Hash Functions

- P1. *M* is a message of any size; $64 \le |H(M) = m| \le constant$.
- P2. $\forall M$ message, function H(M) is easy to compute.
- P3. For any given m = H(M), it is hard (computationally infeasible) to find M.
- P4. For any given $\langle M, H(M) \rangle$ it's hard (computationally infeasible) to find $M', M' \neq M$, such that H(M') = H(M).
- P5. (Although $\exists M, M' | H(M) = H(M')$ since $|H(M)| \le \text{constant}$) it is hard (computationally infeasible) to find any two messages $M, M', M \neq M'$, such that H(M) = H(M').
- NOTE: Attack *resistance*: P3= preimage, P4= second preimage; P5: collision Properties P1-P3 are of a *one-way* function. Properties P1-P4 are of a *weak one-way* function. Properties P1-P5 are of a *strong one-way* function.

Relationships among Hash Functions Properties

P5 ==> P4

If a hash function is *collision resistant*, then *it is second-preimage resistant*.

Proof. Prove $\triangleleft P4 \implies \triangleleft P5$. Fix x_j and find distinct x_i such that $H(x_i) = H(x_j)$ (by $\triangleleft P4$). Hence $\triangleleft P5$ is true since (x_i, x_j) is a pair of distinct inputs having the same hash value.

P5 = P3

A function that is *collision resistant* is *not* necessarily *preimage resistant*.

Proof. Assume P5 ==> P3 and provide a counter-example as follows. For example, let g(x) be a collision-resistant hash function such that |g(x)| = n bits, and define function h(x) as follows:

h(x) = 1 || x, if |x| = n bits; h(x) = 0 || g(x), otherwise.

Hence, h(x) is a (n+1)-bit hash function that is not preimage resistant.

P4 =/=> P3 A function that is *second-preimage resistant* is *not* necessarily *preimage resistant*.

Proof. Assume P4 ==> P3 and provide a counter-example as follows. For example, let h(x) = x, |x| = fixed length m. h(x) is collision and second preimage resistant but not preimage resistant.

Attacks against One-Way Functions - Search Space

|H(M)| = m bits, hash function has 2^m outputs.

Problem

Given hash function *H*, and a specific value H(M) for *M*, if *H* is applied to *k* random inputs M_1 ',..., M_k ', what is the value of *k* such that:

$$P \{ H (M'_i) = H (M) \} = 0.5 \text{ for some } i \in [1, k]$$

Solution $(k = 2^{m-1} \text{ implies no gain over full search).$

•For a single value *M*' in $\{M_1', ..., M_k'\}$, $P\{H(M') = H(M)\} = \frac{1}{2^m}$ and $P\{H(M') \neq H(M)\} = 1 - \frac{1}{2^m}$

•For k values $\{M_1, ..., M_k\}$ picked at random

$$P(H(M'_{i}) \neq H(M)) = \left[1 - \frac{1}{2^{m}}\right]^{k} \text{ for all } i \in [1, k] \text{ and}$$

$$P(H(M'_{i}) = H(M)) = 1 - \left[1 - \frac{1}{2^{m}}\right]^{k} \text{ for some } i \in [1, k],$$

$$\cong 1 - 1 + \frac{k}{2^{m}} \text{ for } m \ge 64, \text{ since } (1 - a)^{k} \cong 1 - ka$$

$$= \frac{1}{2} \text{ for } k = 2^{m-1}.$$

WE MUST DO BETTER THAN RANDOM SEARCH TO DEFEAT THE COLLISION FREEDOM PROPERTY

• "BIRTHDAY PARADOX"

• GENERAL CASE OF "BIRTHDAY PARADOX"

• OVERLAP BETWEEN TWO SETS OF MESSAGES

• BIRTHDAY ATTACK

• EXAMPLE OF BIRTHDAY ATTACK

BIRTHDAY PARADOX

Find the minimum value of k such that:

P{at least one pair of *k* people have same birthday} = 0.5

General problem

Let P(n,k) = P{there is at least a pair of duplicates among k instances of a uniformely distributed random variable with values in [1,n]}.

Find the minimum values of k such that P(n,k) = 0.5.

P(365,k)=0.5 $Q(365,k) = P\{\text{no pair of people have same birthday}\}=1-P(365,n).$ Suppose k <= 365 (otherwise there are duplicates). Let N = number of ways to choose k values in [1,365] with no duplicates. N = 365*364*...*(365-k+1) = 365!/(365-k)!The total number of ways to choose k values in [1,365] is $T = 365^k$. Thus, $Q(365,k) = N/T = 365!/(365-k)!/365^k$, and $P(365,k) = 1 - 365!/(365-k)!/365^k.$

Diagram of *P*(**365**,*k*) vs. *k*

GENERAL CASE OF DUPLICATIONS

Find $P(n,k) = P\{Xi = Xj \in \{X1,...,Xk\} \text{ for some } i, j, X = u.d.r.v.\}$

 \Rightarrow

$$P(n,k) = 1 - \frac{n!}{(n-k)!n^k} = 1 - 1 - \frac{1}{n} \dots 1 - \frac{k-1}{n}$$

But $(1-x) \le e^{-x}$ for all $x \ge 0$, thus

$$P(n,k) > 1 - e^{-\frac{1}{n}} \cdot e^{-\frac{2}{n}} \dots \cdot e^{-\frac{k-1}{n}} = 1 - e^{-\frac{k(k-1)}{2n}}$$

$$P(n,k) = \frac{1}{2} \Rightarrow \frac{1}{2} = 1 - e^{-\frac{k(k-1)}{2n}} \Rightarrow 2 = e^{\frac{k(k-1)}{2n}} \Rightarrow \ln(2) \cong \frac{k^2}{2n}$$

$$k \cong \sqrt{2(\ln 2)n} \cong 1.17\sqrt{n} \cong \sqrt{n}$$

If $n = 2^m$, $k \cong 2^{\frac{m}{2}}$.

