
VDG 4/2/2003 1

Guaranteeing Access in Spite of Distributed
Service-Flooding Attacks

Virgil D. Gligor

gligor@eng.umd.edu

Security Protocols Workshop
Sidney Sussex College

Cambridge, April 2-4, 2003

VDG 4/2/2003 2

I. Focus
• Large, Open Networks

- public services : application and infrastructure services (e.g., security, naming)
- all clients are legitimately authorized to access a public service
=> cannot distinguish the “good” (legitimate clients), “bad” (adversaries), and “ugly” (flash crowds)
=> bounds on number of clients and their capabilities are practically unknown

• Flooding Vulnerability of Public Servers
- persists after all other types of DDoS attacks are handled
- cause: E2E Argument => rate gap (network “line” rate >> public server rate)
- rate-gap persistence/increase over time => persistent flooding vulnerability
- economic analogy of service flooding: “tragedy of commons”

• E2E Solution: simple “user agreements”
- behavior constraints: client-server, client-client, or both
- definition and verification: (1) outside the service, and (2) at “line” rate
- economic analogy: regulation of resource over-consumption by “user norms”

VDG 4/2/2003 3

E2E Solution: Public Service Flooding cannot be prevented by ISPs

- ISPs: no unusual traffic observed in ‘01 cnn, ebay, yahoo! flooding attacks
- Network economics:

- Public Services : pricing model =/= access model

Req. Rate
@ Server

Time

. . . (e.g., 679K pps *)

(e.g., 20 - 40 K pps*)

N = Max. network “line” rate

S = Max. Server Rate

SF = 14 K pps*

Persistent Rate Gap

* packets per second (Moore, Voelker, Savage, Usenix Security 2001)
* requests (= packet) per second

* firewalls for TCP SYN flood protection

VDG 4/2/2003 4

• Server Protection - a necessary but very weak goal
• Weakest Guarantee: server responds to some requests

• Client Guarantees => Server Protection
- waiting-time bounds for access to Server

- scope: per request, per service
- bound quality: variable-dependent, -independent of attack, constant

MWT - maximum waiting time
FWT - finite waiting time
PWT - probabilistic waiting time

• Threat: coordinated service-flooding attacks by
- an unknown number of client “zombies”
- with bounded but unknown computational capabilities

II. GOALS

Non-Goals:
Protection against “*men-in-the-middle”
QoS guarantees (e.g., aggregate throughput, cost)

VDG 4/2/2003 5

MWTr – maximum waiting time ([IEEE S&P ‘83, TSE’84, ICDE ‘86])
 client request is accepted for service in time T,
 where T is known at the time of the request.

FWTr – finite waiting time ([IEEE S&P ‘88])
client request is accepted for service eventually

wPWTr – weak probabilistic waiting time
Pr [client request is accepted for service eventually] ≥ p,
 where p =/= 0.

Definitions

PWTr – probabilistic waiting time ([Millen, IEEE S&P ‘92])
Pr [client request is accepted for service in time T] ≥ θ,
 where T is known at the time of the request,
 θ =/= 0 and is independent of attack.

For all client requests,

Similar definitions for Per-Service Waiting Times:
MWTs (e.g., real time), PWTs (FWTs, wPWTs)

 Per-Service Waiting Time => Per-Request Waiting Time guarantee

WPWT – wPWT w/o the constraint that p =/= 0.

VDG 4/2/2003 6

Relationships among Waiting-Time Definitions

Legend: = implies

FWTs

PWTs

wPWTsMWTs

“some
client

access”

Examples of User Agreements

client
puzzles
[DN92,
JB99,

ANL00,
DS01]

puzzle
auctions+

assumption
[WR03]

simple
example 1

simple
example 2

explicit rate-control
agreements

wPWTrMWTr

FWTr

PWTr

FWTr <=/=>PWTr

WPWT

VDG 4/2/2003 7

General Observations

Layer m
DoS freedom

Layer m - 1
DoS freedom - layering :

