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Notes on Security Analysis of Symmetric Encryption Schemes

Virgil D. Gligor  
ENEE 757

1. Symmetric Encryption Schemes

2. Confidentiality Analysis - Example

- pseudorandom functions and permutations 

3. Examples of Symmetric Schemes proved Secure 

4. Integrity Analysis

5. Examples of Authenticated Encryption Schemes proved Secure
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Symmetric Encryption - Context

1. Variable Length Messages

2. Fixed-length (Block) Ciphers

3. Shared Secret Key, K : | K | = k bits

4. Encryption Schemes (Modes) 
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Encryption of Variable-Length Message (after padding)

Header 1   . . .   Header n Trailer n   . . .    Trailer 1Data

Variables
Sender 
Receiver 

Constants
Identifiers: 
Protocol, Reserved,
Encryption
Authentication
Compression……...

l bits

Known Variables
and Constants

x1 x2 xnxi Blocks of Plaintext

y1 y2 ynyi
Blocks of Ciphertext

?
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(Fixed-Length) Block Ciphers

Plaintext Block Ciphertext Block

l bits

xi yi

Encipher Decipher
Key Key

Function Function

yi xi

l bits Plaintext Block

Ciphertext Block
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Example of Encryption Mode: Cipher-Block Chaining (CBC) 

Encryption :Y n= EK{Y n-1 Xn },  where Y0 = IV

IV

key

x1

y1 y2

3

y3

x4

y4

ECB-e ECB-e ECB-e ECB-e

x2 x
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Decryption : Yn-1 DK{Yn = Xn ,  where Y0 = IV}

y1

x1

key

IV

y2

x2

y3

x3

y4

x4

ECB-dECB-d ECB-d ECB-d
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EXAMPLE: Counter-Mode Scheme
XORC - Encryption (BDJR97)*

Initialisation: ctr = -1

⊕

f
Enc

y1

K

ctr

1

+ctr

K

⊕

f
Enc

y2

⊕

f
Enc

yn

K

. . . +

. . . 

. . . 

+ctr

2

+ctr

n

x
1

x2 xn. . . 

ctr’

. . . 

(*) parallel  encryption is possible
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EXAMPLE: Counter-Mode Scheme ctnd.
XORC - Decryption

. . . ctr

⊕

f
Enc

K

x
1

1

+ctr

K

⊕

f
Enc

x2

⊕

f
Enc

xn

K

. . . +

. . . 

+ctr

2

. . . 

y1 y2 yn

+ctr

n

. . . 

. . . 
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EXAMPLE: Two-Pass CBC Scheme (a.k.a VIL cipher)
x1 Xn-1. . . . 

K1 CBC -
MAC

yn

x1 xn. . . . 

K2 CBC -
EncIV= 0

IV

yn y1 yn-1. . . . 

CBC -
Dec

x1 Xn-1. . . . x n

K1 CBC -
MAC

⊕

K1 f -
Dec

yn

K2

IV= 0

IV= 0
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SECURITY ANALYSIS

3. Is an Encryption Scheme ``Secure’’ ?

What is ``security’’ (i.e., what attacks ?)
- chosen plaintext attacks
- chosen ciphertext attacks

How good is ``security’’  (I.e., what are the goals)?
- indistinguishability

1. Can it be used in practice ?
- …..

2. At what performance cost ?
- …..
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3. Is an Encryption Scheme ``Secure’’ ?

• Security of Block Ciphers
- standard set of attacks (e.g., AES certification)
- security parameters (i.,e., workfactors; q,t,         , key length ?)

• Reduction of a Scheme’s ``Security’’ to that of its Block Cipher
- chosen-plaintext secure schemes
- reduction theorems

µ, ε

Vulnerabilities of schemes proved secure
• proofs of security in a model may not hold in other
models
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Theory Background

1. Finite Families of Pseudorandom Functions
- Bellare, Killian, Rogaway (Crypto `94)
- with roots in earlier work by Golderich, Goldwasser and Micali (JACM 1986)

2. Secure Encryption Schemes - against chosen-plaintext attacks only
- Bellare, Desai, Jokipii, and Rogaway (STOC 97)
e.g., real-or-random, left-or-right secure schemes

3. Secure MAC Schemes - against chosen-message attacks
- Bellare, Guerin, and Rogaway (Crypto `95)
- Bellare, Canetti, and Krawczyk (Crypto `96),  HMAC - IP standard
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Finite Families of Pseudorandom Functions and Permutations
(BKR ‘94, BDJR’97)

R : {0,1}l --> {0,1}L - all functions that map l-bit strings to L-bit strings

fK R ; f is identified by key K (K is the identifier of the truth table for f)

Use: share secret key K, and encrypt / decrypt with fK (may use random permutations P)

Problem:    R has a very large number of functions (2    ), 
and needs very long keys K to identify fK

=> family of random functions is impractical 

Solution: Choose  a smaller family F and make it look like R (or P) to outsiders

∈

L2l
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Finite Families of Pseudorandom Functions and Permutations (ctnd)

FK
k : {0,1}l --> {0,1}L - a set of functions f that map l-bit strings to L-bit strings

and an associated set of keys K <-- {0,1}k of length k

function f is picked at random from FK
k (denoted by             ) <=>

draw K uniformly at random from {0,1}k and let f = FK
Let F denote FK

k

- finite family F is pseudorandom if  it looks random
to outsiders (i.e., someone who does not know key K) 

f F←R
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Finite Families of Pseudorandom Functions (ctnd.)

