Diffie-Hellman Key-Exchange Protocol

Shared key determination is based on the computational complexity of finding $\mathbf{x}(\mathbf{y})$, given $\mathbf{g}, \mathbf{p}, \mathbf{g}^{\mathbf{x}} \operatorname{modp}\left(\mathbf{g}^{\mathbf{y}} \operatorname{modp}\right)$; i.e., of computing discrete logarithms.

Man-inthe-Middle Attack => no Authentication

$$
\begin{aligned}
& {\left[\boldsymbol{g}^{m} \operatorname{modp}\right]^{\mathrm{x}} \operatorname{modp}=} \\
& \mathbf{g}^{\mathrm{mx}} \operatorname{modp}=\mathbf{g}^{\mathrm{xm}} \operatorname{modp} \\
& =\text { Kam }
\end{aligned}
$$

Problem 1: Key Exchange without Authentication
Probelm 2: Reuse of $x, y=>$ replay and forced reuse of shared key; timing attack

Potential Solutions (not mutually exclusive)

1. Secure, published associations : $A<->\left(g_{A}, p_{A}, g_{A}{ }^{x} \bmod p_{A}\right)$
$=>$ equivalent of using signed, public-key certificates
2. Establish secure dependency of key exchange on prior, independent authentication
$=>$ use of other keys for mutual authentication
3. Establish private, shared groups ($\mathbf{g}, \mathrm{p}: \mathbf{q}$) between two communicating parties
$=>$ use of independent protocols for group sharing, privacy (separate multicast groups)
4. Use explicit replay-detection mechanisms; e.g., nonces (and PK encryption)

Discrete Logarithms (aka. indices)

1. Primitive roots of modulus p

- let \mathbf{g} and \mathbf{p} be relatively prime (note: \mathbf{p} does not have to be a prime number)
- consider all \mathbf{m} for which $\mathbf{g}^{\mathbf{m}} \equiv \mathbf{1} \bmod \mathbf{p}$
o minimum \mathbf{m} is the order of \mathbf{g} modp, the length of period generated by \mathbf{g} the exponent to which \mathbf{g} belongs (modp)
o maximum $\mathbf{m}=\phi(\mathbf{p})$, by Euler's theorem, where $\phi(\mathbf{p})$ is the totient of \mathbf{p}
- if \mathbf{g} is of the order $\phi(\mathbf{p})$, then \mathbf{g} is a primitive root of \mathbf{p}, which means that:

$$
\begin{aligned}
& \mathbf{g}^{\mathbf{1}} \operatorname{modp}, \mathbf{g}^{\mathbf{2}} \operatorname{modp}, \ldots ., \mathbf{g}^{\phi(\mathbf{p})} \operatorname{modp} \\
& \\
& \text { - are distinct and represent a permutation of }\{\mathbf{1}, \ldots, \mathbf{p}-\mathbf{1}\} \\
& \\
& \quad \text { - are relatively prime to } \mathbf{p} \\
& \\
& \text { - if } \mathbf{p} \text { is prime, } \phi(\mathbf{p})=\mathbf{p}-\mathbf{1} \text {; so the set size (length of period) is } \mathbf{p - 1}
\end{aligned}
$$

Note: the only integres with primitive roots are those of the form

$$
\mathbf{2}, \mathbf{4}, \mathbf{p}^{\mathbf{a}}, \mathbf{2} \mathbf{p}^{\mathbf{a}} \text { where } \mathbf{p} \text { is any (odd) prime }
$$

Discrete Logarithms (aka. indices) -ctnd

2. Properties of Discrete Logarithms

Observation

o any integer $\mathbf{x}=\mathbf{r} \operatorname{modp}$ for any \mathbf{r}, \mathbf{p} where $\mathbf{0} \leq \mathbf{r} \leq \mathbf{p}-\mathbf{1}$
o if \mathbf{g} is a primitive root of prime $\mathbf{p}, \mathbf{x}=\mathbf{g}^{\mathbf{i}} \operatorname{modp}$, where $\mathbf{0} \leq \mathbf{i} \leq \mathbf{p} \mathbf{- 1}$

Definition

o exponent \mathbf{i} is the index (discrete \log) of \mathbf{x} in base $\mathbf{g} \operatorname{modp}$; ie., ind $_{\mathbf{g}, \mathbf{p}}(\mathbf{x})$

Ordinary Logarithms

1. Definition : $X=b^{\log _{b}(x)}$
2. $\log _{b}(1)=0$
3. $\log _{b}(b)=1$
4. $\log _{b}(a b)=\log _{b}(a)+\log _{b}(b)$

Aa. $\log _{b}\left(a^{r}\right)=r \times \log _{b}(a)$

Discrete Logarithms

1. Definition : $\mathrm{x}=\mathrm{g}$ ind $\underset{\mathrm{g}, \mathrm{p}}{ }(\mathrm{x})$
2. $\operatorname{ind}_{\mathrm{g}, \mathrm{p}}(1)=0$
3. ind $_{\mathrm{g}, \mathrm{p}}(\mathrm{g})=1$
4. ${ }^{*} \operatorname{ind}_{\mathrm{g}, \mathrm{p}}(\mathrm{xy})=\left[\operatorname{ind}_{\mathrm{g}, \mathrm{p}}(\mathrm{x})+\operatorname{ind}_{\mathrm{g}, \mathrm{p}}(\mathrm{y})\right] \bmod \phi(\mathrm{p})$
$4 \mathrm{a} . \operatorname{ind}_{\mathrm{g}, \mathrm{p}}\left(\mathbf{x}^{r}\right)=\mathbf{r x}\left[\operatorname{ind}_{\mathrm{g}, \mathrm{p}}(\mathrm{x})\right] \bmod \phi(\mathrm{p})$

