Guaranteeing Access in Spite of Distributed
Service-Flooding Attacks

Virgil D. Gligor
gligor@eng.umd.edu

Security Protocols Workshop
Sidney Sussex College
Cambridge, April 2-4, 2003

VDG 4/2/2003

I. Focus

* Large, Open Networks
- public services : application and infrastructure services (e.g., security, naming)

- all clients are legitimately authorized to access a public service
=> cannot distinguish the “good” (legitimate clients), “bad” (adversaries), and “ugly” (flash crowds)
=> bounds on number of clients and their capabilities are practically unknown

* Flooding Vulnerability of Public Servers

- persists after all other types of DDoS attacks are handled

- cause: E2E Argument => rate gap (network “line” rate >> public server rate)
- rate-gap persistence/increase over time => persistent flooding vulnerability

- economic analogy of service flooding: “tragedy of commons”

* E2E Solution: simple “user agreements’

- behavior constraints: client-server, client-client, or both
- definition and verification: (1) outside the service, and (2) at “line” rate
- economic analogy: regulation of resource over-consumption by “user norms”

VDG 4/2/2003

E2E Solution: Public Service Flooding cannot be prevented by ISPs

- ISPs: no unusual traffic observed in ‘01 cnn, ebay, yahoo! flooding attacks
- Network economics:
- Public Services : pricing model =/= access model

A
Req. Rate N = Max. network “line” rate
@ Server (e.g., 679K pps *)
Persistent | Rate Gap
\ 4 S = Max. Server Rate
/ (e.g., 20 - 40 K pps*)
L » Time

* packets per second (Moore, Voelker, Savage, Usenix Security 2001)
* requests (= packet) per second

VDG 4/2/2003 3

II. GOALS

* Server Protection - a necessary but very weak goal
* Weakest Guarantee: server responds to some requests

* Client Guarantees => Server Protection
- waiting-time bounds for access to Server
- SCope: per request, per service
- bound quality: variable-dependent, -independent of attack, constant
MWT - maximum waiting time
FWT - finite waiting time

 Threat: coordinated service-flooding attacks by
- an unknown number of client “zombies”
- with bounded but unknown computational capabilities

Non-Goals:

Protection against “*men-in-the-middle”

VDG 4722003 QoS guarantees (e.g., aggregate throughput, cost)

Definitions

For all client requests,

MWTr — maximum waiting time ([IEEE S&P ‘83, TSE’84, ICDE 86])
client request is accepted for service in time T,
where T is known at the time of the request.

([Millen, IEEE S&P 92])
Pr [client request is accepted for service in time T] > 0,
where T 1s known at the time of the request,
0 =/= 0 and is independent of attack.

FWTr — finite waiting time ([IEEE S&P ‘88])
client request is accepted for service eventually

wPWTr — weak probabilistic waiting time
Pr [client request is accepted for service eventually] > p,
where p =/= 0.

WPWT — wPWT w/o the constraint that p =/= 0.

Similar definitions for Per-Service Waiting Times:
MWTs (e.g., real time), (FWTs, wPWTs)
Per-Service Waiting Time => Per-Request Waiting Time guarantee

VDG 4/2/2003

Relationships among Waiting-Time Definitions

Examples of User Agreements

v FWTs 7 FWTr \

MWTs - — 3% MWTr wWPWTs = = = =»> wPWIr—»WPWT

————p puzzle

auctions~+

I assumption
[WR03]

explicit rate-control simple
agreements example 1
VDG 4/2/2003 — . - 6

Legend:p. = implies FWTr <=/=>

General Observations

Layerm - 1
DoS freedom - layering :
DoS freedom at layer m-1

cannot be implemented
from layer m

Layer m
DoS freedom

(1) DoS freedom at layer m ==> DoS freedom at layer m-1/
(not an E2E solvable problem, even if the “Ends” cooperate)

(2) DoS freedom at layer m <=/= DoS freedom at layer m-1
(need a solution for layer m defense even if layer m-1 is DoS free)

(3) Solution for DoS freedom at layer m-/ cannot always be replicated at layer m
(likely to need a distinct solution; e.g., no server “pushback” of clients)

Challenge: assuming that layer m-1 is DoS free,

provide a solution that assures DoS freedom to a service at layer m
VDG 4/2/2003 7

II1. User Agreements

(1) Rate Gap => Undesirable Dependencies among Clients [IEEE S&P ‘83]:
(viz., “the tragedy of commons™)

Client i

Service
(layer m)

(2) User Agreements [IEEE S&P ‘88] counter undesirable dependencies,

VDG 4/2/2003

“User-Agreements”