plaintext queries

Oracle

F

R

f F ←R

f R ←R

q

coin flip b <-- {0,1}A

Distinguisher,
Adversary A

l bits
….1 2

L bits
ciphertext replies

….1 2 q

time t

A’s challenge: predict b (Af = b) in q queries and replies and time t ( q,t are large)
Pr [Af = b] = 1/2 + 1/2AdvA(F,R) 

where AdvA(F,R) Pr     [Af = 1] - Pr     [Af = 1]
f     F ←R f     R ←R

F is a finite family of PRFs <=> AdvA(F,R)         , where       is negligible (~1/q)
F is (q,t,   ) - pseudorandom or (q,t,   ) - secure
F is broken <=> AdvA(F,R) >   

≤ ε
ε

ε

ε
ε
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Pr [Af = b] = 1/2 + 1/2AdvA(F,R) 
Proof:

Pr [Af = b] = Pr [Af = b | b =1] Pr[b=1] + Pr [Af = b | b =0] Pr[b=0]

= Pr [Af = b | b =1] x 1/2 + Pr [Af = b | b =0] x 1/2

Pr [Af = 1 | b =1] x 1/2 + Pr [Af = 0 | b =0] x 1/2

= Pr [Af = 1 | b =1] x 1/2 + (1 - Pr [Af = 1| b =0)] x 1/2

= 1/2 + 1/2( Pr [Af = 1 | b =1] - Pr [Af = 1| b =0)])

= 1/2 + 1/2( Pr [Af = 1 |      ] - Pr [Af = 1|       )])

1/2 + 1/2( Pr     [Af = 1] - Pr     [Af = 1])

1/2 + 1/2 AdvA(F,R) 

f     R ←Rf     F ←R

f     F ←R f     R ←R
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Question:

What properties should a mode have
to maintain message secrecy?

Answer:
It should have an “indistinguishability”
property, e.g.,  in “real-or-random” sense
or in a “left-or-right” sense, in an adaptive 
chosen-plaintext attack (IND-CPA).

=> it must be “probabilistic”
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INDinstinguishability-CPA: Secrecy of Scheme         (E, D, KG)Π = 

Oracle 
for       using
secret key K

yi = EK(xi)

yi = EK(xi)

xi = random,
|xi| = |xi|

Π

xi = real1

0

….
x1 x2

µ‘  bits

xq’

A

Adversary

coin flip b <-- {0,1}, 

yq’y1 y2

….

time t’

Advrr
A = Pr [K <-- KG, A  = 1] - Pr [K <-- KG, A  = 1]           <=>

(E,D,KG) is (q’,t’,           )-secure in a real-or-random (rr) sense

EK( ) EK(_)
≤ ε‘ 

ε‘ µ‘, Π = 

where (q’,t’,           ) are defined in terms of (q, t,     ) of “block cipher” Fε‘ µ‘, ε
Note: equivalent notion of security in a left-or-right sense is possible
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Why Secrecy in the IND-CPA sense ? 

IND-CPA (e.g., Real-or-Random) secrecy 
=> infeasiblity of recovering 

- the plaintext bits (viz., next example) 
- XOR of the plaintext bits, 
- sum of the plaintext bits, 
- last bit of plaintext, 
- secret key K

of a given “challenge ciphertext” in a chosen-
plaintext attack

=> Probabilistic Encryption

Answer: 
IND-CPA security provides a strong notion of secrecy
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Infeasibility of Recovering the Contents of a 
“challenge ciphetext” in a CPA 

Distributed Service: S (S1, S2), shared secret key K; Clients: Client 1, …, Adv, …,Client n
Adversary: Adv 

S1
K

S2
K

Client 1

Client n

Adv

. . . . 
message i 1

message i

2
plaintext 1 4

ciphertext 1

5

ciphertext 1 6
plaintext n

7
ciphertext n

Adv
must find

message imessage i 3

challenge 
ciphertext

In attack scenario:
S1 becomes an Encryption Oracle
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(Intuitive) Secrecy: Infeasibility of Recovering the Contents of a 
“challenge ciphetext” in a CPA ?

Distributed Service: S (S1, S2), shared secret key K; Clients: Client 1, …, Adv, …,Client n
Adversary: Adv 

S1
K

S2
K

Client 1

Client n

Adv

. . . . 
message i 1

message i

2
plaintext 1 4

ciphertext 1

5

ciphertext 1 6
plaintext n

7
ciphertext n

Adv
must find

message imessage i 3

challenge 
ciphertext

In attack scenario:
S1 becomes an Encryption Oracle
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Probabilistic Encryption (Golwasser and Micali 1984)

X = plaintext, Y1, . . . , Yn = distinct ciphertexts,
EK( ) / DK( ) = encryption / decryption with key K, and

1.  Y1 EK(X),  Y2 EK(X), . . . , Yn EK(X),

X = DK(Y1) = DK(Y2) =, . . . , = DK(Yn); 

R R R

2.  Yi EK(X) means that
- Ek( ) picks some random number 
- uses the random number to compute Yi

R
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Why Probabilistic Encryption?
If not, Adv. can Recover the Contents of a (Client’s) Challenge Ciphertext in a CPA

Distributed Service: S (S1, S2), shared secret key K; Clients: Client 1, …, Adv, …,Client n
Adversary: Adv 

S1
K

S2
K

Client 1

Client n

Adv

. . . . 

In attack scenario:
S1 becomes an Encryption Oracle

message i 1

message i

2

message i 3

plaintext 1 4

ciphertext 1

5

ciphertext 1 6

Match ?
if YES, Adv. stops => plaintext n = message 1

plaintext n
7

ciphertext n
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We showed that:
Infeasiblity of recovering the plaintext of a given  “challenge ciphertext” in a 
chosen-plaintext attack  => Probabilistic Encryption (with chosen plaintexts)

What about :
Real-or-Random Security => Infeasiblity of recovering the plaintext of a given 

“challenge ciphertext” in a chosen-plaintext attack ? 
Proof (by contradiction)

Let B = an adversary that returns plaintext X of challenge ciphertext Ym+1 after
choosing plaintexts (X1,…,Xm) and receiving corresponding ciphertexts (Y1,…,Ym);
i.e., PB(success) is non-negligible

Let AO be an adversary that is given a R-or-R oracle O.
Adversary AO performs the following steps;

for i = 1,…, m+1, do
choose Xi
obtain Yi O(Xi)

end for
X <-- B[(X1, Y1), . . . , (Xm, Ym), Ym+1]
If X = Xm+1, then return 1; else return 0.

