Hash Functions

P1. M is a message of any size; 64 <|H(M) = m| < constant.

P2. VM message, function H( M) is easy to compute.

P3. For any givenm = H(M), 1t 1s hard (computationally
infeasible) to find M.

P4. For any given <M SJH(M )> it's hard (computationally
infeasible) to find M', M'# M ,such that H(M"') = H(M).

PS. (Although 3M, M'|H(M) = H(M") since | H( M)|<constant)
it 1s hard (computationally infeasible) to find any two
messages M, M',M # M', such that H(M)= H(M").

NOTE: Attack resistance: P3= preimage, P4= second preimage; P5: collision
Properties P1-P3 are of a one-way function.
Properties P1-P4 are of a weak one-way function.
Properties P1-P5 are of a strong one-way function.



Relationships among Hash Functions Properties

P5 ==> P4

If a hash function is collision resistant, then it is second-preimage resistant.

Proof. Prove <P4 ==> <PS5. Fix x; and find distinct x; such that H(x;) = H(x;) (by <P4).
Hence <P5 is true since (X;,X;) is a pair of distinct inputs having the same hash value.

P5 =/=>P3
A function that is collision resistant is not necessarily preimage resistant.

Proof. Assume P5 ==> P3 and provide a counter-example as follows. For example,

let g(x) be a collision-resistant hash function such that |g(x)| = n bits, and define function
h(x) as follows:

h(x) =1 || x, if |x| = n bits; h(x) =0 || g(x), otherwise.

Hence, h(x) is a (n+1)-bit hash function that is not preimage resistant.

P4 =/=> P3

A function that is second-preimage resistant is not necessarily preimage resistant.

Proof. Assume P4 ==> P3 and provide a counter-example as follows. For example,
let h(x) = x, |x| = fixed length m. h(x) is collision and second preimage resistant but
not preimage resistant.



Attacks against One-Way Functions - Search Space

|H(M)| = m bits, hash function has 2 outputs.

Problem
Given hash function H, and a specific value H(M) for M, if H 1s applied to k&

random inputs M,’,...,M,’, what is the value of & such that:
P{H(M' )=H(M)} =0.51forsome ie[l, k]

Solution (k= 2"!implies no gain over full search).
*For a single value M’ in {M’,..., M,’},
P{H(M')=H(M)} = 2% and

P{H(M');I&H(M)}:l—zim

For k values {M,’,..., M,’} picked at random

1 k
P(H(M'))# H(M)} =[1 _27] forall i €[1,k] and
k

P(H(M'))=H(M)} :1_[1_2% for some i €[1,k],
k : ko~
EI_H_F for m= 64, since (1—a)" =1-ka

=l for k =2"",
2



WE MUST DO BETTER THAN RANDOM SEARCH TO
DEFEAT THE COLLISION FREEDOM PROPERTY

 “BIRTHDAY PARADOX?”

* GENERAL CASE OF “BIRTHDAY PARADOX”

* OVERLAP BETWEEN TWO SETS OF MESSAGES

* BIRTHDAY ATTACK

 EXAMPLE OF BIRTHDAY ATTACK



BIRTHDAY PARADOX

Find the minimum value of k such that:
P{at least one pair of k£ people have same birthday} = 0.5

General problem

Let P(n,k) = P{there 1s at least a pair of duplicates among .

instances of a uniformely distributed random variable with
values 1n [1,n]}.
Find the minimum values of k such that P(n,k) = 0.5.

P(365,k)=0.5

0(365,k) = P{no pair of people have same birthday}=1-P(365,n).
Suppose k<=365 (otherwise there are duplicates).

Let N = number of ways to choose k values in [1,365] with no duplicates.
N =365*364%*...*(365-k+1) = 365!/(365-k)!

The total number of ways to choose & values in [1,365] is T'= 365*.

Thus, O(365.,k) = N/T = 365!/(365-k)!/365*%, and

P(365.,k) =1 -365!/(365-k)!/365*.