DoS freedom at layer m-1
cannot be implemented
from layer m

(1) DoS freedom at layer m ==> DoS freedom at layer m-1
(not an E2E solvable problem, even if the “Ends” cooperate)

(2) DoS freedom at layer m <=/= DoS freedom at layer m-1
(need a solution for layer m defense even if layer m-1 is DoS free)

(3) Solution for DoS freedom at layer m-1 cannot always be replicated at layer m
(likely to need a distinct solution; e.g., no server “pushback” of clients)

Challenge: assuming that layer m-1 is DoS free,
provide a solution that assures DoS freedom to a service at layer m

VDG 4/2/2003 8

III. User Agreements
(1) Rate Gap => Undesirable Dependencies among Clients [IEEE S&P ‘83]:

(viz., “the tragedy of commons”)

Service
(layer m)

guaranteed request-delivery path
(layer m-1)

dependencies

U

s

e

r

A

g

r

m
n

t.

Client 1

Client i

Client n

s

(2) User Agreements [IEEE S&P ‘88] counter undesirable dependencies,

VDG 4/2/2003 9

“User-Agreements”

1. Examples in Other Areas

2. What do Client “Puzzles” Achieve ?
- only that some clients get access to the server

3. Explicit Control of Client Request Rate
- time-slot reservation, total ordering (e.g., a “Bakery Mechanism”)

4. General Request Controls

VDG 4/2/2003 10

1. Examples of “User Agreements” in Other Areas

(per user) local state information required
- binary exponential back-off agreement for (slotted) Ethernet collision handling
- splitting algorithms for collision handling in slotted multi-access protocols
- two-phase locking agreement of distributed transactions for maintaining data consistency
- ordered resource request agreements for deadlock prevention

global state information required
- self-stabilization agreements in distributed control problems
(e.g., prevent “starvation” in Dijkstra’s dinning philosophers problem)

stateless
- client-side, packet-filtering; pushback agreements in routers

VDG 4/2/2003 11

1. “Client Puzzles” based on Hash Functions

1. Challenge: given k, find X
h(Message X)
Verification:

Response: Message X
00…0 don’t care

m-k k bits bits

m = 1281 ≤ k ≤ 64
2. Challenge: given k, h(X),

Response: Message X Verification:

00…0 don’t care h(Message X) = h(X)

k bits m-k bits

1 ≤ k ≤ 64 m ≥ 512

Average Latency per Client: 2k steps

VDG 4/2/2003 12

req. arrival interval: cN

C
l

i

e

t

P
u
z
z

l

Client 1

Client Z

Client n

SrL ... r1

Sτ

L
Server

...

Time Buffer cr
3× 2kr-1/s ≤ cr = (tr

Z - tr
L)+ (L/S-τ) + cN

“Client Puzzle” Model
A
d
v
e
r
s
a
r
y

. . .

. . .

e

Property 1: Solution Latency
With high probability
a) Z≥ 2L+2√ (6L + 9) + 6 clients solve at least L puzzles in 2kr-1Z steps (in time 2kr-1/s)
b) Z solve at least Z puzzles in 2kr+1Z steps (in time 2kr+1/s)

VDG 4/2/2003 13

Property 2: Request-Rate Control (WPWT):
NZ

kr≤ S over interval tr
L + cr <=> kr ≥ 1+log(Z/S-cr)s , where cr < Z/S

N = Max. net. (“line”) Rate

time

k0 < k1 <. . . . < kr

tr
L

tr
Z

Enter
Puzzle Mode

Exit
Puzzle Mode

Min. Server Rate

cr

t0 t1 tr

L/S-τ cN

req._rateX

S = Max. Server Rate

VDG 4/2/2003 14

C

l

i

e

t

P
u

z

z

l

e

Client 1

Client Z

Client n

. . .

A
d
v
e
r
s
a
r
y

Sk1 ... kr

Sτ
L > Z/2

Server

...