R

From adversary’s AO steps, noting that B has no information about Xm+1, we obtain:
Advrr(AO) = PB(success|Xi = real) - PB(success|Xi = random) ≥PB(success) - 1/2n, 

where n is large
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Reduction Proof -- Generic Version

or how to define of (q’,t’,           ) of in terms of (q, t,   ) of Fε‘ µ‘, ε
Goal:    AdvD(F,R) >       =>  Advind-cpa

A[ (F)] > ε‘ε Π

Π

Let Advind-cpa
A[    (R)] be the advantage of adversary A in breaking a given scheme

in the real-or-random (alternatively, in left-or-right) sense when the scheme is 
implemented with R

1. Prove is secure in an ideal implementation: Advind-cpa
A [ (R)] (ITLemma)≤ δ R

Π Π

ΠΠ

2. Contradict Goal: assume adversary A can break the scheme when it is implemented 
with F (which is known to be a PRF family); i.e.,  
Advind-cpa

A [  (F)] > ε‘Π

3. Construct distinguisher D such that
- D simulates the scheme       for A’s use 

• using an oracle for the function family F {F,R}
- D uses A to “break” function family F (under assumption (2))

(i.e., distinguish F vs. R with AdvD(F,R) >    ) 

4. Prove that if D “breaks” F using adversary A that “breaks”     (F) , then a relationship   
must exist between

(q’,t’,           ) and (q, t,   ) ε‘ µ‘, ε

ε

Π
R

Π
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A

Oracle D

Start 
attack

)-attack
on scheme     (F)     

Oracle F

(q’,t’,      Advind-cpa
Aµ‘, 

Π

Implements               (E,D,KG) for AΠ(F) =   

“implements” (q,t,    )-secure Fε

RF {F,R}

Step 3:

1. D flips a coin b <-- {0,1}
2. Begin

D runs A, and replies to A’s queries until A stops
(1) When A makes query x:

(i) If b = 1, D encrypts x with EK.
(ii) Otherwise, D encrypts a random string x’, |x’|=|x|, with EK

and returns result to A.
(2) A stops making queries, and outputs its guess c <-- {0,1}.

End
3. If c = b, D outputs 1 (f is chosen from F); else D outputs 0 (f is chosen from R).
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Step 4: Compute AdvD(F,R) in D’s attack against F 

AdvD(F,R) = Pr [Correctind-cpa
A (F)] - Pr [Correctind-cpa

A (R)], since D “mimics” A’s 
output;

but Pr [Correctind-cpa
A (X)] = 1/2 + 1/2 Advind-cpa

A (X), where                   
and hence

AdvD(F,R) = 1/2{Advind-cpa
A [ (F)] - Advind-cpa

A[ (R)]}

but Advind-cpa
A[ (R)] by Lemma and Advind-cpa

A[ (F)] > by assumption. Hence,

AdvD(F,R)    1/2{Advind-cpa
A[ (F)] - }, and 

AdvD(F,R)  > 1/2(     - ) .

If we let       = 1/2(     - ),

we obtain the desired contradiction [i.e., Advind-cpa
A[ (F)] >      => AdvD(F,R)  >   ]  , 

namely that F is not (q, t,    )-PRF family and relationship     = 2     +         

≤ δ R
ε‘

δ R

ε‘

≥

δ R

ε ε‘ δ R

ε

∈{F,R}X

Π Π

Π Π

Π

ε

Π Π

Π Π

Π ε‘

ε‘ ε δ R

Relationships between q’, t’ and q,t are obtained by enforcing the related bounds of
oracles for F and D; i.e., = q’L, t’ = t - c(l+L)        , where c is a performance constant.  µ‘ µ‘/L 
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Examples of Encryption Schemes (E, D, KG) Proven 
IND-CPA secure - BDJR97 

XORC (stateful, or counter-based XOR a.k.a CTR mode)

Initial ctr = 0
function E-XORCf(x, ctr) function D-XOR$f(z) 
for i  = 1,…,n do yi = f(ctr +i)      xi Parse z as ctr||y1,…,yn
ctr’ <-- ctr + n for i  = 1,…,n do xi = f(ctr +i)      yi
return (ctr’, ctr||y1,…,yn) return x1,…,xn

Note: ctr/ctr’ is the current/next state of the counter. For simplicity, assume |x| = nl

⊕
⊕

Theorem (Security of XORC using a PRF)
There is a constant c for which the following is true.
Suppose F is a (q,t,    ) - secure PRF family with input l and output L. Then for any q
the XORC(F) scheme is (q’,t’,          )- secure in the IND-CPA sense for 

= q’L, t’ = t - c(l+L)        , and                        ,  where            .