Inequality (1-x) $\leq e^{-x}$ for all x ≥ 0 Let $f(x) = e^{-x}$. $\frac{df(x)}{dx} = -e^{-x} \Rightarrow \frac{df(0)}{dx} = -1.$ The tangent to f at x = 0 is ax + b where a = -1. At x = 0, f(0) = 1, so $a \cdot 0 + b = 1$. So tangent at x = 0 is 1 - x. Since tangent is under the curve of e^{-x} , the inequality holds.

OVERLAP BETWEEN TWO SETS OF MESSAGES

Let x be a random variable uniformly distributed over $\{1,...,n\}$ and $x = \{x_1, ..., x_k\}, y = \{y_1, ..., y_k\}$ two sets of k instances ($k \le n$) of x.

Problem: What is the probability that x and y overlap i.e., $(x_i, y_j) | x_i = y_j$ for some i, j in [1, k]?

Solution:
Given only
$$x_1$$
, $P(y_1 = x_1) = \frac{1}{n}$, $P(y_1 \neq x_1) = 1 - \frac{1}{n} \Rightarrow$
 $P(y_1 \neq x_1, \dots, y_k \neq x_1) = 1 - \frac{1}{n}^k \Rightarrow P(y_i = x_1 \text{ for some } i \in [1, k]) = 1 - \frac{1}{n}^k$.

Assume x_1, \ldots, x_k distinct and n, k are large.

$$P(y_1 \neq x_1, \dots, y_k \neq x_1) = 1 - \frac{1}{n} \stackrel{k}{\Rightarrow} P(x \neq y) = 1 - \frac{1}{n} \stackrel{k}{=} 1 - \frac{1}{n} \stackrel{k^2}{=}$$

$$P(x_i = y_i \text{ for some } i, j \in [1, k]) = 1 - 1 - \frac{1}{n} \sum_{k=1}^{k^2} > 1 - e^{-\frac{1}{n}} \sum_{k=1}^{k^2} = 1 - e^{-\frac{k^2}{n}}$$

$$1 - e^{-\frac{k^2}{n}} = \frac{1}{2} \Longrightarrow k = \sqrt{(\ln 2)n} = 0.83\sqrt{n} \cong \sqrt{n}$$

If $n = 2^m$, $k = \sqrt{2^m} = 2^{\frac{m}{2}}$.

Birthday Attack

Let (A, B) be a *distributed service* where A signs clients' messages to be sent to B by appending an *encrypted m-bit digest*

A client's (chosen plaintext) birthday attack against distributed service (A, B):

The client generates 2 ^{m/2} variants of a message *acceptable* to A

 (i.e., A will sign any of these message variants) and
 2 ^{m/2} variants of a forged message, which are *unaceptable* to A
 (i.e., A will not sign any of these message variants).

2. The client computes the digest for each message in the two sets and compares the two sets of digest to find a match ;
With probability 0.5, the client will find a match; if no match is found, the client generates more messages and tries again until a match is found.

3. The client submits the *acceptable message* that has a match for A's signature. A signs it.

4. The client attaches A's signature to the *forged, matching message* and sends it to B.

5. The *forged message is accepted* by B as a valid message from A.

Lesson: One should never sign anything without first adding a secret.

Keyed Hash Functions = Message Authentication Codes (MACs)

(Weak) MAC

Ql. *M* is a message of any size; $|h_K(M) = m| \le constant$, K is secret.

Q2. \forall message *M*, function $h_{K}(M)$ is easy to compute if *K* is known.

Q3. Given any $\langle M_i, h_K(M_i) \rangle$ i = 1,..., n, it is hard (computationally infeasible) to find $\langle M, h_K(M) \rangle$ such that $M \neq M_i$.

Strong MAC

Ql. *M* is a message of any size; |h_K (M) = m|≤constant, K is secret.
Q2. ∀message *M*, function h_K(M) is easy to compute if *K* is known.
Q4. Given any <M_i, h_K (M_i) > i = 1,..., n, it is hard (computationally infeasible) to find < M, h_K(M) > ≠ <M_i, h_K(M_i)>.

Obviously, Strong MAC => (Weak) MAC

Relationships between MAC Properties and Hash Function Properties

A (weak) MAC (keyed hash function) has the hash function properties.

That is, let $H = h_K$ have properties Q1 - Q3. Then, H has properties

(1) P5 (collision resistance),

(2) P4 (second preimage resistance), and

(3) P3 (preimage resistance).

Proof.

(1) Prove that $\blacktriangleleft P5 \Rightarrow \measuredangle Q3$. One can find a pair (M,M'), M $\checkmark D$ M', such that H(M) = H(M') (possible by $\lt P5$). However, to compute H(M) = H(M') without the secret key K, call the MAC oracle and obtain $\lt M_i, h_K(M_i) > i = 1, ..., n$, such that $M_i \checkmark D$, for all i, and $M_j = M'$ for some j $\bowtie [1,n]$. (This is allowed by the definition of the MAC oracle). Output $\lt M, H(M') >$. This implies $\lt Q3$.

(2) Property Q3 => P4 follows directly from (1) and P5 => P4.

(3) Prove $\measuredangle P3 \Rightarrow \measuredangle Q3$. Pick a random value H(M) and find M (possible by $\measuredangle P3$). Then compute $\lt M_i, h_K(M_i) > i = 1, ..., n$, such that $M \searrow M_i$, which is allowed by the definition of the MAC oracle. Output $\lt M, H(M) >$. This implies $\measuredangle Q3$.