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Hash Functions
P1. is a message of any size; 64
P2. ∀ function is easy to compute.
P3. For any given m H it is hard (computationally

infeasible) to find M
P4. F it' s hard (computationally

infeasible) to find M M such that H
P5. (

it is hard (computationally infeasible) to find any two
messages such M M that H
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M ≠ =M ' M ) H( M ', ' , , ( ).
NOTE: Attack resistance: P3= preimage, P4= second preimage; P5: collision

Properties P1-P3 are of a one-way function.
Properties P1-P4 are of a weak one-way function.
Properties P1-P5 are of a strong one-way function.



Relationships among Hash Functions Properties

P5 ==> P4
If a hash function is collision resistant, then it is second-preimage resistant.

Proof. Prove P4 ==> P5. Fix xj and find distinct xi such that H(xi) = H(xj) (by P4).
Hence P5 is true since (xi,xj) is a pair of distinct inputs having the same hash value. 

P5 =/=> P3
A function that is collision resistant is not necessarily preimage resistant.
Proof. Assume P5 ==> P3 and provide a counter-example as follows. For example,
let g(x) be a collision-resistant hash function such that |g(x)| = n bits, and define function 
h(x) as follows:
h(x) = 1 || x, if |x| = n bits; h(x)  = 0 || g(x), otherwise. 
Hence, h(x) is a (n+1)-bit hash function that is not preimage resistant. 

P4 =/=> P3
A function that is second-preimage resistant is not necessarily preimage resistant.

Proof. Assume P4 ==> P3 and provide a counter-example as follows. For example, 
let h(x) = x, |x| = fixed length m. h(x) is collision and second preimage resistant but 
not preimage resistant. 



Attacks against One-Way Functions - Search Space

|H(M)| = m bits, hash function has 2m outputs.
Problem
Given hash function H, and a specific value H(M) for M, if H is applied to k
random inputs M1’,...,Mk’, what is the value of k such that:

P H M H M i ki{ ( ' ) ( )} . [ , ]= = ∈0 5 1for some 

Solution   (k = 2m-1 implies no gain over full search).

•For a single value M’ in {M1’,..., Mk’},
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WE MUST DO BETTER THAN RANDOM SEARCH TO
DEFEAT THE COLLISION FREEDOM PROPERTY

• “BIRTHDAY PARADOX”

• GENERAL CASE OF “BIRTHDAY PARADOX”

• OVERLAP BETWEEN TWO SETS OF MESSAGES

• BIRTHDAY ATTACK

• EXAMPLE OF BIRTHDAY ATTACK



BIRTHDAY PARADOX
Find the minimum value of k such that:

P{at least one pair of k people have same birthday} = 0.5
General problem

Let P(n,k) = P{there is at least a pair of duplicates among k
instances of a uniformely distributed random variable with 
values in [1,n]}.
Find the minimum values of k such that P(n,k) = 0.5.

P(365,k)=0.5
Q(365,k) = P{no pair of people have same birthday}=1-P(365,n).
Suppose k<=365 (otherwise there are duplicates).
Let N = number of ways to choose k values in [1,365] with no duplicates.
N = 365*364*...*(365-k+1) = 365!/(365-k)!
The total number of ways to choose k values in [1,365] is T = 365k.
Thus, Q(365,k) = N/T = 365!/(365-k)!/365k, and
P(365,k) = 1 - 365!/(365-k)!/365k.



Diagram of P(365,k) vs. k
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GENERAL CASE OF DUPLICATIONS
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Inequality (1-x) <= e-x for all x >= 0

Let 

The tangent to  at  is  where 
At  so 
So tangent at =  is - .  Since tangent is
under the curve of  the inequality holds .
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OVERLAP BETWEEN TWO SETS OF MESSAGES

Given only x P y x
n

P y x
n1 1 1 1 1

1 1 1, ( ) , ( )= = ≠ = − ⇒

Let be a random variable uniformly distributed over {1,...,n} and 
x = {x1, ..., xk}, y = {y1, ..., yk} two sets of k instances ( k     n ) of .

Problem: What is the probability that x and y overlap 
i.e., (xi,yj) | xi = yj for some i, j in [1, k] ?

Solution:
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Birthday Attack

Let (A, B) be a distributed service where A signs clients’ messages to be sent to B
by appending an encrypted m-bit digest

A client’s (chosen plaintext) birthday attack against distributed service (A, B):

1. The client generates 2 m/2 variants of a message acceptable to A 
(i.e., A will sign any of these message variants) and 

2 m/2 variants of a forged message, which are unaceptable to A
(i.e., A will not sign any of these message variants).

2. The client computes the digest for each message in the two sets and compares
the two sets of digest to find a match ;

With probability 0.5, the client will find a match; if no match is found, the client generates
more messages and tries again until a match is found.

3. The client submits the acceptable message that has a match for A’s signature. A signs it.

4. The client attaches A’s signature to the forged, matching message and sends it to B.

5. The forged message is accepted by B as a valid message from A.

Lesson: One should never sign anything without first adding a secret.



Keyed Hash Functions = Message Authentication Codes (MACs)

(Weak) MAC
MQ1. is a message of any size; hK M = ≤( )  m constant, K is secret..

. ∀ ,Mmessage function hQ2 is easy to compute if K is known.K( )M
Q3. Given any <Mi,hK (Mi)> i = 1 ,…, n, it is hard (computationally

infeasible) to find < M, hK (M)> such that M ≠ Mi.

Strong MAC

MQ1. is a message of any size; hK M = ≤( )  m constant, K is secret..
. ∀ ,MmessageQ2 function h is easy to compute if K is known.K( )M

Q4. Given any <Mi,hK (Mi)> i = 1 ,…, n, it is hard (computationally 
infeasible) to find < M, hK (M)> ≠ <Mi,hK(Mi)>.

Obviously, Strong MAC => (Weak) MAC



Relationships between MAC Properties and Hash Function Properties

A (weak) MAC (keyed hash function) has the hash function properties. 
That is, let H = hK have properties Q1 - Q3.. Then, H has properties

(1) P5 (collision resistance),
(2) P4 (second preimage resistance),  and
(3) P3 (preimage resistance).

Proof. 
(1) Prove that P5 => Q3. One can find a pair (M,M’), M M’, such that H(M) = H(M’) 
(possible by P5). However, to compute H(M) = H(M’) without the secret key K, call the 
MAC oracle and obtain <Mi,hK (Mi)> i = 1 ,…, n, such that  Mi M, for all i, and Mj = M’ for 
some j [1,n]. (This is allowed by the definition of the MAC oracle). Output <M,H(M’)>. 
This implies Q3.

(2) Property Q3 => P4 follows directly from  (1) and P5 => P4.

(3) Prove P3 => Q3. Pick a random value H(M) and find M (possible by P3).  Then 
compute <Mi,hK (Mi)> i = 1 ,…, n, such that M Mi, which is allowed by the definition of 
the MAC oracle. Output <M,H(M)>. This implies Q3.