ε
ε‘ µ‘, 

µ‘ µ‘/L ε‘ =  2 ε +   δR δR = 0.
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Proof of Theorem
Prove Lemma Advind-cpa

A [XORC(R)]         = 0, and then apply reduction-proof idea.≤ δ R

Let adversary A: have an L-or-R oracle for XORC(R)
(xi,0 , xi,1) be the i-th query to the L-or-R oracle
| xi,0| = |xi,1| = ni

Let yi = oracle’s ciphertext response to A’s query i, and b be the oracles’ coin flip

x1,b =      x1,b[1] x1,b[2] … x1,b[n1]
yi =  0    y1[1] y1[2] …   y1[n1]

x2,b =      x2,b[1] x2,b[2] … x2,b[n2]
y2 = n1  y2[1] y2[2] …   y2[n2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
xq,b =      xq,b[1] xq,b[2] … xq,b[n2]
yq = n1 +… + nq-1 yq[1] yq[2] …   yq[nq]

∈n1 +… + nq-1

where yi[j] = f(ctri + j) ⊕ {
xi,1[j],  if b = 1

xi,0[j],  if b = 0
}=  f ( n1 +… + nq-1 + j) ⊕

Hence, Advind-cpa
A [XORC(R)] = Advl-or-r

A [XORC(R)] = 0, since
- all inputs to f are distinct 

- f R←R

{ x

x

i,1[j],  if b = 1

i,0[j],  if b = 0
}
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Pseudorandom Permutations - Definition

Let Pl : {0,1}l -> {0,1}l be the family of all permutations of  l-bit strings to l-bit strings,
F : {0,1}l -> {0,1}l be the family of functions of  l-bit strings to l-bit strings,
O an oracle for function g: {0,1}l -> {0,1}l 

and D a distinguisher for g; i.e., vs.
g      F←R g   Pl←

R

Goal: make F “look like” Pl

Measure how well the goal is reached, by D’s advantage:

AdvD(F,Pl) Pr      [Dg = 1] - Pr    [Dg = 1]
g      F←R g   Pl←

R

AdvD(F,Pl) ≤ ε <=>  F is a PRP family 

Note: in some analyses we also need super PRP families
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A Birthday “Attack”

Let Rl,l : {0,1}l -> {0,1}l be the family of all functions of  l-bit strings to l-bit strings,
P : {0,1}l -> {0,1}l be a family of permutations of  l-bit strings to l-bit strings,
O an oracle for function g: {0,1}l -> {0,1}l 

and D a distinguisher for g; i.e., vs.g      Rl,l←R g   P←
R

Goal: find whether              or                in  2 ≤ q ≤ 2 queries.    

Measure how well the goal is reached, by D’s advantage:

g      Rl,l←Rg   P←
R (l+1)/2

g      P←R g  R l,l←
RAdvD(P, Rl,l) = Pr      [Dg = 1] - Pr    [Dg = 1] ≥ 0.3 q(q-1)

2l

= 1 - [1 - C(N,q)] ≥ 0.3 q(q-1)
2l
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Background: the “Birthday” Problem (again)

Experiment : throw q balls, at random, into N buckets; N ≥ q
Problem: Find bounds on 

C(q,N) = probability of “collisions” of balls in buckets
(i.e., probability of at least two balls in same bucket)

q(q-1)
2N

Facts: (1)   C(q,N)≤

(2)   C(q,N) ≥ 1 - e 
q(q-1)

2N

(3)   for 1 ≤ q ≤ (2N)1/2

q(q-1)
NC(q,N) ≥ 0.3

Example: q = 23 people, N=365 days/year => C(23, 365) > 1/2 
probability that at least 2 persons in a room of 23 people have same birthdate > 1/2

100 > 0.99
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Using PRP families  (instead of PRF families) as Block Ciphers

Motivation:
(1) Few encryption modes can use PRF families since

most modes need to use f-1 for decryption
[but one can encrypt more with PRF families since birthday attacks 
are not possible; e.g., XORC (CTR-mode)]

(2) However, it is simpler to analyze encryption modes using
PRF families

But,
can we do the analysis using PRF families and then modify the 
bounds as if PRPs were used ?
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Using PRP families  (instead of PRF families) as Block Ciphers
(continued)

Let
AdvD(P, Rl,l) (in)security of P vs. Rl,l
and 
AdvD(P, Pl ) (in)security of P (or F) vs. Pl

Then, it can be shown that 
q(q-1)

2l+1AdvD(P, Rl,l) ≤ AdvD(P, Pl) + 

That is, the insecurity of a family of permutations P in 
the PRF sense  is greater than that of P in the PRP sense 
but only by          .q(q-1)

2l+1
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Another Encryption Schemes (E, D, KG) Proven 
IND-CPA secure (ctnd)

CBC ($=stateless)

function E-CBC$f(x) function D-CBC$f(z) 
y0 <-- (0,1}l Parse z as y0||y1,…,yn
for i  = 1,…,n do yi = f(yi-1 xi) for i  = 1,…,n do xi = f-1(yi-1) yi-1
return y0||y1,…,yn return x1,…,xn

⊕ ⊕

Theorem (Security of CBC$ using a PRF)
There is a constant c for which the following is true.
Suppose F is a (q,t,    ) - secure PRF family with in put l and output L. The for any q
the CBC$(F) scheme is (q’,t’,          )- secure in a left-or-right sense for 

= q’l, t’ = t - c     , and where               

ε
ε‘ µ‘, 

µ‘ µ‘ ε‘ =  2 ε +  δR δR = (                   )2-lµ‘2/l2 -µ‘/l

Note 1: We need to adjust the result for this for use of PFPs in practice 
(or else we cannot decrypt)

Note 2: This scheme is not (intended to be) secure against forgeries in chosen-plaintext attacks.
Example: Message Splicing and Decomposition invariant of CBC
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Examples of Asymptotic Vulnerabilities

(1) Highly formatted messages: constant value at the same, known position
- headers containing protocol and other identifiers

• WWII messages used by German navy
- sender and receiver identifiers; e.g., name, rank, unit; Offizier  

• Kerberos tickets
• TCP headers inside IP datagrams

Consequence: exhaustive key table attack against XORC keys
Does the key size, k, matter ?

