Hash Functions

P1. M is a message of any size; $64 \leq|H(M)=m| \leq$ constant.
P2. $\forall M$ message, function $H(M)$ is easy to compute.
P3. For any given $m=H(M)$, it is hard (computationally infeasible) to find M.
P4. For any given $\langle M, H(M)\rangle$ it's hard (computationally infeasible) to find $M^{\prime}, M^{\prime} \neq M$, such that $H\left(M^{\prime}\right)=H(M)$.
P5. (Although $\exists M, M^{\prime} \mid H(M)=H\left(M^{\prime}\right)$ since $|H(M)| \leq$ constant) it is hard (computationally infeasible) to find any two messages $M, M^{\prime}, M \neq M^{\prime}$, such that $H(M)=H\left(M^{\prime}\right)$.

NOTE: Attack resistance: $\mathrm{P} 3=$ preimage, $\mathrm{P} 4=$ second preimage; P 5 : collision Properties P1-P3 are of a one-way function. Properties P1-P4 are of a weak one-way function. Properties P1-P5 are of a strong one-way function.

Relationships among Hash Functions Properties

P5 $==>$ P4

If a hash function is collision resistant, then it is second-preimage resistant.
Proof. Prove $<\mathrm{P} 4==><\mathrm{P} 5$. Fix x_{j} and find distinct x_{i} such that $\mathrm{H}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{H}\left(\mathrm{x}_{\mathrm{j}}\right)$ (by $\langle\mathrm{P} 4)$. Hence $<P 5$ is true since $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ is a pair of distinct inputs having the same hash value.
P5 $=/=>$ P3
A function that is collision resistant is not necessarily preimage resistant.
Proof. Assume P5 ==> P3 and provide a counter-example as follows. For example, let $\mathbf{g}(\mathbf{x})$ be a collision-resistant hash function such that $|\mathrm{g}(\mathrm{x})|=\mathrm{n}$ bits, and define function $\mathbf{h}(\mathbf{x})$ as follows:
$h(x)=1 \| x$, if $|\mathbf{x}|=\mathbf{n}$ bits; $\mathbf{h}(\mathbf{x})=0 \| g(x)$, otherwise.
Hence, $\mathbf{h}(\mathbf{x})$ is a $(\mathrm{n}+1)$-bit hash function that is not preimage resistant.
P4 $=/=>$ P3
A function that is second-preimage resistant is not necessarily preimage resistant.
Proof. Assume $\mathrm{P} 4==>$ P3 and provide a counter-example as follows. For example, let $\mathbf{h}(\mathbf{x})=\mathbf{x},|\mathbf{x}|=$ fixed length $\mathbf{m} . \mathrm{h}(\mathrm{x})$ is collision and second preimage resistant but not preimage resistant.

Attacks against One-Way Functions - Search Space

$|H(M)|=m$ bits, hash function has 2^{m} outputs.

Problem

Given hash function H, and a specific value $H(M)$ for M, if H is applied to k random inputs $M_{1}{ }^{\prime}, \ldots, \mathrm{M}_{k}{ }^{\prime}$, what is the value of k such that:

$$
P\left\{H\left(M_{i}^{\prime}\right)=H(M)\right\}=0.5 \text { for some } \quad i \in[1, k]
$$

Solution ($k=2^{m-1}$ implies no gain over full search).
-For a single value M^{\prime} in $\left\{M_{1}^{\prime}, \ldots, M_{k}{ }^{\prime}\right\}$,

$$
\begin{aligned}
& P\left\{H\left(M^{\prime}\right)=H(M)\right\}=\frac{1}{2^{m}} \text { and } \\
& P\left\{H\left(M^{\prime}\right) \neq H(M)\right\}=1-\frac{1}{2^{m}}
\end{aligned}
$$

-For k values $\left\{M_{1}{ }^{\prime}, \ldots, M_{k}{ }^{\prime}\right\}$ picked at random

$$
\begin{aligned}
& P\left(H\left(M_{i}^{\prime}\right) \neq H(M)\right\}=\left[1-\frac{1}{2^{m}}\right]^{k} \text { for all } i \in[1, k] \text { and } \\
& \begin{aligned}
& P\left(H\left(M_{i}^{\prime}\right)\right.=H(M)\}=1-\left[1-\frac{1}{2^{m}}\right]^{k} \text { for some } i \in[1, k], \\
& \cong 1-1+\frac{k}{2^{m}} \text { for } m \geq 64, \text { since }(1-a)^{k} \cong 1-k a \\
& \quad=\frac{1}{2} \text { for } k=2^{m-1} .
\end{aligned}
\end{aligned}
$$

