8 1,1 3 3 1 3 .

[-é-E- -3 (-s-i-mf 3—¢ sin¢ 36 + Sinzd) 362)]D(t,¢,9) 0 (a)
2

9 1,1 3 ] 1 ) -

[-a-t':' - -2— (sin¢ a—¢ Biﬂ(b w + tan2¢ 362)]D(t,¢,9) 0 (b)
2

12 3 137y, -
T A 51n¢ E + tanz¢ aez) + ae] dt,¢,e) 0 (C)
3

(s1nd 37 + cotgcosd %)z + g—e]p(t,cb,e) =0 (d)

The idea behind the derivation of these equations 1is that
each of the three generators

0 10 0 0 1 o 0 O
-1 0 0}, 0 0 0 s 0 0 1
0 0 O -1 0 O 0 -1 0

can be associated with a first order partial differential operator
which describes the effect of a drift around the corresponding axis
of rotation and also with a second order partial differential
operator which describes the effect of a diffusion around the
corresponding axis of rotation. The derivation of these operators
is an exercise in differential geometry, however the following in-
sight is useful.

Q
N~

l3¢

On a manifold with a Riemannian metric (gij(x)), the Laplace-
Beltrami operator [27]

2 1 9 -1 3
V= S (g, .(x)) " Vdet(g, (X)) =—
EEETEEETETT axi ij ij axj

serves as the Laplacian, in that the basic heat equation, assuming
constant conductivity, is

& -2 7H0e,0 = 0

On S% in terms of the given coordinates, the usual metric is

(ds)? = [d¢, 8] [1 OJM
0 sin’dl|dd

one sees easily that case a above corresponds to the heat equation.

As for case b, it is obtained from case a by removing one of
the generators -- the one which corresponds to a iiffusion about
the x3-axis. This is equivalent to subtracting E’(az/aez) from
the operator appearing in case a.




LIE ALGEBRAS AND LIE GRCUPS IN CONTROL THEORY 73

Case c is obtained in an analogous way. We must add a drift
term to the operator appearing in b corresponding to a rotation

about the x3-axis. Thus we add a (3/36) term to the operator
appearing in b.

Case d is the most degenerate of all in that there is now only
diffusion about one axis. There is a (9/36) drift term as in

case c together with the operator which corresponds to diffusion
about the xl-axis.

It is of some interest to note that all these operators are
studied in quantum theory. See Rose [28], appendix A.

Exercises
1. Consider the stochastic equation
dx - l-dt -dw O ||x
1 2 1 o I DO O
dx, dw - E-dt el | x, | xl(0)+x2(0)—x3(0)=1
dx3 0 dt 0 X4

Show that it evolves on the manifold defined by xz+x2-x2=1. Intro-
duce coordinates in this manifold and work out the Fokker-Planck
equation. Is there a limiting distribution?

2, Show that the moment equations associated with each of the
four cases analyzed here are stable. (see [26])

4.4 Calculation of Diffusion Times

We continue with the analysis of the four cases of diffusions
on spheres, now with a view toward determining, if possible, a
complete solution to the Fokker-Plank equation. In cases where
that proves too difficult we look for some measure of the relax-
ation time of the process.

To begin with, the standard S2 diffusion (case a above) leads
to the Fokker-Plank equation

39—%—351 -1 Ve =0

Where VZ is the usual Laplacian on the sphere. It is, of course,
well known that the eigenvalues of the Laplacian on the sphere are
n(n+l), n=0,1,2,... with the nth being of multiplicity 2n+l. Thus
the general solution of the above equation starting from the singular
distribution concentrated at 6 = ¢ = 0 is
© n
6(t,0,6) = T T P (cospyelemPDE
nk
n=1 k=-n
are the spherical harmonics. We also see that the

elgenvalies are a measure of the speed with which the density
&pproaches steady state.

where P
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On the basis of this Green's function one can, of course,
express the general solution of the Fokker-Plank equation in terms
of its initial value. Thus we have, in terms of the spherical
harmonics, a complete solution to the Fokker-Planck equation.

This is classical.

On the other hand, it is possible to be almost as explicit in
the other cases as well. This comes about because the 2n+l
equations for the, coefficients of the spherical haymonics of the
form P_, (cos )eike k=0,+]1,...+n are decoupled from those corres-
ponding to Pn,k(cos Ye kO ¢or n#n'. Thus the solution of the

Fokker-Planck equation reduces to a sequence of linear differential
equations; the nth entry in the sequence being a coupled set of
2n+l equations. It happens, however, that there is a simple
connection between the moment equations of gsection 4.2 and the
equations for the coefficients of the spherical harmonics. We
describe this for the S2 situation but similar results hold on
spheres of any dimension.