1. Examples in Other Areas

2. What do Client “Puzzles” Achieve ?
- only that some clients get access to the server

3. Explicit Control of Client Request Rate
- time-slot reservation, total ordering (e.g., a “Bakery Mechanism”)

4. General Request Controls

VDG 4/2/2003

1. Examples of “User Agreements” in Other Areas

(per user) local state information required
- binary exponential back-off agreement for (slotted) Ethernet collision handling
- splitting algorithms for collision handling in slotted multi-access protocols
- two-phase locking agreement of distributed transactions for maintaining data consistency
- ordered resource request agreements for deadlock prevention

global state information required
- self-stabilization agreements in distributed control problems
(e.g., prevent “starvation” in Dijkstra’s dinning philosophers problem)

stateless
- client-side, packet-filtering; pushback agreements in routers

VDG 4/2/2003 10

1. “Client Puzzles” based on Hash Functions

1. Challenge: giVen k, find X Verification:
Response: Message X h(Message X)

00...0| don’tcare
\)\ ~ J
K bits m-k bits

1<k<64 m=128

2. Challenge: given Kk, h(X),

Response: Message X Verification:
00...0 don’t care h(Message X) = h(X)
S — — —
k bits m-k bits

1<k<64 m=>512

Average Latency per Client: 2 steps

VDG 4/2/2003 11

“Client Puzzle” Model

Server

A

req. arrival interval: cN

Client Z

~

< = 8w o= <

Time Buffer c,
3x 2krl/s < ¢ = (t", -t)+ (L/S-1) + N

\ !
\ I}
\C/

Property 1: Solution Latency

With high probability
a) 7> 2L4+2N (6L + 9) + 6 clients solve at least L puzzles in 2%-1Z steps (in time 2%-1/s)
b) Z solve at least Z puzzles in 281 Z steps (in time 2%*1/s)

VDG 4/2/2003 12

Property 2: Request-Rate Control :

N < § over interval tr; + ¢, <=>k_> 1+|_log(Z/S-c)s_| , where ¢, <Z/S
VA L r r r r

A N = Max. net. (“line”) Rate

req. ratey /V_V\m
- \/\’\I\ S = Max. Server Rate

—

-
7’
.

Enter - i *__ Min. Server Rate
Puzzle Mode | | \\\
E iCr "~ Exit
: ; T ’E Puzzle Mode
T o) CUso .
: ' ' : » time

VDG 4/2/2003 13

Puzzle Auctions [WRO03]

A

Client Z

I T I R T ST - Wl

>
no L>Z/2
« | <
drop drop

weak PWT

Pr [any client C’s request is accepted for service in time 7]
= Pr [any client C’s request 1s accepted for service in R+1 rounds k, k;,....k]
= 1- Pr [any client C’s request is denied at round R+1]
2% 1/7-78 (281 - 2k L/7Z
>1-(1-2%) TR_, (1-2%) =p>0

VDG 4/2/2003 Dependency on attack parameter Z 14

Attack Coordination
Goal: Deny Strong Guarantees (FWTr, PWTr, MWTr)

A A dropped dropped dropped dropped
dropped retry request retry retry retry
accepted
Aggr. rTquest p Aggr.

Req. N Req.
Rate AN S Rate

kO:lkl: ik2 §k3 | ky ::kl: Ekz §k3 V 4
> = =P T e Bl =k
1 Cogrd. ! Coord.: :Coord. ! i i : ! i | i E\\
i recil. : req i i req. i : X i tlli i {2 IE : t3LE i E \ R
t, t, t, t, Time <§> <§> <§> Time
Coordinated Attack for a k, < k, < k,<k;, sequence L/NS <8 <Z/S

p=max(p,),1=1,....m

Pr [client req. 1s accepted within m retries] < p Zir_no (1-p)=1-(1-p)l™<1

VDG 4/2/2003 15

What Do “Client Puzzles” Achieve ?

... very weak client guarantees at high ...

Client Guarantees ?

wPWT (with assumption L > Z/2)

no FWiT=>no MWT

... and unnecessary request overhead.

 random scheduling achieves wPWT

VDG 4/2/2003

16

Example 1: Random St = L <Nt (w/0 preemption)

A
d :
VvV
e Server
r <
S | | random L l
a | | I
r Client Z }——:] BRI TE
y e ' r
| ; \ L=St
', i ~——
v drop Nt - LL

weak PWT

n. /St=no. of requests received / processed at round i; S/N <min {St/n.},1=1,...,1

Pr [client request is accepted for service eventually]
> Pr [client request 1s accepted for service in » rounds]
= 1- Pr [client request delayed to round 7] >2p=1-(1-S/N)*->1

Dependency on attack parameter r
VDG 4/2/2003 17

2. Example 2: Random L = St with Preemption

-
N

Server

#0(1<1<L)
preempt l

A

< = 8w o= <o

Pr[req./retry is accepted by Server in T > A+r]