WE MUST DO BETTER THAN RANDOM SEARCH TO DEFEAT THE COLLISION FREEDOM PROPERTY

- "BIRTHDAY PARADOX"
- GENERAL CASE OF "BIRTHDAY PARADOX"
- OVERLAP BETWEEN TWO SETS OF MESSAGES
- BIRTHDAY ATTACK
- EXAMPLE OF BIRTHDAY ATTACK

BIRTHDAY PARADOX

Find the minimum value of k such that:
$P\{$ at least one pair of k people have same birthday $\}=0.5$

General problem

Let $P(n, k)=P$ \{there is at least a pair of duplicates among k instances of a uniformely distributed random variable with values in $[1, \mathrm{n}]\}$.
Find the minimum values of k such that $P(n, k)=0.5$.
$P(365, k)=0.5$
$Q(365, k)=P$ no pair of people have same birthday $\}=1-P(365, n)$.
Suppose $k<=365$ (otherwise there are duplicates).
Let $N=$ number of ways to choose k values in $[1,365]$ with no duplicates.
$N=365 * 364 *$... $*(365-k+1)=365!/(365-k)$!
The total number of ways to choose k values in $[1,365]$ is $T=365^{k}$.
Thus, $Q(365, k)=N / T=365!/(365-k)!/ 365^{k}$, and
$P(365, k)=1-365!/(365-k)!/ 365^{k}$.

Diagram of $\boldsymbol{P}(\mathbf{3 6 5}, \boldsymbol{k})$ vs. \boldsymbol{k}

GENERAL CASE OF DUPLICATIONS

Find $P(n, k)=P\{X i=X j \in\{X 1, \ldots, X k\}$ for some $\mathrm{i}, \mathrm{j}, \mathrm{X}=$ u.d.r.v. $\}$
$P(n, k)=1-\frac{n!}{(n-k)!n^{k}}=1-1-\frac{1}{\mathrm{n}} \ldots 1-\frac{\mathrm{k}-1}{\mathrm{n}}$
But $(1-x) \leq e^{-x}$ for all $x \geq 0$, thus
$P(n, k)>1-e^{-\frac{1}{n}} \cdot e^{-\frac{2}{n}} \ldots . . e^{-\frac{k-1}{n}}=1-e^{-\frac{k(k-1)}{2 n}}$
$P(n, k)=\frac{1}{2} \Rightarrow \frac{1}{2}=1-e^{-\frac{k(k-1)}{2 n}} \Rightarrow 2=e^{\frac{k(k-1)}{2 n}} \Rightarrow \ln (2) \cong \frac{k^{2}}{2 n} \Rightarrow$
$k \cong \sqrt{2(\ln 2) n} \cong 1.17 \sqrt{n} \cong \sqrt{n}$
If $n=2^{m}, k \cong 2^{\frac{m}{2}}$.

Inequality (1-x) $<=\mathbf{e}^{-\mathbf{x}}$ for all $\mathrm{x}>=0$

Let $f(x)=e^{-x}$.
$\frac{d f(x)}{d x}=-e^{-x} \Rightarrow \frac{d f(0)}{d x}=-1$.
The tangent to f at $x=0$ is $a x+b$ where $a=-1$.
At $x=0, f(0)=1$, so $a \cdot 0+b=1$.
So tangent at $x=0$ is $1-x$. Since tangent is under the curve of e^{-x}, the inequality holds .

OVERLAP BETWEEN TWO SETS OF MESSAGES

Let X be a random variable uniformly distributed over $\{1, \ldots, \mathrm{n}\}$ and

$$
\mathrm{x}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right\}, \mathrm{y}=\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right\} \text { two sets of } \mathrm{k} \text { instances }(\mathrm{k} \leq \mathrm{n}) \text { of } \mathrm{X} .
$$

Problem: What is the probability that x and y overlap

$$
\text { i.e., }\left(x_{i}, y_{j}\right) \mid x_{i}=y_{j} \text { for some } i, j \text { in }[1, k] \text { ? }
$$

Solution:
Given only $x_{1}, P\left(y_{1}=x_{1}\right)=\frac{1}{n}, P\left(y_{1} \neq x_{1}\right)=1-\frac{1}{n} \Rightarrow$
$P\left(y_{1} \neq x_{1}, \ldots, y_{k} \neq x_{1}\right)=1-\frac{1}{n}^{k} \Rightarrow P\left(y_{i}=x_{1}\right.$ for some $\left.i \in[1, k]\right)=1-\frac{1}{n}^{k}$.
Assume x_{1}, \ldots, x_{k} distinct and n, k are large.
$P\left(y_{1} \neq x_{1}, \ldots, y_{k} \neq x_{1}\right)=1-\frac{1}{n}^{k} \Rightarrow P(x \neq y)=1-\frac{1}{n}^{k}=1-\frac{1}{n}^{k^{2}}$
$P\left(x_{i}=y_{i}\right.$ for some $\left.i, j \in[1, k]\right)=1-1-\frac{1}{n}^{k^{2}}>1-e^{-\frac{1}{n}}{ }^{k^{2}}=1-e^{-\frac{k^{2}}{n}}$
$1-e^{-\frac{k^{2}}{n}}=\frac{1}{2} \Rightarrow k=\sqrt{(\ln 2) n}=0.83 \sqrt{n} \cong \sqrt{n}$
If $n=2^{m}, k=\sqrt{2^{m}}=2^{\frac{m}{2}}$.

