Lampson, Abadi, Burrows and Wobber

Authentication: Theory and Practice, Taos OS

ACM TOCS 1992, 1994

Logic (1)

1. K says S

$$(A \text{ and } B) \text{ says } S \equiv (A \text{ says } S) \text{ and } (B \text{ says } S)$$

if $A = B$, then $(A \text{ says } S) \equiv (B \text{ says } S)$

Example of use:

- signatures < S, $\{S\}^{K}>$
- request transmission on a channel: C says RQ

2. $A \Rightarrow B$ (A speaks for B)

$$(A \Rightarrow B) \equiv (A = A \text{ and } B)$$

if $A \Rightarrow B \text{ and } (A \text{ says } S)$, then $(B \text{ says } S)$

=> is a partial order (i.e., is reflexive, antisymmetric, transitive)

Example of use:

- unsigned certificates: $\langle A, K \rangle \equiv K \text{ is A's public key}$
- group membership: $A \Rightarrow G \equiv A$ is a member of G

o groups cannot speak; they have neither channels nor keys

Logic (2)

$$(B | A says S) \equiv (B says A says S)$$

Example of use:

- Kb | Ka says
$$S \equiv \{S\}^{Ka} -> S -> \{S\}^{Kb}$$

S went through a relay

4. B **for** A

if B for A, then(B says A says S) and A delegated to B

A says
$$((B \mid A) \Rightarrow (B \text{ for } A))$$

Note: (B for A) is stronger than (B | A)

Example of use:

- delegation certificates; e.g., login certificates

Logic (3)

5. A as R (A in role R)

if (A as R) says S, then (A says R says S)

A as
$$R = A \mid R$$
 only if $R = \mathbf{role}$
A => A as R only if $R = \mathbf{role}$ (A =/=> A | R for any R)

Example of use:

- booting certificates
- restricting user privileges
- 6. Delegation Axiom

if A says ((B | A)
$$\Rightarrow$$
 (B for A)), then ((B | A) \Rightarrow (B for A))

Note: This axiom does **not** require B to accept delegation; i.e.,

$$(B \mid A)$$
 says $((B \mid A) \Rightarrow (B \text{ for } A))$

Logic (4)

7. Hand-off Axiom

if
$$(A says (B \Rightarrow A))$$
, then $B \Rightarrow A$

- 8. Inter-realm Certificate Validation Axioms
 - (1) P except $M \Rightarrow P$
 - (2) if M = /= N, then ((P except M) | N) => P / N except ".."
 - (3) if M = /= "...", then (P / N except M | "..") => P except N

9. Theorems

(1) Monotonicity of and, |, for, and as w.r.t. =>
if A =>B then (A and C => B and C)
A | C => B | C
A for C => B for C
A as C => B as C

Logic (5)

- (1) Monotonicity of and, |, for, and as w.r.t. =>
 if (A => B and C => C') then (A and C => B and C')
 A | C => B | C'
 A for C => B for C'
 A as C => B as C'
- (2) Transitivity of \Rightarrow if $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$
- (3) Hand-off Rule

if
$$(A' \Rightarrow A)$$
 and A' says $(B \Rightarrow A)$, then $B \Rightarrow A$

(4) Joint Authority Rule (Revocation; Limited-Time Login)

if
$$((A' \text{ and } B) => A)$$
 and $(B => A'))$, then $B => A$

Authenticating a Remote Request

RQ Authentication: Was RQ received on Channel Cbob issued by Bob after login to workstation WS (which was obtained by booting OS on VAX)?

RQ Authentication: File Server wants to establish (VAX as OS) for Bob says RQ

File Server needs:

- (1) axioms and theorems of the logic
- (2) certificates it receives or has
- (3) trust relationships established

Certificates:

(1) booting:
$$(K_{vax} \text{ as OS}) \text{ says} (K_{ws} \Longrightarrow K_{vax} \text{ as OS})$$

(2) login:
$$K_{Bob}$$
 says $(K_{ws} | K_{Bob}) \Rightarrow (K_{ws} \text{ for } K_{Bob})$

(3) channel:
$$(K_{ws} | K_{Bob})$$
 says $(C_{Bob} => (K_{ws} \text{ for } K_{Bob}))$ (authority hand-off)

(4) VAX:
$$K_{ca}$$
 says $K_{vax} => VAX$

(5) Bob:
$$K_{ca}$$
 says $K_{Bob} => Bob$

Trust Relationship

any principal trusts: $K_{ca} => principal$

File Server's Logic (1)

by Delegation axiom (applied to **login** certificate)

$$(1) (K_{ws} | K_{Bob}) => (K_{ws} \text{ for } K_{Bob})$$

by => (applied to channel certificate (
$$K_{ws} | K_{Bob}$$
) says (C_{Bob} => (K_{ws} for K_{Bob})) and (1)) (2) (K_{ws} for K_{Bob}) says (C_{Bob} => (K_{ws} for K_{Bob}))

by Hand-off axiom (applied to (2))

(3)
$$C_{Bob} = > (K_{ws} \text{ for } K_{Bob})$$

by => (applied to incoming request, namely, C_{Bob} says RQ and (3))

$$(4) (K_{ws}$$
 for $K_{Bob})$ says RQ

by Hand-off axiom (applied to **booting** certificate))

$$(5) K_{ws} => (K_{vax} as OS)$$

File Server's Logic (2)

by monotonicity of **for** (applied to (5))