(2) Highly predictable plaintext generated by forged ciphertext

Consequence: need collision-free function to add redundancy
for protection against message forgeries
Performance Problem => questionable use
No theory for integrity of encrypted messages !
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Consequence: exhaustive key table attack against XORC keys

=> xi is known in a large number of messages (e.g., 2p) encrypted in different keys
- < ctr+ i, fKi(ctr+i)>, i = 1,…, 2p, are known in the XORC scheme

- adversary computes table entries fK1(ctr+i), fK2(ctr+i), … , fKm(ctr+i); m=2k

- adversary searches for the 2p values of fKi(ctr+i) in table
- a match, and its corresponding key, is found in less than 2k-p-1probes on avg.

=> xi is predictable in a large number of messages (e.g., 2p) encrypted in different keys
- xi : {x1

i, x2
i …, xr

i} for some small value of r
- adversary searches the table for <  fKi(ctr+i)      xi           xj

i > for  j = 1,…,r values / key
=> back traffic attacks

⊕ ⊕

Consequence: use collision-free function to add redundancy
for protection against message forgeries

=> ciphertext bit modification in position i causes plaintext bit modification
in position i
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Vulnerability 1: Parallel, Exhaustive Key Table Attack (XORC)
xi is known =>    <xi, fK(ctr +i)     xi > is known, and
ctr is public  = <ctr +i, fK(ctr +i) > is known
xi is constant => single-table search 

⊕

fKj(ctr+i)

fK3(ctr+i)
. . . 

fK1(ctr+i)

fK2(ctr+i)

fK3(ctr+i)

fKj(ctr+i)

fKm(ctr+i)

. . . 

. . . ~ ~

guaranteed hitsK1search
K2

K3
processor 1

2p  samples
Kj

fK1(ctr+i)

fKm(ctr+i)
. . . 

search
effective key length

2k -p

may be too small
processor r

Km

m = 2k entries, k = |K|,
need not be built all at once or in real time  
Key length matters, again !
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Vulnerability 1: Parallel, Exhaustive Key Table  Attack (XORC ctnd)
xi is predictable =>    <xi, fK(ctr +i)     xi xj >  j=1,…,r  predicted values 
r searches per key

⊕ ⊕

fKj(ctr+i)      xi x1

. . . 
⊕⊕

fKj(ctr+i)      xi xr⊕⊕

fK1(ctr+i)

fK2(ctr+i)

fK3(ctr+i)

fKj(ctr+i)

fKm(ctr+i)

. . . 

. . . ~ ~

K1search
K2

K3

processor 1
guaranteed hit
2r  samples/keyKj

Km

amount of extra work is a linear function of the quality of the prediction
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A Solution to Asymptotic Vulnerability: 
Symmetric Encryption with Random Counters

Random Counters
Initial value: rctr <-- {0,1}l, for every new key or key pair
Counter ``tick” and  range: rctr +1 ,…, rctr + 2l

Per-block,  or per-message, tick
Counter values are secret; sequence is not random

Example: XORC Scheme with Random Counters

rctr = per-block random counter
function E-XORCf

K1
f
K2(x, rctr) function D-XOR$f

K1
f
K2(z) 

for i  = 1,…,n do yi = fK1(rctr+i)     xi Parse z as y0||y1,…,yn
y0 <-- fK2(rctr) rctr <-- f-1

K2 (y0)
rctr <-- rctr +n for i  = 1,…,n do xi = fK1(rctr+i)     yi
return y0||y1,…,yn return x1,…,xn

⊕

⊕

Known or predictable plaintext, back traffic recording no longer helps much 
Short keys (e.g., 56 - 64 bit) can be as good as long/very long  (e.g., 80/128 bit) keys
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Message Integrity Concerns

Message Authentication
• Origin; Content

Message Integrity
• Detect all message modifications (e.g., forgeries) with high probability

Traditional Solutions

• use hash functions, MACs
=>  performance (two passes) ; additional crypto primitive

• non-cryptographic MDC functions => 
inadequate security (i.e., message integrity and secrecy)
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Old Performance Examples (J. Touch 1995 + update)
Hash Functions Sparc 20/71(Mbps) Sparc 20/61(Mbps) Hardware Ops/32 bits

Speedup
• MD5 57 38 x 4 40 - 50
• SHA 30
• UMAC (fastest MAC to date - peak speed 0.5 cycle / byte

Checksums
• IP v4 260 x 5
• xor op 1-2

Block Encryption
• DES 20.6 x 50 ~ 190 (?)

IP v4 (on ATM) 120
Newer Hash functions: 2 - 10 x MD5 performance

• highly optimized assembly: 2 - 3 performance of C/C++ implementations
Hash functions always have much lower performance than MDC functions

(In) Security Examples
No secure Authenticated Encryption Schemes using non-cryptographic  MDC 
existed before January 2000
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Integrity (Authenticity) 

0. Authenticated encryption: security definitions and motivation

1. CBC-XOR: An old (failed) attempt at authenticated encryption

2. Perspective: other past (failed) attempts

3. A recent (failed) attempt: NSA’s Dual Counter Mode

4. Examples of “provably secure” authenticated encryption modes:
XCBC-XOR, XECB-XOR(Gligor and Donescu)
IACBC, IAPM (C.S. Jutla, IBM Research)
OCB (P. Rogaway, U.C. Davis)

5. Status
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Question:
How do we encrypt variable-length messages with 
block ciphers such that 

message  secrecy and integrity 
are maintained ?

Answer:
(1) we “Encrypt-then-Authenticate,” or

“Authenticate-then-Encrypt,” or
“Authenticate-and-Encrypt”

(2-passes, possibly 2 cryptographic primitives;  power ? performance?)

