
Diffie-Hellman Key-Exchange Protocol
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Shared key determination is based on the computational complexity of  
finding x (y),  given g,  p, gx modp ( gy modp); i.e., of computing discrete logarithms.



Man-inthe-Middle Attack  =>  no Authentication
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Problem 1 : Key Exchange without Authentication
Probelm 2: Reuse of x, y => replay and forced reuse of shared key; timing attack



Potential Solutions
( not mutually exclusive )

1. Secure, published associations :  A < - > ( gA, pA, gA
x modpA )

= > equivalent of using signed, public-key certificates 

2. Establish secure dependency of key exchange on  prior, independent authentication

= > use of other keys for mutual authentication

3. Establish private, shared groups ( g , p: q )  between two communicating  parties

= > use of independent protocols for group sharing,  privacy
( separate multicast groups )

4. Use explicit replay-detection mechanisms; e.g., nonces (and PK encryption)

Note: Potential solutions depend on other security protocols



Discrete Logarithms (aka. indices)

1. Primitive roots of modulus p

- let g and p be relatively prime (note: p does not have to be a prime number)

- consider all m for which 

o minimum m is the order of g modp, 
the length of period generated by g
the exponent to which g belongs (modp)

o maximum                  by Euler’s theorem, where         is the totient of p

- if g is of the order         , then g is a primitive root of p, which means that:

g1 modp, g2 modp, ..... , 
- are distinct and represent a permutation of { 1, ..., p-1 }
- are relatively prime to p
- if p is prime,                    so the set size (length of period)  is p-1

gm 1 mod p≡

φ(p),    m =  φ(p) 

φ(p) 

φ(p) g modp

φ(p) = p-1;  

Note: the only integres with primitive roots are those of the form
2, 4, pa, 2pa where p is any  (odd) prime



Discrete Logarithms (aka. indices) -ctnd

2. Properties of Discrete Logarithms

Observation
o any integer x = r modp for any r , p where
o if g is a primitive root of prime p , x = gi modp, where

Definition
o exponent i is the index (discrete log) of x in base g modp; i.e., indg,p(x)

≤ p-1 ≤ r0
≤ p-1 ≤ i0

Ordinary Logarithms

1.   Definition : x = b log
b

(x)

2.   logb ( 1 ) = 0
3.   logb ( b ) = 1
4.   logb ( ab ) = logb (a) + logb (b) 
4a. logb ( ar ) = r x logb (a) 

Discrete Logarithms

1.   Definition : x = g ind
g,p

(x)

2.   indg,p(1) = 0
3.   indg,p(g) = 1
4.* indg,p(xy) = [ indg,p(x) +indg,p(y) ] mod
4a. indg,p(xr) = r x [ indg,p(x) ] mod

φ(p) 
φ(p) 

* Proof: g ind 
g,p

(xy) modp = (g ind 
g,p

(x) modp) (g ind 
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(y) modp)(gk             modp)
=1

= [ g ind 
g,p

(x) + ind 
g,p

(y) +k    ] modp  

Hence,   indg,p(xy)  =  [ indg,p(x) +indg,p(y) ] mod              since any z = q + k         can be
written as z = q mod

φ(p)   

φ(p)  

φ(p)  
φ(p)  
φ(p)  



Cryptographic Strength
1. Stong Primes (i.e., Sophie-Germaine ) primes

o P = 2Q + 1, where P, Q = primes; Q = Largest Prime Factor (lpf) of P

2. Schnorr subgroups
o P = kQ+1, where k may be small
o Generation and Validation of Group Choices

Estimate on 25 MHZ RISC or 66 MHZ CISC
Generation of P, k, Q  => about 10 minutes for a group of 2 1024 elements
Validation => 1 minute 

3. Key Length Estimates
o practical level of security:  75 bits => Q = lpf(P) = 150 bits => P = > 980 bits
o size of exponent should be at least 2 x length of key = 2 x 75 = 180 bits

o 20 year security: 90 bits => Q = lpf(P) = 180 bits => P = > 1400 bits
o size of exponent should be at least 2 x length of key = 2 x 90 = 180 bits

o extended security: 128 bits =>  Q = lpf(P) = 256 bits => P = > 3000 bits
o size of exponent should be at least 2 x length of key = 2 x 128 = 156 bits

4. Reuse of x ( e.g., more than 100 times ) => timing attacks on x; use “blinding factor” r
o A = ( r gy), where r is a random group element
o B = Ax = ( r gy)x = (rx)(gxy)
o C = B (r-x) =  (rx)(r-x) (gxy) = gxy



Group Descriptors - 2 Examples

Group Type: MODP /* modular exponentiation group, mod P*/
Size of Field (in bits): a 32-bit integer
Defining Prime P: a multi-precision integer
Generator G: a multi-precision integer
optional:
Largest prime factor of P-1 : the multiprecision integer Q
Strength of Group: a 32-bit integer (approx. the no. of key bits protected; 

log2  of workfactor)

 log2 P

≤ ≤2       G       P-2  

Group Type: ECP  /* elliptic curve group, mod P */
Size of Field (in bits): a 32-bit integer
Defining Prime P: a multi-precision integer
Generator (X, Y): two multi-precision integers ( X, Y         P) 
Parameters of the curve A, B: two multi-precision integers ( A, B       P)
optional:
Largest prime factor of group order : the multi-precision integer
Order of the group: a multi-precision integer
Strength of Group: a 32-bit integer (approx. the no. of key bits protected; 

log2  of workfactor)

 log2 P

≤
≤

elliptic curve equation: Y2 = X3 + AX + B


