
The Kerberos Authentication System
Course Outline

Technical Underpinnings
- authentication based on key sharing
- Needham-Schroeder protocol
- Denning and Sacco protocol

Kerbeors V 4
- Login and client-server authentication
- Credential establishment and cache
- Key Version Numbers
- The KDC Database
- Interrealm Authentication
- Data Encryption
- Data Integrity
- Kerberos V 4 Message Formats

Kerbeors V 5
- ASN.1 Data Representation Language
- Delegation of Rights
- Ticket Lifetimes
- Key Version Numbers
- Interrealm Hierarchy
- Preauthentication
- KDC Database
- Double TGT Authentication
- Data Encryption / Integrity
- Kerberos V 5 Message Formats and Protocol Flows

Kerberos Future Developments and Use

Kerberos V4

Technical Underpinnings and Description

Authentication Based on Secret-Key Sharing

A B
KAB

A and B share secret key KAB

One-way authentication (?)

A

A IB B
{ IB}K

AB

Two-way (mutual) authentication

IB

A

A B{ IA, IB}K
AB

{ IA}K
AB

Pairwise Authentication - O(n2) keys

A B

E

CF

D

Trusted Third-Party Authentication - O(n) keys

KDC

DE

F

BA

C

shared long-term key (e.g., 6 mos.)
shared session key (e.g., 8 hours)

KDC Key Distribution Center

Needham - Schroeder’s Protocol (1978)
A = initiator peer, client; B = recipient peer, server;
K

A = A’s private, long-term, key K
B = B’s private, long-term, key

Ia , IA = A’s nonces (challenges) IB = B’s nonce (challenge)

KDC (AS) = Authentication Server

A B

AS
Kab

1. A, B, Ia

2. { Ia, B, Kab, { A, Kab }K
B }K

A

A

3. { A, Kab }K
B

4. { IB }K
ab

5. { IB-1 }K
ab

B

<A, KA>
<B, KB>

KDC

Steps 1 - 3 : distribution of session key Kab
Steps 4, 5 : one-way authentication; i.e., B authenticates A

A

4. { IB }K
ab

5’. { IB-1, IA }K
ab B

6. { IA-1 }K
ab

Steps 4 - 6 : two-way(mutual) authentication of A and B

Needham - Schroeder’s Protocol (ctnd.)
1. What if Ia is not used in messages 1, 2 ?

Intruder X can replay an old AS response to A’s request

1. A, B
2. { B, Kold-ab, { A, Kold-ab }K

B }K
A

- forces the reuse of an old session key past the key’s lifetime

2. What if identity B is not used (encrypted) in message 2 ?
Registered user X can masquerade as B, and can
make A believe it is communicating with B

- changes B to X in message 1.
- intercepts messages 3, 5 and generates correct responses 4, 6.

1. A, X
2. { B, Kax, { A, Kax }K

X }K
A

3. { A, Kax }K
x

4.

3. What if A repeatedly requests a session with B from AS ?
A obtains known plaintext-ciphertext pairs < Ki

ab , { A, Ki
ab }K

B >, i= 1,..., n
and performs cryptanalysis to discover B’s secret key KB.

Countermeasures: (1) replace { A, Ki
ab }K

B with { TKi } KB { A, Ki
ab }TK

i
where TKi is a temporary key unknown to A.

(2) use { confounderi , A, Ki
ab }K

B instead of { A, Ki
ab }K

B
where confounderi is a (pseudo) random number.

4. What if intruder X discovers Kab (but not KA or KB)?

Intruder X can masquerade as A, and can
make B believe it is communicating with A
- replays message { A, Kab }K

B
- knows f = IB - 1, and generates correct response 5.

This vulnerability was pointed out by Denning and Sacco in 1981

Denning and Sacco’s Protocol (1981)

Same assumptions as Needham’s and Schroeder’s.