* Proof: $\mathrm{g}^{\text {ind }}{ }_{\mathrm{g}, \mathrm{p}}^{(\mathrm{xy})} \operatorname{modp}=\left(\mathrm{g}_{\mathrm{ind}}^{\mathrm{g}, \mathrm{p}}{ }^{(\mathrm{x})} \operatorname{modp}\right)\left(\mathrm{g}_{\mathrm{ind}}^{\mathrm{g}, \mathrm{p}}{ }^{(\mathrm{y})} \operatorname{modp}\right)\left(\mathrm{g}^{\mathrm{k}} \phi(\mathrm{p}) \operatorname{modp}\right)$

$$
=\left[\mathrm{g}^{\text {ind }}{ }_{\mathrm{g}, \mathrm{p}}(\mathrm{x})+\mathrm{ind}{ }_{\mathrm{g}, \mathrm{p}}(\mathrm{y})+\mathrm{k} \phi(\mathrm{p})\right] \operatorname{modp}
$$

Hence, $\quad \operatorname{ind}_{g, p}(x y)=\left[\operatorname{ind}_{g, p}(x)+\operatorname{ind}_{g, p}(y)\right] \bmod$
$\phi(p)$
since any $z=q+k \phi(p)$ can be written as $\mathrm{z}=\mathrm{q} \bmod \phi(\mathrm{p})$

Cryptographic Strength

1. Stong Primes (i.e., Sophie-Germaine) primes

o $\mathrm{P}=2 \mathrm{Q}+1$, where $\mathrm{P}, \mathrm{Q}=$ primes; $\mathrm{Q}=$ Largest Prime Factor (lpf) of P

2. Schnorr subgroups

o $\mathrm{P}=\mathrm{kQ}+1$, where k may be small
o Generation and Validation of Group Choices
Estimate on 25 MHZ RISC or 66 MHZ CISC
Generation of $\mathrm{P}, \mathrm{k}, \mathrm{Q}=>$ about 10 minutes for a group of $2{ }^{1024}$ elements Validation $=>1$ minute

3. Key Length Estimates

o practical level of security: 75 bits $=>\mathrm{Q}=\operatorname{lpf}(\mathrm{P})=150$ bits $=>\mathrm{P}=>980$ bits o size of exponent should be at least $2 \times$ length of key $=2 \times 75=180$ bits
o 20 year security: 90 bits $=>Q=\operatorname{lpf}(P)=180$ bits $=>P=>1400$ bits o size of exponent should be at least $2 \times$ length of key $=2 \times 90=180$ bits
o extended security: 128 bits $=>Q=\operatorname{lpf}(P)=256$ bits $=>P=>3000$ bits o size of exponent should be at least $2 \times$ length of key $=2 \times 128=156$ bits
4. Reuse of x (e.g., more than 100 times) => timing attacks on x; use "blinding factor" r $\mathrm{o} A=\left(r g^{y}\right)$, where r is a random group element
o $B=A^{x}=\left(r g^{y}\right)^{x}=\left(r^{x}\right)\left(g^{x y}\right)$
$o \mathrm{C}=\mathrm{B}\left(\mathrm{r}^{-x}\right)=\left(\mathrm{r}^{\mathrm{x}}\right)\left(\mathrm{r}^{-\mathrm{x}}\right)\left(\mathrm{g}^{\mathrm{xy}}\right)=\mathrm{g}^{\mathrm{xy}}$

Group Descriptors - 2 Examples

Group Type: $M O D P$ /* modular exponentiation group, $\bmod \mathrm{P}^{* /}$
Size of Field (in bits): $\left\lceil\log _{2} \mathrm{P}\right\rceil$ a 32-bit integer
Defining Prime P: a multi-precision integer
Generator G: a multi-precision integer $2 \leq \mathrm{G} \leq \mathrm{P}-2$ optional:
Largest prime factor of $\mathbf{P - 1}$: the multiprecision integer Q
Strength of Group: a 32-bit integer (approx. the no. of key bits protected; $\log _{2}$ of workfactor)

Group Type: $E C P / *$ elliptic curve $\operatorname{group}, \bmod \mathrm{P}$ */
Size of Field (in bits): $\left\lceil\log _{2} \mathrm{P}\right\rceil$ a 32 -bit integer
Defining Prime P: a multi-precision integer
Generator (\mathbf{X}, \mathbf{Y}): two multi-precision integers ($\mathrm{X}, \mathrm{Y} \leq \mathrm{P}$)
Parameters of the curve \mathbf{A}, B : two multi-precision integers ($\mathrm{A}, \mathrm{B} \leq \mathrm{P}$) optional:
Largest prime factor of group order : the multi-precision integer
Order of the group: a multi-precision integer
Strength of Group: a 32-bit integer (approx. the no. of key bits protected;
$\log _{2}$ of workfactor)
elliptic curve equation: $\mathrm{Y}^{2}=\mathrm{X}^{3}+\mathrm{AX}+\mathrm{B}$