For an 52 equation x is a 3-vector and x[p] is of dimension
(p+l) (p+2)/2. The equation for x[P] includes all linearly indep-
endent p-forms in x; thus it includes (p-1)(p)/2 terms of the form

(x§+x§+x§ x[p-2]
Hence we can partition x[P] into two parts of dimension (p-1)p/2
and (p+1) (p+2)/2 - (p=1)p/2 = 2p+l, respectivel& according to
whether the components have a factor of x%+x§+x3 or not. Now of

course x2+x2+x2 = 1 so that the components which do contain this

factor can be ghought of as moment equations of a lower order and

hence they evolve independently of the second part of the equation.

On the other hand, the 2p+l components which do not contain

xi+x§+x§ as a factor evolve independently as well. Collecting

these facts we see that the moment equations have the structure
AG 0 s e 0 s s

0 A6+2 « s e e e

e LR RS S RS
R

where § is zero or one depending on whether p is even or odd.
The dimension of A_ is (2p+l) by (2p+l1) and the coefficients of
the spherical harmbnics of type Pui,n fixed, k=0,+1,+2,...%n are
governed by the differential equation

F(t) = prm

Thus the spectrum of the operators
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1 ¢ 2 T 2
-7 LB + LGy

which were derived in section 4.2, governs the relaxation time of
the process. ,In case a above we have already commented that the
spectrum is J(n(n+l)) with the nth term being of multiplicity
2ntl. 1In case b there is less diffusion and one would expect the
relaxation to be slower. This is the case; a calculation shows
that the first few entries of the spectrum compares with case as
follows.

1(0 2, 2, 2 6, 6, 6, ... case a
2

6 6
2 0o, 1, 1, 2 2, » 5, 5, 6 ... caseb
I II III

Finally, we remark that examples b, c, and d are specific
cases of the hypoelliptic operators of Hormander [29].

Exercises
1. Consider the linear stochastic equation

dx, (t) - 1/2 1 dw, (t)
= ae+ | 1775 x(0) = 0
dx, (t) | -1 - 1/2 dw, (t)

as an approximation to the first two components of the S2 equation

dxl(t) - % dt dt dwl xl(t) 0
1

dxz(t) = -dt - 2 dt dw2 x2(t) ;3 x(0) =10

dx3(t) i —dw1 -dw2 -dt x3(t) 1

Compute the second moment in each case and compare.

2. Consider the stochastic equation on 82 defined by

dxl(t) -dt/2 dw1 0 xl(t)
dxz(t) = —dwl -(1+p)dt/2 pdw2 ’ xz(t)
dx, (t) 0 -pdw, -5 | [xy(0)

Find the first few eigenvalues of corresponding Fokker-Planck
operator as a function of p.

V. STABILITY THEORY

In the study of ordinary differential equations on Lie groups
linear and nonlinear problems are of interest, however in

notes we discuss linear problems only. Of course the most
common stability problems encountered in control concern the

general linear group. However in the study of specific applications
Other groups may occur. For example, in the case of problems

both
these
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arising in classical mechanics the symplectic group plays a major
role. Moreover since temnsoring will typically transform a system
evolving in GL(n) into one which evolves on some subgroup of GL(q)
is desirable to take a general point of view.

5.1 Stability of the x[p] Equations

The following theorem is an obvious consequence of the cal-

culations in section 1.2.
Theorem 1: The null solution of the system

x(t) = A(t)x(t)
is stable (asymptotically stable) if and only if the null solution
of the equation

y(t) = A t)y(t

y(t) [p]( )y (t)

is stable (asymptotically stable). Moreover if all solutions of
the first equation are bounded by x(t)[ < Me=At then all solutions
of the second are bounded by |y(t)| < Mle'pxt.

When combined with standard estimates this theorem can give
very precise information about high order systems which are either
in the form of y(t) = A[p](t)y(t) or else in the form

y(t) = A[p](t)y(t) + D(t)y(r)

with D(t) small in some sense.