Diagram of P(365,k) vs. k
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GENERAL CASE OF DUPLICATIONS

Find P(n,k) = P{Xi = Xj €{X1,..., Xk} for some 1], X=u.d.r.v.}

! k-1
Pin k) =1-—"—=1— 1.1 1.
(n—k)'n n n
But (1—x)<e " for allx 20, thus
12 k-1 k(k-D)
P(nk)>1-e"-e..ce " =1—e 2"
11 k(k-1) k(k-1) i
Pnk)=—=>—=1-¢ 2 =2=¢ 2 =hQ)=2—=
2 2 0
k=2(In2)n 2 1.17Vn =

Ifn=2", k=22



Inequality (1-x) <=e* for all x >=0

Letf(x)=e".
df () __ . drO)
dx dx '

The tangent to f at x =0 1s ax+ b where a = —1.
Atx=0,f(0)=1,s0a-0+b=1.
So tangent at x =0 1s 1-x. Since tangent 1s

under the curve of e, the inequality holds .
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OVERLAP BETWEEN TWO SETS OF MESSAGES

Let X be a random variable uniformly distributed over {1,...,n} and
X = {Xyy eoer X f> Y = {Y > - Yy tWO sets of k instances (k <n) of x.

Problem: What 1s the probability that x and y overlap
Le., (X,y;) | x; =y, forsome 1,jmn[1, k] ?

Solution: Givenonly x,, P(y, = x,) = l, Py, #x)=1- 1o
n n

k

Py, x,0., Ve X)) = 1—l = P(y, = x, forsome i €[l,k])=1- 1
n n
Assume Xx,,...,x, distinct and n,k are large.
1t P P -
Py, Zxi,.., e %x)= 1-— = Px#y)= 1-— = 1-—
n n n
1 k? _1 K _k*
P(x; =y, forsome i,j€[l,k])=1- 1-— >1— e =1l—-e "
n
k2
l—e ” =5:>k J(In2)n =0.83vn = vn

Ifn=2"k=~2" =22,



Birthday Attack

Let (A, B) be a distributed service where A signs clients’ messages to be sent to B
by appending an encrypted m-bit digest

A client’s (chosen plaintext) birthday attack against distributed service (A, B):
1. The client generates 2 ™2 variants of a message acceptable to A
(i.e., A will sign any of these message variants) and
2 ™2 yariants of a forged message, which are unaceptable to A
(i.e., A will not sign any of these message variants).
2. The client computes the digest for each message in the two sets and compares
the two sets of digest to find a match ;
With probability 0.5, the client will find a match; if no match is found, the client generates
more messages and tries again until a match is found.
3. The client submits the acceptable message that has a match for A’s signature. A signs it.
4. The client attaches A’s signature to the forged, matching message and sends it to B.

5. The forged message is accepted by B as a valid message from A.

Lesson: One should never sign anything without first adding a secret.



Keyed Hash Functions = Message Authentication Codes (MACs)
(Weak) MAC

QL. M 1s a message of any size;

hy M)= m , <constant, K is secret.
Q2. Vmessage M, function /1,( M) is easy to compute if K is known.

Q3. Given any <M, h,(M,)>1i=1,...,n, 1t 1s hard (computationally
infeasible) to find <M, h, (M)> such that M = M.

Strong MAC

hy M)= m , <constant, K is secret.
Q2. Vmessage M, function i M) is easy to compute if K is known.

Q4. Given any <M, h,(M)>1i=1,...,n,1t1s hard (computationally
infeasible) to find <M, h (M)> # <M, h (M.)>.

QL. M 1s a message of any size;

Obviously, Strong MAC => (Weak) MAC



Relationships between MAC Properties and Hash Function Properties

A (weak) MAC (keyed hash function) has the hash function properties.
That is, let H = h have properties Q1 - Q3. Then, H has properties
(1) PS (collision resistance),
(2) P4 (second preimage resistance), and
(3) P3 (preimage resistance).

Proof.

(1) Prove that <P5 => <Q3. One can find a pair (M,M”), M Yo M’, such that HM) = HM")
(possible by <P5). However, to compute H(M) = H(M”) without the secret key K, call the
MAC oracle and obtain <M,,h, (M.)>i=1,..., n, such that M. Yo M, for all i, and M,= M’ for
some j 1 [1,n]. (This is allowed by the definition of the MAC oracle). Output <M,H(M’)>.
This implies <Q3.

(2) Property Q3 => P4 follows directly from (1) and P5 => P4.
(3) Prove <P3 => <Q3. Pick a random value H(M) and find M (possible by <P3). Then

compute <M, h, (M,)>i=1,..., n, such that M Yo M., which is allowed by the definition of
the MAC oracle. Output <M,H(M)>. This implies <Q3.