In addition, T = timestamp is generated by AS, and all clocks are tightly synchronized; i.e.,

|CLOCKi - T| < ∆t1 + ∆t2,

for all i = A, B, and where ∆t1 = discrepancy between local clocks and AS’ clock
∆t2 = network delay

1. A -> AS : A, B

2. AS -> A : { B, Kab, T, { A, Kab ,T }K
B }K

A

3. A -> B : { A, Kab ,T }K
B

4. B -> A : { IB }K
ab

5. A - > B : { IB-1 }K
ab

Limited lifetime of { A, Kab ,T }K
B has the following consequences:

• the ticket { A, Kab ,T }K
B cannot be replayed (or reused)

• an intruder that discovers Kab cannot masquerade as A

However,

• network delays or out-of-synch local clocks can cause denial of service
and
• lifetime limit for Kab cannot be enforced by ticket { A, Kab ,T }K

B (no lifetime limit)
• ticket { A, Kab ,T }K

B cannot be cached and reused by A.

Kerberos V4 (MIT 1987 - 1992)

A TGS

AS
Ka-tgs <A, KA>

<B, KB>

KDC

Kab
A B

TGS

1 2 3 4

A B
5

6

<TGS, KTGS>

Login and
Peer-to-Peer/
Client-Server
Authentication

1. AS_REQ : A, Ta1, lifetime1, TGS

2. AS_REP: A, Ta1, expr_time1, { Ka-tgs, TGS, expr_time1, { Ticketa-tgs }K
TGS , Ta1 }K

A

where Ticketa-tgs = < A, @A, Ka-tgs, lifetime1, Tkdc1, TGS >

3. TGS_REQ : { Ticketa-tgs }K
TGS , { authenticatora-tgs }K

a-tgs , Ta2, lifetime2, B

where authenticatora-tgs = < A, checksum1, Ta2 >

4. TGS_REP : A, Ta2, expr_time2, { Kab, B, expr_time2, { Ticketab }K
B , Ta2}K

a-tgs

where Ticketab = < A, @A, Kab, lifetime2, Tkdc2, B>

5. AP_REQ : { Ticketab }K
B , { authenticatorab }K

ab (for one-way authentication)

where authenticatorab = < A, checksum2, Ta3 >

6. AP_REP : { checksum2 + 1 }K
ab = OPTIONAL (for mutual authentication)

Credential Establishment and Cache

Credential cache is held in a file accessible only by the user’s processes.

Cache entries are filled by the execution of messages 1 - 4 of Kerberos.

Cache entry structure returned by “get_cred”.

Client A’s
credential
cache

(service) B’s name

(service) B’s instance

(service) B’s realm

session key Kab

ticket lifetime

key version number

(client) A’s name

ticket issue date

(client) A’s instance

ticket

TGS credential

service B credential

Key Version Numbers (krb v 4)

Motivation: Both users and servers change their keys over time.
(e.g., passwords, server keys).

Outstanding tickets may exist which are encrypted with old key.

Unless servers remember old keys, communication fails.

Failed communication cannot always be reinitiated
(e.g., batch applications fail).

Approach: Maintain a version number for each key .

Servers’ responsibility to save keys with older version numbers.

Tickets and protocol messages only include the expected
key version number.

Maximum number of old keys do not typically exceed two to three.
(max. life of a K V4 ticket is about 21 hours plus max. KDC update
delay; exception: long-life patches allowing one-month tickets)

Limitation: Password updates may not propagate to all slaves instantaneously.

User logins transparently directed to a KDC slave may fail for a
until password updates propagate to KDC slaves.

Users must remember previous password (e.g., previous version).

Network-Layer Addresses in Tickets

Motivation:Theft of credential cache entries (i.e., tickets and corresponding session keys)
use of stolen tickets and session keys from foreign network locations

Situation: unattended workstations, root privileges to someone else’s system

Note: Theft of tickets and authenticators alone by an intruder does not
give the intruder a ticket’s session key
Nevertheless, theft of tickets and authenticators can be a threat
for all applications that do not use the session key and
detect attack beyond initial authentication.

Approach: Place ticket user’s network-layer (e.g., IP) address in ticket.
(Why not in authenticator ?)

Limitations: Approach disallows legitimate delegation of credentials.
Network-layer addresses can be faked without great difficulty.