(6)
$$K_{ws}$$
 for $K_{Bob} => (K_{vax} \text{ as OS})$ for K_{Bob}

by \Rightarrow (applied to (4) and (6))

(7) ((
$$K_{vax}$$
 as OS) for K_{Bob}) says RQ

by **trust** (to Bob and VAX)

(8)
$$K_{ca} \Rightarrow VAX$$

$$(10) K_{vax} \Rightarrow VAX$$

(9)
$$K_{ca} => Bob$$

$$(11) K_{Bob} => Bob$$

by monotonicity of as (to (10)

(12)
$$(K_{vax} as OS) \Rightarrow VAX as OS$$

by monotonicity of **for** (to (11) and (12)

(13) (
$$K_{vax}$$
 as OS) for $K_{Bob} => (VAX as OS)$ for Bob

by => (to (7) and (13))

(VAX as OS) for Bob says RQ

Performing Access Control

RQ Access Control: Is Bob allowed Read access to File "Foo"?

RQ Access Control: File Server wants to establish that Bob's RQ = FMVsays (Read "Foo") and that FMV is authorized to Read "Foo" by searching Foo's ACL

File Server's Logic (3)

Additional Certificates:

(6) Group:
$$K_{ca}$$
 says Bob => FMV

by trust,

$$(14) K_{ca} \Longrightarrow FMV$$

by => (applied to **Group** certificate (6) and (14))

(15) FMV says Bob
$$\Rightarrow$$
 FMV

by Hand-off Axiom (applied to (15))

$$(16)$$
 Bob \Rightarrow FMV

by => (applied to (11) and request RQ =
$$(K_{Bob}$$
 says (Read "Foo")) (17) Bob says (Read "Foo")

by => (applied to (16) and (17)

FMV says (Read "Foo")

B wants to establish $K_F = > /D/F$ except ".."

P = any pathname (sequence of simple names); M, N = any simple names

P except N = principal that speaks for any pathname that is a *suffix* of P,

if the first simple name after P is not N, or

principal that speaks for any pathname that is a *prefix* of P,

if the first simple name after P is not "••"

B wants to establish $K_F = > /D/F$ except ".."

B needs to use:

- (1) available certificates
- (2) trust relationships
- (3) axioms and theorems

Certificates:

$$K_{B} | \text{`..'} says [K_{C} => (/C \text{ except } B)]$$
 $K_{C} | \text{`..'} says [K_{root} => (/except C)]$
 $K_{root} | D \text{ says } [K_{D} => (/D \text{ except `..'})]$
 $K_{D} | F \text{ says } [K_{E} => (/D/F \text{ except `..'})]$

Trust Relationships

everyone trusts its key; e.g., B trusts ($K_B = > /C/B$ except nil)

B's Logic (1)

by trust

(1) B trusts
$$K_B = > /C/B$$
 except nil

by interrealm Axiom (3) (applied to B)

(2)
$$((/C/B \ except \ nil) | `..') => (/C \ except \ B)$$

by monotonicity of | w.r.t => (applied to 1)

(3)
$$K_B | ".." => ((/C/B except nil) | "..")$$

by transitivity of =>

(4)
$$K_B | '... ' => /C/B$$
 except B

$$K_B \mid \text{`..'}$$
 says [$K_C \Rightarrow (/C \text{ except } B)$] and the Hand-off Theorem

(5)
$$K_C = > /C$$
 except B

B's Logic (2)

(5)
$$K_C = > /C$$
 except B

by interrealm Axiom (3) (applied to C)

(6)
$$((/C \text{ except B}) | `..') => (/ \text{ except C})$$

by monotonicity of | w.r.t => (applied to 6)

(7)
$$K_C$$
 |'...' => ((/C except B) | '...')

by transitivity of =>

(8)
$$K_C$$
 |'...' => / except C

$$K_C \mid$$
 '...' says $[K_{root} => (/except C)]$ and the Handoff Theorem

(9)
$$K_{root} = > / except C$$

B's Logic (3)

$$(10) K_{root} \Rightarrow / except C$$

by interrealm Axiom (2) (applied to root)
(11) ((/ except C) | D) => (/D except '..')

by monotonicity of
$$|$$
 w.r.t => (applied to 10)

(12)
$$K_{root} | D => ((/ except C) | D)$$

by transitivity of =>

(13)
$$K_{root}$$
 |D => /D except '...'

$$K_{root} \mid D$$
 says [$K_D => (/D$ except '..')] and the Handoff Theorem

$$(14) K_D = > /D except "..."$$

B's Logic (4)

$$(15) K_D = > /D except '...'$$

by interrealm Axiom (2) (applied to D) $(16) ((D/ except '..') | F) \Rightarrow (/D/F except '..')$

by monotonicity of
$$|$$
 w.r.t \Rightarrow (applied to 15) (17) $K_D | F \Rightarrow ((/D \text{ except '..'}) | F)$

by transitivity of =>

(19)
$$K_D | F = > /D/F$$
 except '...'

$$K_D \mid F \text{ says} [K_F => (/D/F \text{ except '...'})]$$
 and the Handoff Theorem

(19)
$$K_F = > /D/F$$
 except '...'

B wants to establish $K_F = > /D/F$ except ".."

Least Common Ancestor (B, F) = Link (C, D) (in general, link => lca is no longer unique)