(2) we use authenticated encryption modes
(1-pass, 1 cryptographic primitive; e.g., block cipher+ non-crypto MDC)
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Question:

What properties should a mode have
to maintain message integrity?

Answer:

It should protect against “existential forgeies” 
in chosen plaintext attacks (EF-CPA).

=>  it must be “probabilistic”

(but weaker notions exit that might still be 
useful in practice)
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Why Existential-Forgery protection in a CPA? If not, Adv. can construct a valid forgery

Distributed Service: S (S1, S2), shared secret key K; Clients: Client 1, …, Adv, …,Client n
Adversary: Adv 

S1
K

S2
K

Client 1

Client n

Adv

. . . . 

ciphertext i

plaintext i

1i

OK / Null

3j

constructs
forgery  j

forgery j

4j2i

ciphertext i

Why  probabilitic ? If not, Adv. Can construct a valid forgery (viz., NSA’s Dual Counter Mode)

In attack scenario:
S1 becomes an Encryption Oracle
S2 becomes a Decryption Oracle
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Forgery in Chosen-Plaintext Attack against Scheme ( E , D , KG)

Oracle
E EncryptA

Adversary A

chosen plaintext message queries

….
x1 x2

ciphertext replies

time t’’

….
y1 y2 yqe

yi = E K (xi)

xqe

Oracle
D Verify

xi = D K( yi) ?
Null

yguessed/ forged
ciphertext

q” = qe+qd

µe“  bits

µ“ = µe“ + µd“

possiblyunknown
plaintext

Yes

No

A similar attack can be defined for MAC scheme mMAC

YES / NO



48

Multiple Forgeries in Chosen-Plaintext Attacks

Oracle
E EncryptA

Adversary A

chosen plaintext message queries

….
x1 x2

ciphertext replies

time t’’

….
y1 y2 yqe

yi = E K(xi)

xqe

Oracle
D Verify

xi = D K(yi) ?
Null

….yqe+1 yqe+qdyqe+2

and forged ciphertexts

q” = qe+qd

µe“  bits

µ“ = µe“ + µd“

Yes

No

A similar attack can be defined for MAC scheme mMAC

YESqd / Noqd….YES1 / NO1
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Typical Approach to Authenticated Encryption

1. Partition Message into Blocks
- use padding if necessary

2. Compute Redundancy Block 
- use Manipulation Detection Code (MDC)

3. Add redundancy block to message blocks

4. Encrypt message and redundancy block
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Ex. Integrity (Authentication) Problems of CBC - XOR 
(and PCBC-XOR)

x1 x2 x3 x4 x1 x2 x3

Forgeries with known plaintext

⊕x1     x2choose x3 =
⊕ (x1,x2,x3)MDC =

Truncation
forgery 1y1 y2 y3 y4 y1 y2 y3

y1 y2 y3 y4

x1 x2 x3 x4

y2 y1 y3

x2’ x1’ x3’Swap y1 with y2

y4

x 4

(x1,x2,x3) =      (x1’,x2’,x3’)⊕ ⊕MDC =

forgery 2

Forgery [with known plaintext if pair (x,y) is known]

y1 y2 y y4

x1 x2 x3 x4

y y y3

X' x3’Insertion
y4

x 4

(x1,x2,x3) =      (x1, x2, x’, x”,x3’)⊕ ⊕

y1 y2

x1 x2 x“

3

forgery 3MDC =
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Example of Integrity Problems of the XOR Schemes

Forged Ciphertext with Chosen Plaintext outcome 

flip of bit j of ciphertext  yi =>
flip of bit j of plaintext    xi

yi xi

fK(ctr + i)     xi ⊕

bit j bit j
property used:   A   B = A   B⊕ ⊕⊕

(non-cryptographic MDCs will not detect such attacks)
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Past (Failed) Attempts to Provide Authenticated Encryption
1. C. Weissman: use CBC with MDC = Cyclic Redundancy Code (CRC)

- proposed at 1977 DES Conference at NBS
- broken by S. Stubblebine and V. Gligor ( IEEE Security and Privacy 1992)

2. C. Campbell: use Infinite Garble Extension (IGE) mode with 
MDC = constant appended to message

- proposed at 1977 DES Conference at NBS 
- IGE was reinvented at least three times since 1977
- broken by Gligor and Donescu 1999

3. V. Gligor and B. Lindsay: use CBC with MDC = any redundancy code

- Object Migration and Authentication, IEEE TSE Nov, 1979 
(and IBM Research Report 1978)

- known to be broken by 1981 (see below)

4. US Dept. of Commerce, NBS Proposed Standard: Use CBC with MDC = XOR

- withdrawn in 1981; see example of integrity breaks above
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Past (Failed) Attempts to Provide Authenticated Encryption (ctnd)
5. MIT Kerberos v.4: use PCBC with MDC = constant appended to last block

- proposed at 1987 - 1989
- broken by J. Kohl  at CRYPTO ‘89

6. MIT Kerberos v.5 (1991 ->) use CBC with MDC = confounded CRC-32

- confounder (i.e., unpredictable block) prepended to message data
- CRC-32 is computed over the counfounded data and inserted into message

before encryption
- proposed in 1991 Kerberos v.5 specs. (used within US DoD ?)
- broken by S. Stubblebine and V. Gligor (IEEE Security and Privacy 1992)

7. V. Gligor and P. Donescu: use iaPCBC with MDC = unpredictable constant appended
as  the last block of message 

- proposed at the 1999 Security Protocols Workshop, Cambridge, UK.
- actually the proposal had MDC = XOR
- broken first by the “twofish gang” (D, Whiting, D. Wagner, N. Ferguson, J.Kelsey)

8. US DoD, NSA: Use Dual Counter Mode with MDC = XOR

- proposed August 1, 2001 and withdrawn August 9, 2001
- broken by P. Donescu, VD. Gligor, D. Wagner and independently by P. Rogaway
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Observations:

1. The fastest, surest way to get oneself in the cross-hairs of
everyone’s loaded rifle is to propose a new mode of encryption.