KDC Replication

Motivation: Avoid single point of failure and performance bottleneck

Approach: Maintain a single Master KDC and multiple Slave KDCs.
Master KDC is Readable / Writeable whereas Slave KDCs are

Read-only.
Slave KDCs are updated periodically by Master KDC,

or by administrative command.
Unencrypted file containing Master KDC database is downloaded

to each Slave KDC

Reason: Most KDC operations require Read-only access
KDC updates are typically required for infrequent operations;

e.g., add / delete users, change passwords.

Threat: Unauthorized disclosure of users’ passwords.
Unauthorized modification of user and account data

- create / modify user accounts and their properties;
- replace (encrypted) user’s password entry with attacker’s

Protection: Maintain the integrity of the Master KDC file copy in transit.
- compute a hash function of the Master KDC file copy.
- send the hash function to each Slave KDC in a

krb_safe message.

Residual Threat:
Ciphertext-only attack against the users’ password entries.
Some user privacy concerns (e.g., user registration attributes).

Interrealm Authentication

Key Sharing

B@R

L.KDC

A@L

R.KDC

KA KB

KL-R

Kab

Protocol Message Flows

8

1 2 3 4

A@L

L.AS

KA-R.TGS

L.TGS

5

6

L.KDC

<A, KA>

< R.TGS, KL-R>

<B, KB>

< L.TGS, KL-R>

7 B@R

R.AS

Kab

R.TGS

R.KDC

Non-Transitive Authentication Trust (krb v4)

Motivation: Penultimate, rogue KDC of a KDC chain (i.e., L.KDC) can
impersonate both local and foreign users.

C@R

L.KDC

A@L

R.KDC

KA
KB

KL-M

Kab

KM-R

M.KDC

B@M

Key Sharing

Protection: User A.L’s ticket for R.KDC (i.e., KA-R.TGS) includes realm name L,
and is made by M.KDC (i.e., encrypted with KM-R).

Realm R.KDC will refuse a ticket made by M.KDC for a foreign
user (i.e., a user of L.KDC, or of any other realm but M.KDC).

Limitation: Manage and protect O(n2) shared cross-realm keys.
Establish O(n2) trust relations.

Encryption for Confidentiality and Integrity

• CBC Encryption Mode

Encryption and Decryption

• IV Requirements

• CBC Invariant Property

• PCBC Encryption Mode

Encryption and Decryption

• PCBC Invariant Property

• Data Encryption (for Confidentiality)

• Data Integrity

CBC Encryption Mode

Encryption : Cn = { Cn-1 Pn }K , where C0 = IV

IV

key

p1

c1

p2

c2

p3

c3

p4

c4

ECB-e ECB-e ECB-e ECB-e

Cn-1 {Cn} = Pn , where C0 = IVK-1Decryption :

c1

p1

key

IV

c2

p2

c3

p3

c4

p4

ECB-dECB-d ECB-d ECB-d

CBC Encryption Mode (ctnd)

IV Requirements

1. IV Must be Secret (and Random)

Chosen Plaintext Attack: Let IVa, IVb be known, and K, P1 be secret.

Choose Xi such that

Then,

{ IVa Xi }K = { IVb P1 }K

IVa IVb Xi = P1

2. IV Must be Selected / Changed per Association (e.g., per session)

Chosen Plaintext Attack: Let IV be constant (but secret) and P1 be secret (but
predictable). P1 has a few known values P1

1 , P2
1 , ..., Pn

1

Steal { IV P1 }K and construct a table of 256 entries
for each Pi

1 , each entry containing { IV Pi
1}Kj

Find an entry s.t. { IV P1 }K = { IV Pi
1}Kj

and (secret) key K = Kj.

3. IV Must be Protected from Predictable Modification

Modification Attack: Predictable change of IV[i] bit causes predictable change of
P1[i] bit, even if P1 is secret.

