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Introduction to 
Public-Key Cryptosystems:

• Technical Underpinnings: RSA and Primality Testing

• Modes of Encryption for RSA

• Digital Signatures for RSA
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RSA Block Encryption / Decryption and 
Signing  

• Each principal has private and public values
– for encryption/decryption
– for signing

{m}e Alice
knows e, e’
n = modulus

Bob
e, e’ public
d, d’ private
n = modulus

• Bob decrypts block {m}e using d:

{{m}e}d =  m
• Alice encrypts block m using e :

{m}e

• Bob signs block m using d’: 

{m}d’
• Alice verifies {m}d’ using e’ :

{{m}d’}e’ =  m

m, {m}d’

• all operations are mod n, 0 < m < n
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I. Technical Underpinnings
• Common Divisor; Greatest Common Divisor
• Relative Primes
• Modular Arithmetic
• Euclid’s Algorithm
• Z*

n

• Euler’s Totient Function
• Euler’s Theorem
• Generalization of Euler’s Theorem
• RSA Block Encryption/Decryption and Signing: choosing e and d
• Choosing p and q: Primality Tests
• Miller-Rabin Test
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Common Divisor

Definition: a divides b, or a | b, for a, b ∈ Z,  Z = {0, ±1, ±2 … }, 
iff there exists k ∈ Z, such that a • k = b

Properties:
• Linearity: if a | b and a | c, then a | (x • b + y • c) for any x, y ∈ Z
• If d | n, n ≠ 0, then |d| ≤ |n| 

Definition: c is a common divisor of a and b if c | a and c | b

Theorem:  For any a, b ∈ Z, there is common divisor d that can 
be expressed d = x • a + y • b, for some x, y ∈ Z. 
Furthermore, any other common divisor of a and b 
also divides d.



5

Proof [Common Divisor Theorem]: 
Choose a, b ≥ 0 and denote n = a + b. Use induction on n

Base Case: n = 0 then a = 0 and b = 0 choose d = 0
Hypothesis: assume the assertion holds for 0…n-1
Induction Step: From hypothesis, we show it holds for n
n = a + b
– if b = 0, then n = a, choose d = 1 • a + 0 • b = a
– if b ≥ 0,  and b < a

Consider (a - b) and b
n’ = (a - b) + b = a < n, so the hypothesis must hold for 
n’, (a - b) and b; i.e., there is a d s.t. d | (a - b) and d | b and  

d = x • b + y • (a - b)
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Proof [Common Divisor Theorem] (ctnd.)
We now show that this same d also divides a: 

from linearity d | [b + (a - b)] = d | a
d can be expressed as d = (x - y) • b + y • a

This concludes the induction step.

Now what is left to show is that any other divisor of a and b also 
divides d. Suppose c is such a divisor: c | a, c | b. 
We can write k • c = a and e • c = b
d = (x -y) • b + y • a = (x - y) • e • c + y • k • c = (e • x - e • y + y • k) • c
Hence, c | d.

This completes the proof of the theorem for a, b ≥ 0.  
For the case when a and b are not only positive the proof is 

analogous applying the above to |a| and |b| .                                         
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Greatest Common Divisor

Claim: There exists a unique d ∈ Z,  for any given a, b ∈ Z, such   
that: 1) d ≥ 0

2) d | a and d | b
3) any c ∈ Z for which c | a and c | b it is true that c | d.

Proof: from the Common Divisor Theorem, there is d with properties 2) 
and 3). All that is left to prove is 1) and uniqueness. The proof of 1) 
is easy since if 2) and 3) hold for particular d, than they also hold 
for (-d).
Uniqueness: assume that there is some other d’ for which 1), 2) and 
3) hold. Then, from 3), we must have d | d’ => d ≤ d’ and 
d’ | d => d’ ≤ d , so we must have d = d’. 

Definition: This d is called greatest common divisor of a and b,
or gcd(a, b)
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Relative Primes

Definition: a, b ∈ Z and  gcd(a, b) = 1, then a and b are called 
relatively prime.

Property: If a | (b • c) and d = gcd(a, b) = 1, then a | c.