Example: We know from Liapunov [see e.g. [30]] that all solutionms
of the Sp(2) equation

il(t) 0 1 xl(t)
%, (t) gt) 0] | x,(t)

are bounded if p(+) is pointwise nonnegative, periodic of period T
with positive average value and with

T
J p(t)dt < 4/T

0 [2)

Thus we see that all solutions of the x equation
¥,(0) 0 1 of |y (®
y(0)) = |-2p(t) O 2| |y, (0
§5(0) 0 -p() Of [yy(0)

are also bounded under the same hypbthesis. (Here we have taken
yp=2x,x, instead of V2 x;x,). A change of basis puts this equation
in a Mmore symmetric form
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2 (8) 0 3 @@y 0 2, (8)
B, = |-5 a0 3 W @) |2,
£,(0) 0 2 awp(e)) o 2,(t)

This equation evolves on the pseudo-orthogonal group S0(2,1).

One particular fact which should be mentioned here is that
systems with a single time varying parameter, say

x(t) = Ax(t)+k(t)Bx(t) (*)

go into systems with a single time varying parameter e.g.

.[p] _ [p]
X (t) = (A[p]+k(c)B[Pfx (t)

Thus the many useful results about (*) (circle criterion, [17],
etc.) can be extended in a nontrivial way.

Exercises
1. It is known that all solutions of the differential equation

X+ x+ k(t)x(t) = 0

remain bounded if 0 < k(t) € ~3.9 (see [17]). On the other hand,
if one picks a positive definite quadratic form in x and % say
v(x,%X) and computes its derivative along solutions of the given
differential equation then there exists one quadratic form which
implies stability via Liapunov theory, for 0 € k(t) < 1 but the
constant 1 cannot be improved on using a quadratic Liapunov function,
However, if we look at the x[P] version of the differential equation
then a quadratic Liapunov function for x[P] is a 2p-degree Liapunov
function for the original equation and a more suitable Liapunov
function can be found. Work out the details.
2. Consider a differential equation in{pQn

x(t) = Ax(t)+k(t)Bx(t)

Suppose that A and B generate a four dimensional Lie algebra which
is isomorphic with g2(2). Use the theory of the representations

of g (2) (see, e.g. Samelson [4] page 114) and the circle criterion
(see, e.g. [17]) to derive stability criteria for the given systenm.

5.2 Periodic Self-Contragradient Systems

A matrix Lie algebra is said to be self-contragradient if

there exists a matrix P such that
pLp” ! = L

for all L in the Lie algebra. For example, so(n) is self-contra-
%radient with P=I and sp(n) is self-contragradient with P=J. As
tar as the stability of periodic systems is concerned, the impor-
PZ?: Cf?Sequence of this assumption is that if A(t) satisfies

JP~L = ~A'(t) then the transition matrix for
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x(t) = A(r)x(t)
satisfies

o' (t)Pd,(t) =P
since A A

d, ., _oa ' -
EE(¢A(t)P¢A(t)) = @A(:)(A (t)P+PA(t))¢A(t) 0

Thus ¢, (t) similar to (¢_1)'. As an immediate consequence of this
fact we see that the eigenvalues of ¢A(t) occur in reciprocal
pairs —- if A is an eigenvalue then so is 1/X. If we assume we
are dealing with real systems then of course the eigenvalues

occur in complex conjugate pairs as well.

If A(t) = A(t+T) then the well known Floquet theory insures
that the transition matrix for

x(t) = A(t)x(t)
can be expressed as
2,(t) = QD" Q(0) = I

with Q(t+T) = Q(t) and R constant though not necessarily real.
The value of QA(T) is decisive as far as the stability of a
periodic system is concerned since ¢A(nT) = [@A(T)]n.

If A(t) is given b%

ACt) = J a (t)A
{=1 i i

with the A, being a basis for a self-coantragradient representation
of a Lie aigebra, then of course