C1 = { IV P1 }K => P1[i] = IV [i] { C1 } [i]K-1
IV [i] { C1 } [i]K-1

=

CBC Encryption Mode (ctnd)

Pn }KCn = { Cn-1Encryption :

modify Cn[i]

=> modify Pn+1[i] Cn {Cn+1} = Pn+1
K-1

Decryption :

{Cn} = Pn => random Pn
K-1Cn-1

CBC Invariant Property

p1 p2 pi-1 pi pi+1 pn

c1 c2 ci-1 ci ci+1 cn

IV

IVs

c1 c2 ci-1 ci ci+1 cn

p’1 p2 pi-1 p’i pi+1 pn

SpliceDecompose

IVp

P’1 = P1 IVp IV P’i = Ci-1 Pi IVs

The Cipher Feedback (CFB) mode of the DES

DES
(Encipher)

Key
DES

(Encipher)
Key

CLEARTEXT CLEARTEXT

Synchronized 64-bit
shift register inputs

(initial value
from IV)

CIPHERTEXT

PCBC Encryption Mode

Encryption : Cn = {Cn-1 Pn-1 Pn}K, where C0=IV, P0= 0

IV

p1

c1

p2

c2

p3

c3

p4

c4

key ECB-e ECB-e ECB-e ECB-e

IV

c1

p1

c2

p2

c3

p3

c4

p4

key ECB-d ECB-d ECB-d ECB-d

Decryption : C Pn-1 {Cn} = Pn , where C0=IV, P0= 0K-1

n-1

PCBC Encryption Mode (ctnd)

Encryption : Cn = {Cn-1 Pn-1 Pn}K

modify Cn[i]

Decryption : => random PnPn-1 = Pn

K-1
Cn Pn {Cn+1} = Pn+1

{Cn}
K-1

=> random Pn+1

=> random Pn+m

Cn-1

PCBC Invariant Property

p1 p2 pi-1 pi pi+1 pn

c1 c2 ci-1 ci ci+1 cn

IV

IVp IVs

c1 c2 ci-1 ci ci+1 cn

p’1 p2 pi-1 p’i pi+1 pn

Decompose
Splice

P’1 = P1 IVp IV P’i = Ci-1 Pi Pi-1 IVs

Data Encryption (for Confidentiality)

krb_priv

d || t-stamp pad

P

C
PCBC ENC

length data 5 ms
t-stamp

sender
IP-addr

d || t-stamp padlength data 5 ms
t-stamp

sender
IP-addr

Kv4 priv length(encr)kv4 priv length(encr)

key
IV

kv4 priv length(encr)

Data Integrity

krb_safe

data padKv4 safe 5 ms
t-stamp

sender
IP-addr

d || t-stamplength(data) Kab

cksum

dataKv4 safe 5 ms
t-stamp

sender
IP-addr

d || t-stamplength(data) cksum

Kerberos V4 Replay Detection
(sliding time window w/o server replay cache)

A’s
clock

(loosely
synchronized)

A’s (client’s)
clock
(slow)

A’s
clock
(fast)

B’s (server’s) clock

C1(t)

reject

Tk

C2(t)

reply

Tj

reject

Ti
C3(t)

B (server) must
maintain
replay cache

T0

T1

T3

T2

CS(t)+5 min

CS(t)

CS(t)-5 min

Out-of-Synch Clocks
Server B2’s clock Client A’s clock Server B1’s clock

reject

Tj

T0

T1

T3

T2
CB1(t)

CB1(t)+5 min

CB1(t)-5 min

CB2(t)+5 min Ti

reject

Ti

CA(tj)

Q0

Q1

Q3

Q2

CA(ti)

CB2(t)

CB2(t)-5 min

Kerberos V4

Message Formats

Ticket
bytes

B
A’s (i.e., client’s) name
A’s (i.e., client’s) instance

A’s (i.e., client’s) realm

A’s network-layer (e.g., IP) adddress
session key for A <-> B (i.e.,
Kab)ticket lifetime (5 min. units)

KDC timestamp (i.e., ticket issue time)
B’s (i.e., server’s) name

B’s (i.e., server’s) instance

pad of 0’s to make ticket length a multiple of 8 bytes

1

null-terminated≤40
≤40 null-terminated
≤40 null-terminated

4

8

1
4

≤40 null-terminated
≤40 null-terminated

≤ 7

Authenticator

bytes

A’s (i.e., client’s) name

A’s (i.e., client’s) instance

A’s (i.e., client’s) realm

checksum

A’s (i.e., client’s) timestamp (5 millisec.)