Proof: Let gcd (a, b) = 1= x • a + y • b and multiply both sides by c; 
c = c • x • a + c • b • y. However,

a | (c • x • a) apparently, and
a | y • (b • c) by hypothesis. 
Then, from linearity, a | (c • x • a + c • b • y) = a | c
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Modular Arithmetic

In what follows we assume m > 0
Definition: we say that a is equal to b mod m if m | (a - b) and 

we write  a = b mod m
Example: 18 = 4 mod 7 = 25 mod 7
Note: There are only m different integers mod m. 

A set of m different integers mod m is { 0, 1, 2,… m - 1}
Properties:
1. a = a mod m
2. a = b mod m => b = a mod m
3. a mod m = b mod m => a = b mod m
4. a = b mod m and b = c mod m => a = c mod m
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Claim: if a = b mod m and c = d mod m, then for any x, y ∈ Z
we have 

i) (a • x + c • y) = (b • x + d • y) mod m
ii) a • c = b • d mod m
Proof:
i) m | (a - b) and m | (c - d) by definition. Then,  m | x • (a - b) and 

m | y • (c - d). From linearity follows that 
m | [x • (a - b) + y • (c - d)] =  m | [(x • a + y • c) - (x • b + y • d)]
which by the definition of mod above gives the desired result.         

ii) m | (a - b) and m | (c - d) by definition. Then 
m | c • (a - b) and m | b • (c - d)

From linearity m | (a • c - b • c + b • c - b • d) = m | (a • c - b • d)
which by the definition of mod above gives the desired result.            
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Theorem (Cancellation Law):
If a • c = b • c mod m and  d = gcd(c, m), then a = b mod (m / d)

Proof: m | (a • c - b • c) => m | c • (a - b). Then there is a k, s.t.
k • m = c • (a - b), and since gcd(c, m) = d, we can divide by d
k • (m / d) = (c / d) • (a - b). This means that 
(m / d) | [(c / d) • (a - b)].
But gcd(m / d, c / d) = 1, so we can apply the Relative Primes 
property and obtain that (m / d) | (a - b), which is the desired 
result by the definition of mod.                                
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Euclid’s Algorithm
• Algorithm for finding the gcd(a, b)
• Fact: for a, b > 0 there is a unique representation 

a = q • b + r with q, r ≥ 0, where r is called a remainder
• Claim: gcd(a, b) = gcd(b, r)

Proof: Write a = q • b + r or r = a - b • q. Let d =  gcd (a, b). 
Hence, d | a and d | b and thus d | r, d is a  divisor of r. We 
need to show that d is also the gcd of r and b.

d = a • x + b • y = x • (q • b + r) + b • y = (y + q • x) • b + x • r
so d is the gcd of r and b. 
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Euclid’s Algorithm (cont.)
• Euclid’s Algorithm – find gcd(a, b)
Use: gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = …
a = q1 • b + r1 r1 = a - q1 • b
b = q2 • r1+ r2                               r2 = b - q2 • r1= -q2 • a + (q1 • q2+ 1) • b
r1= q3 • r2 + r3
…                                 …..
rn= qn+2 • rn-1+ 0 rn-1 = (…) • a + (…) • b

these allow us to find multiplicative inverses. 
rn-1 = gcd(a, b) If some ri = 1, then 1= α • a + β • b ; i.e., 

a and b are relatively prime. Then 
β • b = 1 mod a, and β is the inverse of 
b mod a and α is the inverse of a mod b.
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Euclid’s Algorithm (cont.)
Example:  a = 5, b = 7

gcd: multiplicative inverses

7 = 1 • 5 + 2                 2 = 7 - 1 • 5
5 = 2 • 2 + 1                 1 = 5 - 2 • 2 = 5 - 2 • (7 - 5)
2 = 2 • 1 + 0 = -2 • 7 + 3 • 5

gcd(5, 7) = 1 The inverse of 5 mod 7 is 3:
3 • 5 = 15 = 1 mod 7
The inverse of 7 mod 5 is -2,  
-2 = 3 mod 5
7 • 3 = 21= 1 mod 5
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Z*
n

Definition: Let Zn denote the set of integers mod n, namely 
Zn = {0, 1, 2 … n-1}

Definition: Zn* is the set of integers in Zn that are 
relatively prime to n.

Example: Z8 = {0, 1, 2, 3, 4, 5, 6, 7} and  Z8* = {1, 3, 5, 7}
Z5 = {0, 1, 2, 3, 4} and Z5* = {1, 2, 3, 4}
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Claim: Zn* is closed under multiplication mod n. That is,
if a, b ∈Zn*, then a • b ∈Zn*.