¢A(t)P¢A(t) = P

for all t. If (®,(T))" is bounded for n=1,2,... then we call
®5(T) stable. We call it P-strongly stable if it happens that for
all sufficiently small R such that R'P+PR = 0, the matrix eR¢A(T)
is also stable. (Compare with [31].) In view of the fact that
the eigenvalues of a matrix depend continuously on the elements of
the matrix and in view of the fact that the eigenvalues of QA
must occur in reciprocal pairs, we see that if the eigenvalues of
® (T) are distinct and if &,(T) is stable, then it is P-strongly
stable. However it can happen that &,(T) is P-strongly stable
even if the eigenvalues of ¢, (T) are not distinct.
Theorem 1: If {A,} is the basis for a self-contragradient matrix
Lie algebra, A{P+ Ai = 0, and if

m

x(t) = (] a, (£)A,)x(t)
i=1

is periodic and if &, (T) is P-strongly stable, then there exists
€ > 0 such that for ?bi(t)-ai(t)] < g and bi(t) periodic of period
T the system

m
x(e) = (] b (D)A)x(t)

is stable. i=1
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Exercises
1. Determine if for P = J the matrix

cosf 0 sinb 0
0 cos 0 siné
-sinb 0 cosb 0 50<6<m
0 -sin 0 cosb

is P-strongly stable or not. See [30], theorem 8.

2. Show that if p(t) is periodic of period T with average value
zero and if

scl(c)] [o 1 Hxlcc)]
[:‘cz(t) -1 -p(t) xz(t)

then ¢A(T) is symplfctic although ¢(t) for t # T need not be.
The corresponding x 2] equation 1is ‘expressible as

x2 0 2 0 x2

al 1 1
e | ¥1%2] = -1 -p(t) -1 XX,

x% 0 -2  =2p(t) x%

Use the idea of strong stability to investigate the stability of
these systems.

3. If D is diagonal then D+H is similar to a diagonal matrix if H
is any symmetric matrix. However if D is diagonal there may exist
an n(n-1)/2 dimensional set, the upper triangular matrices, such
that D+T is not diagonalizable; consider the identity. Relate
this to strong stability.

5.3 The Symplectic Case

In the special case of the symplectic group Krein [30] has
given an elegant theorem on how large the perturbation in Theorem 1
of the previous section can be. We give an application of this

theorem and some facts about realizations of feedback systems as
well.

Notice that the second order system with Q(t) symmetric
®(t) + Q(t)x(t) = 0; x(t) eR™
is equivalent to the symplectic system

[:'cl(t)] {o 1] [xl(t)]

*z(t) 'Q(t) 0 xz(t)

Krein has investigated this set of equations and more general ones.
One of his results reads as follows.

Theorem 1: Let P(t) = P(t+T) = P'(t), then all solutions of the
equation
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X(t)+P(t)x(t) = O
are bounded if
i) P(t) 30 allt

T
ii) f P(t)dt > O (positive definite)
T
iii) (4/T)I—J P(t)dt > O (positive definite)
0

Proof: See Krein [30], page 165.

As an example of an application of this result to problems
of the type which arise frequently in system theory we prove the
following theorem. (Compare with [32])

Theorem 2: Suppose that q(s) and p(s) are polynomials without
common factors. Suppose further that q(s)/p(s) is an even
function of s with all its poles and zeros on the imaginary axis
and assume that the poles and zeros of sq(s)/p(s) interlace. Let
D = d/dt and let k( ) be periodic of period T. Then all solutions
of the nth order differential equation

p(D)x(t) + k(t)q(D)x(t) = 0
are bounded provided

0 < J Iaee) | 4ae < 4/t

where A(t) denotes the zero of p(s)+k(t)q(s) = O which has the
largest magnitude. 2 2

Proof: Write q(s)/p(s) as r(s”)/m(s”) with r and m polynomials.
This is possible because q(s)/p(s) is even. Write r(s)/m(s) as
b'(Is-A)~1b with A = A'. This is possible because the poles and
zeros of r(s)/m(s) interlace, (See [25]). Thus

q(s)/p(s) = b’ (Isz-A)’lb

and the differential equation in the theorem statement is
equivalent to the system

X + (A+k(t)bb')x(t) = 0

Krein's result implies stability if

T
1(T/4) -J (A+k(t)bb')dt > 0

0

But since the largest eigenvalue of the sum of two positive definite

symmetric matrices is less than or equal to the sum of the largest

eigenvalues of the respective matrices there is a corresponding

inequality for integrals and we see that

T 1 )
;\maxfo (Atk(t)bb')dt < fo Ix(e)|“dt
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The result then follows.

It is interesting to compare this result with the analogous
facts about completely symmetric systems investigated in [25].
Also notice that this theorem captures Liapunov's original theorem
as a special case, as does the basic theorem of Krein.

Exercises
1. Use these results to investigate the stability of the scalar
equation

(2)

P 4x D i3tk (8) Pax) = 0

with k(t) periodic.

2. Derive a matrix version of Theorem 2.
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