= Pr[req buffer[l...L] € req./retry in A] x Pr[req./retry not dropped in 7]
> [1-1/(L+1)] x [1/(L+1)+(L-1)/(L+1)]*= [L/(L+1)]'*

> [St /(ST +)|"Nr=p =/=0

VDG 4/2/2003 18

3. Idea: Explicit Control of Client Request Rate
|

Maximum Waiting Time Guarantees

Phase 1: Client-Proliferation Control

(Stateless Session) Cookie => Reverse Turing Test (e.g., CAPTCHA) passed

- forces human-level collusion and coordination on global scale

Phase 2: Request-Rate Control for Individual Clients

Service Req. => Valid Rate-Control Ticket => Valid Cookie
(=> solved puzzle, no Phase 1)

- ticket: time-slot reservation, total ordering
(e.g., a “Bakery Mechanism”)

VDG 4/2/2003 19

Phase 1: Client-Proliferation Control

ClientL Cookie / TKT

} _

¢~ Req --

_
_
_

\ -
- e
_
: _ _

- D -
_
_
-
_
_
_
.
_
_
_
-

-
-

-
-
-
-
-
-

|
|
|
- operate at :
|
|
|

Untrusted network
Host, I “line” rate
I - share key
- loose t. sync.
I Req
‘I.,l TKT Verifier
| —

Phase 2: Request-Rate Control for Individual Clients

Cookie / Ticket duplication by Clients ? theft, replay by Clients ?

VDG 4/2/2003

20

Client Request-Rate Control: 7Time-Slot Reservation

”11‘1 user, cookie

h

fikt,,
I

b

k tickets

tkt, !
tkt,!

tkt ! =

client requests =X w.

1

VDG 4/2/2003

| | | I >
t. tj

1 <w/k < L/k

Lis>t=t, -t>L/S
t;, t,) cnt, |IPaddrC, t*MAC,
tl? t2, cnt, |IPaddrC, t*MACz
tl, tz, Cntk IPadder t* MACk
tl'tz — —
t > L/S|W, <£

Tk 21

* t = time at server

 Cookies and TKTs: similar function, different time scale
e.g., cookie = ... T;, T;, tkt.cnt, IPaddr_list, t, MAC

. of TKTs use @ Verifier
of Cookies @ TKT Server

(counters large-scale IP spoofing; already deployed)
. : Ticket Count w,,,, ; Window t,,, =t,., — ¢, ?

1. Effect of unused reservations =

w=1,k=1 => Total Ordering of Requests
(low impact TGS traffic; e.g., content distribution, protocol exchanges)

2. Reducing Client — TKT Server communication
=> all L requests in one ticket and
(high-impact TGS traffic; e.g., high-speed, bursty transactions)

w=L,k=1 => Server Underutilization (by zombies not issuing requests)
VDG 4/2/2003 22

. Wopt’ topt

Ctotal — Cclient ™ Cserver - ClAr/ W T C2(1'r)wa where

w = total number of requests in a window (for all that window’s tickets)
¢, = communication cost for getting a ticket from TGS

¢, = server-utilization cost of waiting for a request not issued within w
A, = average number of Application Requests (Client -> Server requests)
r = percentage of legitimate clients (0 < r<1)

NETY
0 Cippa/ OW =0=>w, = ¢,(1-r)> constrained by 1< w <L

L/S <ty=Wy,/S <L/s

opt

Parameters: ¢,/c,, r, A,
Processes: client request, service response
Attack characterization: low inter-arrival times of client requests to TGS, low r, high A,

VDG 4/2/2003 23

What can General Request Constraints Achieve ?

Additional constraints on Client Requests

 Examples
- MWT for coordinated requests from Clients to Servers under attack
* Client requests to multiple Servers

* application-related Clients requests to Servers
(e.g.,1s Z MWT, for Client, requests to Server; within AT ? in [t, t,;] ?)

- patches: safety constraints not enforced in Server (e.g., parameter
constraints)

VDG 4/2/2003 24

SUMMARY

1) problem reduction: flooding freedom of a simple (distributed) service
- RCS Service (Server 1,..., Server k) has specialized, simple function
= max. service rate of TKT Service is at network rate or above
= flooding is impossible

2) maximum waiting time (MWT) per request

- request-rate control for individual clients (e.g., client puzzles for TKT requests)
- protection against TKT theft
- packet filtering on IP addr. at access-point routers,

sliding-time-window caches of TKT use
- problem: long MWT

3) reasonable MWT for legitimate clients
- control of client proliferation
- reverse Turing tests (CAPTCHAS), stateless cookies
- protection against cookie theft (same as for TKT theft)

VDG 4/2/2003 25