2. Everyone who has ever proposed an encryption or an authentication
mode has gotten at least one wrong, at least once.

3. Paul  van Oorschot, March 1999:
“no one said this was an easy game !“

4. Folklore :
“Good judgement comes from experience, and experience 
comes from bad judgement”
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A recent example: NSA’s Dual Counter Mode - Version 1

f   = connection polynomial of degree W of a LFSR (W = width of block cipher) 
x0 = “shared secret negotiated during key exchange” 
x0 is not (cannot be) generated randomly per message => encryption is not probabilistic
xi = f(xi-1), i = 1,…, n+1; pi = plaintext block, ci = ciphertext block

cksum

AES-e

z4

c4

(p1,p2,p3)⊕MDC =

f(x3) = x4 ⊕

⊕x0

p1

f(x0) = x1 ⊕

p2

f(x1) = x2 ⊕

3p

f(x2) = x3 ⊕

c1

key AES-e

z1

⊕f(x0) = x1

AES-e

z2

c2

⊕f(x1) = x2

c3

⊕f(x2) = x3

AES-e

z3
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2.  Claim : known (f) LFSR => ( x0 xj => x0)⊕

Find x0 ; e.g.,  choose plaintexts P = p1 = 0 and P’ = p1p2 = 00
⊕ ⊕get ciphertexts C = c1 c2 and C’= c’1c’2c’3; note x0   x2 = c2 c’2

1.  Since x0 is not generated per-message (and encryption is not probabilistic),
choose P = p1p2 , . . . . . . , pn such that p1      p2 , . . . ,    pn-1 = 0 ⊕ ⊕ ⊕

and Q = q1q2 , . . . , qn-1 such that qi  = 0; i = 1, . . . n-1. 

Obtain ciphertexts C = c1c2 , . . . . , cn-1 cn cn+1 for P and
D = d1d2 , . . . , dn-1 dn for Q; then

C’= c1c2 , . . . . , cn-1 dn is a valid forgery

Attacks against the Dual Counter Mode - Version 1

Integrity

Then construct a valid forgery; e.g.,  choose plaintext P = p1p2 such that p1= p2

⊕ ⊕

get ciphertext C  = c1c2 c3 ; then

C’ = c1c’2 ≠ C, where c’2 = c2      x0   x2 is a valid forgery
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p1 3pp2

(p1,p2, p3) ⊕
(1) Choose plaintext P= p1p2p3 such that p1      p2 = 0 ⊕

c1 c2 c3 c4

Dual Counter Mode - Encrypt

(2) Choose plaintext Q = q1q2 such that q1  = q2= 0 

q1 0q2

d1 d2 d3

Dual Counter Mode - Encrypt

3p

(q1,q2) ⊕

c1 c2 d3

(p1,p2, p3) 

(3) Forge ciphertext C’ = c1c2d3, which decrypts correctly 
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NSA’s Dual Counter Mode - Version 2 (IPsec)
f   = connection polynomial of degree W of a LFSR (W = width of block cipher) 
yP

0 = x0 <SEQP  SPI paddingP> for each message P,
where padding is the bit-wise complement of SEQP SPI

x0 is not (cannot be) generated randomly per message => encryption is still not probabilistic
yi = f(yi-1), i = 1,…, n+1; pi = plaintext block, ci = ciphertext block

cksum

AES-e

z4

c4

(p1,p2,p3)⊕MDC =

f(y3) = y4 ⊕

⊕y0

p1

f(y0) = y1 ⊕

p2

f(y1) = y2 ⊕

3p

f(y2) = y3 ⊕

c1

key AES-e

z1

⊕f(y0) = y1

AES-e

z2

c2

⊕f(y1) = y2

c3

⊕f(y2) = y3

AES-e

z3
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Attacks against the Dual Counter Mode - Version 2 (IPsec)

Secrecy and Integrity

1.  Fact : The state update function of a (non-singular) LFSR (f) is linear.
=> f(a    b) = f(a)     f(b)⊕ ⊕

2.  Claim : If an Adversary can force SEQP and SEQQ of a SPI such that 
yP

0 = yQ
0 c, where c is  a known constant, then 

(a) secrecy and (b) integrity are broken
⊕

3.  Example: find an SPI such that Probability [yP
0 = yQ

0 c] = 1/8⊕

yQ
0 = x0 <SEQQ  SPI paddingQ> = <110…0,  SPI,  001…1, ¬SPI> 

yP
0 = x0 <SEQP  SPI paddingP>  = <100…0,  SPI,  011…1, ¬SPI>

c  = <010…0, 0…0, 110…0, 0…0>

yQ
0 = yP

0 c =>  Probability [yQ
0 = yP

0 c] = 1/8⊕
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Examples of  State Characteristics of a Mode

Stateless
- needs good, secure source of randomness per message
- no state to maintain across messages (other than key)
- Execution: ≥n+3 block cipher invocations;
- Latency: ≥2 block cipher invocations  in parallel execution

Stateful Sender
- state (e.g., message counter) maintained by sender
- protection of sender state (e.g., counter integrity) across messages
- Execution:  n+2 block cipher invocations
- Latency:  2 block cipher invocations in parallel  execution

Stateful
- state : shared variables (other than key)
- protection of state secrecy, integrity across messages
- more susceptible to failures, intrusion
- Execution: n+1 block cipher invocations -
- Latency: ≈ 1 block cipher invocation in parallel execution

robustness
increases

speed
increases
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XCBC Encryption
Fact: Encryption is not intended to provide integrity (authentication)

Motivation

- Define family of  encryption modes to help provide authenticated encryption 
using only non-cryptographic “redundancy” functions

- Security claims: IND-CPA confidentiality and EF-CPA integrity, 
reasonable bounds
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Example 1: 
AE in 1 pass - 1 crypto primitive

x1 x2 x3 x4

.