. . .

weak PWT
Pr [any client C’s request is accepted for service in time T]
= Pr [any client C’s request is accepted for service in R+1 rounds k0, k1,…,kr]
= 1- Pr [any client C’s request is denied at round R+1]

≥ 1 - (1 - 2-ko)
2ko-1L/Z-τs

ΠR
i=1 (1 - 2-ki)

(2ki-1 - 2ki-1-1)L/Z
= p > 0

Puzzle Auctions [WR03]

Dependency on attack parameter Z

ki

k1 < ki < kr

bid ki+1 > k1 ?

drop
no

yes
preempt

drop

VDG 4/2/2003 15

 Attack Coordination

Time

 k0

Time

 k1

dropped
request

retry
accepted

Coord.
req.

Coord.
req.

Aggr.
Req.
Rate

Aggr.
Req.
Rate

Coordinated Attack for a k0 < k1 < k2 < k3 sequence

t1
L

t1 t0 t3 t2

t3
L t2

L

N

S

δ δ

Nz
k2 Nz

k3Nz
k1

δ

 k0 k1 k2 k3 k2

N

S

Nz
k0

 k3

Coord.
req.

 k4
 (= k0)

dropped
request

dropped
retry

dropped
retry

dropped
retry

 Goal: Deny Strong Guarantees (FWTr, PWTr, MWTr)

L/Nz
ki < δ < Z/S

p 1-p

p = max(pi), i = 1,…,m
Pr [client req. is accepted within m retries] < p Σi=0 (1- p)i = 1-(1- p)1+m < 1

m

VDG 4/2/2003 16

What Do “Client Puzzles” Achieve ?

… very weak client guarantees at high …

Client Guarantees ?

• WPWT (by P2)

• wPWT (with assumption L > Z/2)

• no PWT, no FWT => no MWT

… and unnecessary request overhead.
• random scheduling (with preemption) achieves wPWT (PWT)

VDG 4/2/2003 17

Example 1: Random Sτ = L < Nτ (w/o preemption)

ni /Sτ= no. of requests received / processed at round i; S/N ≤ min {Sτ/ni}, i = 1,…, r

Pr [client request is accepted for service eventually]
≥ Pr [client request is accepted for service in r rounds]
= 1- Pr [client request delayed to round r] ≥ p = 1- (1- S/N) r -> 1

weak PWT

R

e

q.

R

e

t

r

y

Client 1

Client Z

Client n

Srm ... rj

L = Sτ

Server

...rk

drop Nτ - L

random L
req./retry rNτ ... r1...

A
d
v
e
r
s
a
r
y

. . .

. . .

Dependency on attack parameter r

VDG 4/2/2003 18

R

e

q.

R

e

t

r

y

Client 1

Client Z

Client n

. . .

A
d
v
e
r
s
a
r
y

SrL ... r1

L = Sτ

Server

...

. . .

PWT

ri
rand. no.

[0, L]

= 0
drop

preempt
≠0 (1 ≤ i ≤ L)

req./retry

Pr[req./retry is accepted by Server in T ≥ ∆+τ]
= Pr[req_buffer[1…L] req./retry in ∆] x Pr[req./retry not dropped in τ]
≥ [1-1/(L+1)] x [1/(L+1)+(L-1)/(L+1)]n = [L/(L+1)]1+n

≥ [Sτ /(Sτ +1)]1+Nτ = ρ =/= 0
(independent of the number and aggregate request rate of “zombies”).

2. Example 2: Random L = Sτ with Preemption

drop

VDG 4/2/2003 19

3. Idea: Explicit Control of Client Request Rate
+

Maximum Waiting Time Guarantees

Phase 1: Client-Proliferation Control
(Stateless Session) Cookie => Reverse Turing Test (e.g., CAPTCHA) passed

- forces human-level collusion and coordination on global scale

Phase 2: Request-Rate Control for Individual Clients
Service Req. => Valid Rate-Control Ticket => Valid Cookie

(=> solved puzzle, no Phase 1)

- ticket: time-slot reservation, total ordering
(e.g., a “Bakery Mechanism”)

VDG 4/2/2003 20

Phase 1: Client-Proliferation Control

Clienti

Cookie / TKT
Server

1. Request Cookie

2. Cookie

Req

Untrusted
Hosti

CAPTCHA Challenge-Response

TKT Verifier

3. Request Ticket, Cookie

4. Ticket

5. Req, Ticket

Client1
Req

Clientn
Req

. . .

