
Diffie-Hellman Key-Exchange Protocol

Agree on (public)
GRP parameters p , g

[optionally :
q = lpf (p-1)]

A
Chooses
Secret

x

Computes
public
gx modp

B
Chooses
Secret

y

Computes
public
gy modpgx modp

gx modp

gy modp

[gy modp]x modp =
gyx modp = key material
gxy modp = [gxmodp]y modp

= shared key

[gx modp]y modp =
gxy modp = key material
gyxmodp = [gymodp]x modp

= shared key

Shared key determination is based on the computational complexity of
finding x (y), given g, p, gx modp (gy modp); i.e., of computing discrete logarithms.

Man-inthe-Middle Attack => no Authentication

A
Chooses
Secret

x

Computes
public
gx modp

B
Chooses
Secret

y

Computes
public
gy modp

gx modp gy modp

M

gm modp gm modp

Chooses
Secret

m

Computes
public
gm modp

[gx modp]m modp =
gmx modp = gxm modp

= Kam

[gymodp]m modp =
gmy modp = gym modp

= Kbm

[gm modp]x modp =
gmx modp = gxm modp

= Kam

[gm modp]y modp =
gmymodp = gym modp

= Kbm

Problem 1 : Key Exchange without Authentication
Probelm 2: Reuse of x, y => replay and forced reuse of shared key; timing attack

Potential Solutions
(not mutually exclusive)

1. Secure, published associations : A < - > (gA, pA, gA
x modpA)

= > equivalent of using signed, public-key certificates

2. Establish secure dependency of key exchange on prior, independent authentication

= > use of other keys for mutual authentication

3. Establish private, shared groups (g , p: q) between two communicating parties

= > use of independent protocols for group sharing, privacy
(separate multicast groups)

4. Use explicit replay-detection mechanisms; e.g., nonces (and PK encryption)

Note: Potential solutions depend on other security protocols

Discrete Logarithms (aka. indices)

1. Primitive roots of modulus p

- let g and p be relatively prime (note: p does not have to be a prime number)

- consider all m for which

o minimum m is the order of g modp,
the length of period generated by g
the exponent to which g belongs (modp)

o maximum by Euler’s theorem, where is the totient of p

- if g is of the order , then g is a primitive root of p, which means that:

g1 modp, g2 modp, ,
- are distinct and represent a permutation of { 1, ..., p-1 }
- are relatively prime to p
- if p is prime, so the set size (length of period) is p-1

gm 1 mod p≡

φ(p), m = φ(p)

φ(p)

φ(p) g modp

φ(p) = p-1;

Note: the only integres with primitive roots are those of the form
2, 4, pa, 2pa where p is any (odd) prime

Discrete Logarithms (aka. indices) -ctnd

2. Properties of Discrete Logarithms

Observation
o any integer x = r modp for any r , p where
o if g is a primitive root of prime p , x = gi modp, where

Definition
o exponent i is the index (discrete log) of x in base g modp; i.e., indg,p(x)

≤ p-1 ≤ r0
≤ p-1 ≤ i0

Ordinary Logarithms

1. Definition : x = b log
b

(x)

2. logb (1) = 0
3. logb (b) = 1
4. logb (ab) = logb (a) + logb (b)
4a. logb (ar) = r x logb (a)

Discrete Logarithms

1. Definition : x = g ind
g,p

(x)

2. indg,p(1) = 0
3. indg,p(g) = 1
4.* indg,p(xy) = [indg,p(x) +indg,p(y)] mod
4a. indg,p(xr) = r x [indg,p(x)] mod

φ(p)
φ(p)

* Proof: g ind
g,p

(xy) modp = (g ind
g,p

(x) modp) (g ind
g,p

(y) modp)(gk modp)
=1

= [g ind
g,p

(x) + ind
g,p

(y) +k] modp

Hence, indg,p(xy) = [indg,p(x) +indg,p(y)] mod since any z = q + k can be
written as z = q mod

φ(p)

φ(p)

φ(p)
φ(p)
φ(p)

Cryptographic Strength
1. Stong Primes (i.e., Sophie-Germaine) primes

o P = 2Q + 1, where P, Q = primes; Q = Largest Prime Factor (lpf) of P

2. Schnorr subgroups
o P = kQ+1, where k may be small
o Generation and Validation of Group Choices

Estimate on 25 MHZ RISC or 66 MHZ CISC
Generation of P, k, Q => about 10 minutes for a group of 2 1024 elements
Validation => 1 minute

3. Key Length Estimates
o practical level of security: 75 bits => Q = lpf(P) = 150 bits => P = > 980 bits
o size of exponent should be at least 2 x length of key = 2 x 75 = 180 bits

o 20 year security: 90 bits => Q = lpf(P) = 180 bits => P = > 1400 bits
o size of exponent should be at least 2 x length of key = 2 x 90 = 180 bits

o extended security: 128 bits => Q = lpf(P) = 256 bits => P = > 3000 bits
o size of exponent should be at least 2 x length of key = 2 x 128 = 156 bits

4. Reuse of x (e.g., more than 100 times) => timing attacks on x; use “blinding factor” r
o A = (r gy), where r is a random group element
o B = Ax = (r gy)x = (rx)(gxy)
o C = B (r-x) = (rx)(r-x) (gxy) = gxy

Group Descriptors - 2 Examples

Group Type: MODP /* modular exponentiation group, mod P*/
Size of Field (in bits): a 32-bit integer
Defining Prime P: a multi-precision integer
Generator G: a multi-precision integer
optional:
Largest prime factor of P-1 : the multiprecision integer Q
Strength of Group: a 32-bit integer (approx. the no. of key bits protected;

log2 of workfactor)

 log2 P

≤ ≤2 G P-2

Group Type: ECP /* elliptic curve group, mod P */
Size of Field (in bits): a 32-bit integer
Defining Prime P: a multi-precision integer
Generator (X, Y): two multi-precision integers (X, Y P)
Parameters of the curve A, B: two multi-precision integers (A, B P)
optional:
Largest prime factor of group order : the multi-precision integer
Order of the group: a multi-precision integer
Strength of Group: a 32-bit integer (approx. the no. of key bits protected;

log2 of workfactor)

 log2 P

≤
≤

elliptic curve equation: Y2 = X3 + AX + B