Birthday Attack

Let (A, B) be a distributed service where A signs clients' messages to be sent to B by appending an encrypted m-bit digest

A client's (chosen plaintext) birthday attack against distributed service (A, B):

1. The client generates $2 \mathrm{~m} / 2$ variants of a message acceptable to A
(i.e., A will sign any of these message variants) and $2 \mathrm{~m} / 2$ variants of a forged message, which are unaceptable to A (i.e., A will not sign any of these message variants).
2. The client computes the digest for each message in the two sets and compares the two sets of digest to find a match ;
With probability 0.5, the client will find a match; if no match is found, the client generates more messages and tries again until a match is found.
3. The client submits the acceptable message that has a match for A's signature. A signs it.
4. The client attaches A's signature to the forged, matching message and sends it to B.
5. The forged message is accepted by B as a valid message from A .

Lesson: One should never sign anything without first adding a secret.

Keyed Hash Functions = Message Authentication Codes (MACs)

(Weak) MAC

Q1. M is a message of any size; $\left|h_{K}(M)=m\right| \leq$ constant, K is secret.
Q2. \forall message M, function $h_{K}(M)$ is easy to compute if K is known.
Q3. Given any $\left\langle M_{i}, h_{K}\left(M_{i}\right)\right\rangle \mathrm{i}=1, \ldots, \mathrm{n}$, it is hard (computationally infeasible) to find $<M, h_{K}(M)>$ such that $M \neq M_{\mathrm{i}}$.

Strong MAC

Q1. M is a message of any size; $\left|h_{K}(M)=m\right| \leq$ constant, K is secret. Q2. \forall message M, function $h_{\mathrm{K}}(M)$ is easy to compute if K is known. Q4. Given any $\left\langle M_{i}, h_{K}\left(M_{i}\right)>\mathrm{i}=1, \ldots, \mathrm{n}\right.$, it is hard (computationally infeasible) to find $<M, h_{K}(M)>\neq<M_{i}, h_{K}\left(M_{\mathrm{i}}\right)>$.

Obviously, Strong MAC => (Weak) MAC

Relationships between MAC Properties and Hash Function Properties

A (weak) MAC (keyed hash function) has the hash function properties.
That is, let $H=h_{K}$ have properties Q1-Q3. Then, H has properties
(1) P5 (collision resistance),
(2) P4 (second preimage resistance), and
(3) P3 (preimage resistance).

Proof.
(1) Prove that $<P 5=><Q 3$. One can find a pair $\left(M, M^{\prime}\right), M \bigvee_{0} M^{\prime}$, such that $H(M)=H\left(M^{\prime}\right)$ (possible by $<\mathrm{P} 5$). However, to compute $\mathrm{H}(\mathrm{M})=\mathrm{H}\left(\mathrm{M}^{\prime}\right)$ without the secret key K, call the MAC oracle and obtain $<\mathrm{M}_{\mathrm{i}}, \mathrm{h}_{\mathrm{K}}\left(\mathrm{M}_{\mathrm{i}}\right)>\mathrm{i}=1, \ldots, \mathrm{n}$, such that $M_{\mathrm{i}} \bigvee_{0} M$, for all i , and $M_{\mathrm{j}}=M^{\prime}$ for some $\mathrm{j} \boldsymbol{\mathrm { Bl }}[1, \mathrm{n}]$. (This is allowed by the definition of the MAC oracle). Output $<\mathrm{M}, \mathrm{H}\left(\mathrm{M}^{\prime}\right)>$. This implies $<$ Q3.
(2) Property Q3 => P4 follows directly from (1) and P5 => P4.
(3) Prove $<P 3=><Q 3$. Pick a random value $H(M)$ and find M (possible by $<P 3$). Then compute $<\mathrm{M}_{\mathrm{i}}, \mathrm{h}_{\mathrm{K}}\left(\mathrm{M}_{\mathrm{i}}\right)>\mathrm{i}=1, \ldots, \mathrm{n}$, such that $M \bigvee_{0} M_{\mathrm{i}}$, which is allowed by the definition of the MAC oracle. Output $<\mathrm{M}, \mathrm{H}(\mathrm{M})>$. This implies $<\mathrm{Q} 3$.