. . .

- operate at
network
“line” rate

- share key
- loose t. sync.

ServiceReq

Phase 2: Request-Rate Control for Individual Clients

Cookie / Ticket duplication by Clients ? theft, replay by Clients ?

VDG 4/2/2003 21

Client Request-Rate Control: Time-Slot Reservation

tkt1-k
1

T1 user1 cookie T2

t1 t2 ti tj

1 ≤ wi/k ≤ L/k
L/s ≥ t = ti+1 - ti ≥ L/S

t1 t3

w1
w2

wi

. . . tkt1
1

tkt2
1

tktk
1

=
=
=

t1, t2,
t1,
t1,

cnt1

t2, cnt2

t2, cntk

. . .

. . .

client requests = Σ wi

IPaddrC1

IPaddrC2

IPaddrCk

t*MAC1

* t = time at server

t*MAC2

t* MACk

=
w1 L

k

t1-t2 =
t ≥ L/S ≤

k tickets

VDG 4/2/2003 22

1. Effect of unused reservations => small ti+1 – ti=L/S.

• Cookies and TKTs: similar function, different time scale
e.g., cookie = … Ti, Tj, tkt.cnt, IPaddr_list, t, MAC

• Sliding Time Window caches of TKTs use @ Verifier
of Cookies @ TKT Server

• Packet filtering in Access-Point Routers
(counters large-scale IP spoofing; already deployed)

• Optimization: Ticket Count wopt ; Window topt = ti+1 – ti ?

=> Total Ordering of Requestsw = 1, k = 1
(low impact TGS traffic; e.g., content distribution, protocol exchanges)

2. Reducing Client – TKT Server communication
=> all L requests in one ticket and large ti+1 – ti ≥ L/S.
(high-impact TGS traffic; e.g., high-speed, bursty transactions)

w = L, k =1 => Server Underutilization (by zombies not issuing requests)

VDG 4/2/2003 23

Simple Optimization: wopt, topt

Ctotal = Cclient + Cserver = c1Ar/w + c2(1-r)w, where

w = total number of requests in a window (for all that window’s tickets)
c1 = communication cost for getting a ticket from TGS
c2 = server-utilization cost of waiting for a request not issued within w
Ar = average number of Application Requests (Client -> Server requests)
r = percentage of legitimate clients (0 ≤ r < 1)

δ Ctotal/ δw = 0 => wopt =√ , constrained by 1 ≤ wopt ≤ L
c1 Ar
c2(1-r)

L/S ≤ topt = wopt/S ≤ L/s

Simulations
Parameters: c1/c2, r, Ar
Processes: client request, service response
Attack characterization: low inter-arrival times of client requests to TGS, low r, high Ar

VDG 4/2/2003 24

What can General Request Constraints Achieve ?

Additional constraints on Client Requests
• Examples

- MWT for coordinated requests from Clients to Servers under attack
• Client requests to multiple Servers
• application-related Clients requests to Servers

(e.g., is Σ MWTi for Clienti requests to Serveri within ∆T ? in [t1, t1] ?)

- patches: safety constraints not enforced in Server (e.g., parameter
constraints)

VDG 4/2/2003 25

SUMMARY

1) problem reduction: flooding freedom of a simple (distributed) service
- RCS Service (Server 1,…, Server k) has specialized, simple function

⇒ max. service rate of TKT Service is at network rate or above
⇒ flooding is impossible

2) maximum waiting time (MWT) per request
- request-rate control for individual clients (e.g., client puzzles for TKT requests)
- protection against TKT theft

- packet filtering on IP addr. at access-point routers,
sliding-time-window caches of TKT use

- problem: long MWT

3) reasonable MWT for legitimate clients
- control of client proliferation

- reverse Turing tests (CAPTCHAs), stateless cookies
- protection against cookie theft (same as for TKT theft)

