Diffie-Hellman Key-Exchange Protocol

Shared key determination is based on the computational complexity of finding x(y), given g, p, $g^x \mod p$ ($g^y \mod p$); i.e., of computing discrete logarithms.

Man-inthe-Middle Attack => no Authentication

Problem 1 : Key Exchange without Authentication Probelm 2: Reuse of x, y => replay and forced reuse of shared key; timing attack

Potential Solutions (not mutually exclusive)

1. Secure, published associations : $A < -> (g_A, p_A, g_A^x \mod p_A)$

= > equivalent of using signed, public-key certificates

2. Establish secure dependency of key exchange on prior, independent authentication

= > use of other keys for mutual authentication

3. Establish private, shared groups (g, p: q) between two communicating parties

= > use of independent protocols for group sharing, privacy (separate multicast groups)

4. Use explicit replay-detection mechanisms; e.g., nonces (and PK encryption)

Note: Potential solutions depend on other security protocols

Discrete Logarithms (aka. indices)

1. Primitive roots of modulus p

- let **g** and **p** be *relatively prime* (note: **p** does *not* have to be a prime number)

```
- consider all m for which g^m \equiv 1 \mod p
```

o minimum **m** is the order of **g modp**, the length of period generated by **g** the exponent to which **g** belongs (**modp**)

o maximum $\mathbf{m} = \phi(\mathbf{p})$, by Euler's theorem, where $\phi(\mathbf{p})$ is the *totient* of \mathbf{p}

- if **g** is of the order $\phi(\mathbf{p})$, then **g** is *a primitive root* of **p**, which means that:

 $g^1 \ modp, \ g^2 \ modp, \ \ldots, \ g^{\, \phi(p)} \ modp$

- are distinct and represent a permutation of { 1, ..., p-1 }

- are relatively prime to **p**

- if **p** is prime, $\phi(\mathbf{p}) = \mathbf{p} - \mathbf{1}$; so the set size (length of period) is **p**-1

Note: the only integres with primitive roots are those of the form 2, 4, p^a, 2p^a where p is any (odd) prime

Discrete Logarithms (aka. indices) -ctnd

2. Properties of Discrete Logarithms

Observation

o any integer $x = r \mod p$ for any r, p where $0 \le r \le p-1$ o if g is a primitive root of *prime* p, $x = g^i \mod p$, where $0 \le i \le p-1$ *Definition*

o exponent **i** is the *index (discrete log)* of **x** in *base* **g modp**; i.e., $ind_{g,p}(x)$

Ordinary Logarithms

Discrete Logarithms

 1. Definition : $x = b \log_{b} (x)$ 1. Definition : $x = g \inf_{g,p} (x)$

 2. $\log_{b} (1) = 0$ 2. $\inf_{g,p} (1) = 0$

 3. $\log_{b} (b) = 1$ 3. $\inf_{g,p} (g) = 1$

 4. $\log_{b} (ab) = \log_{b} (a) + \log_{b} (b)$ 4.* $\inf_{g,p} (xy) = [\inf_{g,p} (x) + \inf_{g,p} (y)] \mod \phi(p)$

 4a. $\log_{b} (a^{r}) = r x \log_{b} (a)$ 4a. $\inf_{g,p} (x^{r}) = r x [\inf_{g,p} (x)] \mod \phi(p)$

* Proof: $g^{ind}_{g,p}(xy) \mod p = (g^{ind}_{g,p}(x) \mod p) (g^{ind}_{g,p}(y) \mod p) (g^{k} \frac{\phi(p)}{mod}p) = 1$ = $[g^{ind}_{g,p}(x) + ind_{g,p}(y) + k \phi(p)] \mod p$ Hence, $ind_{g,p}(xy) = [ind_{g,p}(x) + ind_{g,p}(y)] \mod p$ since any $z = q + k \phi(p)$ can be written as $z = q \mod \phi(p)$

Cryptographic Strength

1. Stong Primes (i.e., Sophie-Germaine) primes

o P = 2Q + 1, where P, Q = primes; Q = Largest Prime Factor (lpf) of P

2. Schnorr subgroups

o P = kQ+1, where k may be small

o Generation and Validation of Group Choices

Estimate on 25 MHZ RISC or 66 MHZ CISC

Generation of P, k, Q => about 10 minutes for a group of 2 1024 elements Validation => 1 minute

3. Key Length Estimates

o practical level of security: 75 bits $\Rightarrow Q = lpf(P) = 150$ bits $\Rightarrow P = >980$ bits o size of exponent should be at least 2 x length of key $= 2 \times 75 = 180$ bits

o 20 year security: 90 bits $\Rightarrow Q = lpf(P) = 180$ bits $\Rightarrow P = > 1400$ bits o size of exponent should be at least 2 x length of key $= 2 \times 90 = 180$ bits

o extended security: 128 bits $\Rightarrow Q = lpf(P) = 256$ bits $\Rightarrow P = 3000$ bits o size of exponent should be at least 2 x length of key $= 2 \times 128 = 156$ bits

4. Reuse of x (e.g., more than 100 times) => timing attacks on x; use "blinding factor" r o A = (r g^y), where r is a random group element o B = A^x = (r g^y)^x = (r^x)(g^{xy}) o C = B (r^{-x}) = (r^x)(r^{-x}) (g^{xy}) = g^{xy}

Group Descriptors - 2 Examples

Group Type: *MODP* /* modular exponentiation group, mod P*/ **Size of Field** (in bits): $\lceil \log_2 P \rceil$ a 32-bit integer **Defining Prime P**: a multi-precision integer **Generator G**: a multi-precision integer $2 \le G \le P-2$ optional: **Largest prime factor of P-1** : the multiprecision integer Q

Strength of Group: a 32-bit integer (approx. the no. of key bits protected; log₂ of workfactor)

Group Type: *ECP* /* elliptic curve group, mod P */ **Size of Field** (in bits): $\lceil \log_2 P \rceil \rceil$ a 32-bit integer **Defining Prime P**: a multi-precision integer **Generator (X, Y)**: two multi-precision integers (X, Y \le P) **Parameters of the curve A, B**: two multi-precision integers (A, B \le P) optional: **Largest prime factor of group order** : the multi-precision integer

Order of the group: a multi-precision integer

Strength of Group: a 32-bit integer (approx. the no. of key bits protected; log₂ of workfactor)

elliptic curve equation: $Y^2 = X^3 + AX + B$