.

E1
E2 E3 E4.

E5

..

.
y2 y3 y4y1 y5

. MDC(x). . .

x5

IND-CPA
Encryption Mode 

z1 z2 z3 z4 z5

Sender
Initialization

FK. . . . . . 

Receiver
Initialization

op
op

op
op

op

Unpredictable
vector x =

K

y =

XCBC-XOR [GD 00], IACBC [Jutla00]
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Example 1: 
AE in 1 pass - 1 crypto primitive
…  Under What Conditions ?

1.  IND-CPA encryption mode: processes block xi, 1 ≤i ≤ nm+1, 
and inputs result to block cipher (SPRP) FK

2.  “op” has an inverse “op-1”
3.  Elements Ei are unpredictable, 1 ≤ i ≤ nm+1,  and

Ep
i op-1 Eq

j are unpredictable, where (p, i) ≠ (q, j)
and messages p,q are encrypted with same key K. 

4. Additional mechanisms for length control, padding
Examples

op = mod +/- ; Ei = r0 x i ; (E0 = r0 ; Ei = Ei-1 + r0 ) [GD00]
op = xor ; Ei = pairwise (differential) independent [Jutla00]

… and others [Rogaway01]

Optimal: n+1 cipher ops; latency in ||: 1 cipher op. 
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op = + Ei = Ei-1 + r0 , E 0 = 0  (written as Ei = i x r0)
Examples of Ei and op combinations ( + is mod 2l;       is bitwise exclusive-or) 

X

op op op
Extend
CBCE1 E2 E3

Ei   = sequence
op = operationy1 y2 y3

Stateless    CBC Scheme - Encryption of x = x1x2x3

z0

key

x1

AES-e AES-e AES-e

r0

key’ AES-e

random

(single key is also possible)

x2 x3

z1 z2 z3

key AES-e

y0

Other Si and op definitions exist (e.g., C.S. Jutla’s and P. Rogaway’s proposals)
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-XORStateless XCBC Scheme - Encryption of x = x1x2x3

y1 y2 y3

z0

key

x1 3

AES-e AES-e AES-e

xr0

key’ AES-e

x2

z2
z1 z3

E1 op E2 E3op op

y4

opE4

x4

AES-e

unpredictable function 
of message x

g(x)

z4

AES-e

y0

random

key

Example:  g(x) = x1          x2       x3      z0 ;   

Other examples of g(x) exist 
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Example 1: 
AE in 1 pass - 1 crypto primitive

Same hardware used on input (viz., IAPM [Jutla00], XECB-XOR [GD00])

.
E1

E2 E3 E4.
E5

..

.

x2 x3 x4x1 x5

op
op

op
op

op

FK FK FK FK FK

Sender
Initialization

Receiver
Initialization z2 z3 z4z1 z5

IND-CPA
Encryption Mode 

K

x =

…. minimizes hardware footprint, and provides IND-CPA
security and ... 
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Example 1: 
AE in 1 pass - 1 crypto primitive

…  a (parallel) MAC w/ an extra XOR gate (viz., [G98, GD00])

.
E1

E2 E3 E4.
E5

..

.

x2 x3 x4x1 x5

op
op

op
op

op

K’ FK’ FK’ FK’ FK’ FK’

Sender
Initialization

Receiver
Initialization

IND-CPA
Encryption Mode 

tagx2 x3x1 x4 x5

x =

x =
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Parallel Mode 
Motivation

- Fully Parallel Mode like C.S. Jutla’s IAPM using a different Si 
(Si elements are not pairwise independent)

- Define family of parallel encryption modes to help provide integrity
with non-cryptographic “redundancy” functions

- Security Claims (w/ proof) : IND-CPA confidentiality and EF-CPA integrity,
reasonable bounds
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Stateless Parallel Mode - Encryption of x = x1x2x3
(single key mode is also possible) unpredictable function of message x

g(x)
r0= random; 
y0 = EncK(r0)
z0= EncK’(r0)

x1 x2 3x

y4

x4

AES-e

E’4 op

z4

E4 op

y1

op

AES-e

z1

op

AES-e

z2

E’2 op

y2 y3

op op

AES-e

z3

E’3 opE’1

key

E1 E2 E3

y0

Example:  g(x) = x1 x2        x3 z0 ;   
yi = EncK(xi + Ei) + Ei ;  Ei = i x r0 ; 

Other examples of Ei, g(x) exist (e.g., C.S. Jutla’s and P. Rogaway’s proposals) 
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Three Distinct AE Modes of Operation 
and other Candidates (NIST AES Modes of Operation Workshop)

October 20, 2000 and August 24, 2001

1. If CBC is retained as a standard AES mode, then the authenticated encryption mode is
- XCBC-XOR (January 31, 2000)
- plus  interleaved parallel mode

2. Parallel authenticated encryption modes (single confidentiality and integrity key)
- IAPM (April 14, 2000)
- XECB-XOR (August 24, 2000)
- OCB (September 2000 - February 2001)

3. High-End (separate or independent key for confidentiality and integrity modes )
- ctr-mode for encryption (already selected)
- XECB-MAC (March 31, 2000), PMAC (Sept. 2000 - Feb. 2001)

for integrity

Status: No Authenticated Encryption Mode Selected by NIST for AES (so far)
Possible reason: Intellectual Property claims (viz., dates of inventions above)


	
	