timestamp

pad of 0’s to make ticket length a multiple of 8 bytes

null-terminated≤40
≤40 null-terminated
≤40 null-terminated

4

1

4
≤ 7

Credential field of a AS_REP or TGS_REP

bytes

B’s (i.e., server’s) name
B’s (i.e., server’s) instance

B’s (i.e., server’s) realm

A’s network-layer (e.g., IP) adddress

session key for A <-> B (i.e.,
Kab)

ticket lifetime

KDC timestamp (i.e., ticket issue time)

pad of 0’s to make cred. length a multiple of 8 bytes

B’s (i.e., server’s) key version number

ticket length

ticket

8

null-terminated≤40
≤40 null-terminated
≤40 null-terminated

4

1

1
4

≤40 null-terminated
≤40 null-terminated

≤ 7

AS_REQ

bytes

B
A’s (i.e., client’s) name
A’s (i.e., client’s) instance

A’s (i.e., client’s) realm

requested ticket lifetime

B’s (i.e., server’s) name

B’s (i.e., server’s) instance

Kerberos version (4)

message type (1)

A’s (i.e., client’s) timestamp

1

1

null-terminated≤40
≤40 null-terminated
≤40 null-terminated

4

1

≤40 null-terminated
≤40 null-terminated

TGS_REQ
TGT# bytes

KDC’s realm

length of TGT
length of authenticator

B’s (i.e., server’s) name

B’s (i.e., server’s) instance

B
KDC’s key version number

Kerberos version (4)

message type (3)

A’s (i.e., client’s) timestamp

requested ticket lifetime

TGT

authenticator

1

1
1

≤40 null-terminated
1

1

variable
variable

1

≤40 null-terminated
≤40 null-terminated

AS_REP and TGS_REP

bytes

A’s (i.e., client’s) name
A’s (i.e., client’s) instance

A’s (i.e., client’s) realm

Kerberos version (4)

message type (2) B

A’s (i.e., client’s) timestamp

number of tickets (1)

ticket expiration time

A’s (i.e., client’s) key version number

credential length

credential

1
1

null-terminated≤40
≤40 null-terminated
≤40 null-terminated

4

1

4
1variable

2

AP_REQ

bytes

B’s (i.e., server’s) realm

length of ticket
length of authenticator

B
B’s (i.e., server’s) key version number

Kerberos version (4)

message type (8)

ticket

authenticator

1

1
1

≤40 null-terminated
1

1

variable
variable

AP_REP - optional

bytes

B
length of encrypted material (4)

Kerberos version (4)

message type (6)

A’s authenticator’s checksum + 1

1

1
4

4

AP_ERR
bytes

error text (additional information)

B
error code

Kerberos version (4)

message type (8)
1

1
1

≤40 null-terminated

KDC Error Reply
bytes

A’s (i.e., client’s) name
A’s (i.e., client’s) instance

A’s (i.e., client’s) realm

Kerberos version (4)

message type (32) B

A’s (i.e., client’s) timestamp

error code

error text (additional information)

1
1

null-terminated≤40
≤40 null-terminated
≤40 null-terminated

4

4
≤40 null-terminated

KRB_PRIV

bytes

B
length of encrypted material (e.g., data)

Kerberos version (4)

message type (6)
1

1
4

D

length of data

data

A’s (i.e., client’s) timestamp (5 millisec.)

timestamp

A’s (i.e., client’s) network-layer (i.e., IP) address

pad of 0’s to make length a multiple of 8 bytes

4
variable

1

4

4

variable

KRB_SAFE

bytes

data

B
length of data

Kerberos version (4)

message type (7)

D

A’s (i.e., client’s) timestamp (5 millisec.)

timestamp

A’s (i.e., client’s) network-layer (i.e., IP) address

(pseudo-Jueneman) checksum

1

4
variable 1

1

4

4

16

Laboratory Notes

• KDC Installation

	Pairwise Authentication - O(n2) keys