Proof: a and n are relatively prime so gcd(a, n) = 1. Hence there 
exist x, y ∈Z s.t. 1= x • a+y • n, similarly 1=z • b+v • n.
Multiply these equations and obtain
1= (x • z) • a • b + (v • x • a + y • z • b + v • y • n) • n =>
gcd(a • b, n) = 1 => a • b ∈Zn*

Theorem: Multiplication of Zn* by some a ∈ Zn* merely 
rearranges the elements of Zn*

Proof: Denote Zn* = {z1, z2, …, zk}. Form the previous Claim we 
know that all a • zi ∈ Zn*.  Take zi ,zj ∈ Zn* and zi ≠ zj.

Suppose  a • zi = a • zj mod n but from the Cancellation Law 
we obtain zi = zj mod n, which contradicts the assumption, so 
we must have a • zi ≠ a • zj mod n.           
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Euler’s Totient Function
Definition: Euler’s totient function φ(n) is equal to the 

positive integers that are relatively prime to n and less than 
n.

Z8* = { 1, 3, 5, 7}        φ(8) = 4 
Z7* = { 1, 2, 3, 4, 5, 6}   φ(7) = 6 

Fact: let p be prime  then φ(p) = p - 1 



18

Euler’s Totient Function for n = p • q
p, q – prime, n = p • q
Zpq = { 0, 1, 2  …. ((p • q) - 1)},  |Zpq| = p • q
Let’s show the numbers in Zpq not relatively 
prime to p • q:

p, 2p …. (q - 1) • p → (q - 1) numbers
q, 2q …  (p - 1) • q → (p - 1) numbers                   
0  → 1 number

φ(p • q) = p • q –1 – (q - 1) – (p - 1) 
= (p - 1) • (q - 1) 
= φ(p) • φ(q) 
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Euler’s Theorem
Euler’s Theorem: for all a ∈ Zn*, aφ(n) = 1 mod n

or, for all a ∈ Zn* and k ≥ 0, ak • φ(n)+1 = a mod n

Proof: Multiply together all elements of Zn* :  x = z1 • z2 …zφ(n).
Now multiply all elements of Zn* by a and multiply them together 
(a • z1) • (a • z2) …(a • zφ(n)). We showed that multiplication of Zn*
by one of its elements merely rearranges the elements in  
Zn* => (a • z1) • (a • z2) …(a • zφ(n)) = x = aφ(n) • z1 • z2 …zφ(n) = x • aφ(n)

But Zn* is closed under multiplication, so  x ∈ Zn*. Then x must be
relatively prime to n so x has an inverse mod n. Hence, we can multiply
both sides of the equation x = x • aφ(n) by x-1 and obtain aφ(n)= 1 mod n.   
Using the above result, it is easy to show that

ak • φ(n)+1 = ak.φ(n) • a = 1k • a = a mod n
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Generalization of Euler’s Theorem
Theorem: If p, q are primes, n = p • q, 

for all a ∈ Zn, ak• φ(n)+1 = a mod n.

Proof: 
i)  If gcd (a, n) = 1, then this follows from (variant of) Euler’s Thm. 
ii) If gcd (a, n) ≠ 1, then a, 0 < a < n = p • q, must be a multiple of p or 

q.  
Suppose, wlog,  a = c • p, where c is a positive integer. In this case, 
gcd (a, q) = gcd (c • p, q) ≠ 1. [Otherwise, since q is prime, c would
have to be a multiple of q, which would contradict our hypothesis since
a = r • q • p ≥ n, where r is a positive integer.] 
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Proof (cont.)

Since gcd (a, q) ≠ 1, by Euler’s Theorem, we have
aφ(q) = 1 mod q, and hence by definition of mod. arithm.,
[aφ(q)]φ(p) = 1 mod q, and aφ(n) = 1 mod q, which means that 
q | aφ(n) - 1, or, for some positive integer k, aφ(n) = 1 + k • q. 

Multiplying both sides of aφ(n) = 1 + k • q by a = c • p, we obtain
aφ(n)+1 = a + k • c • p • q = a + k • c • n = a mod n, and thus
aφ(n) = 1 mod n. 

By similar reasoning, we obtain the same result in the case when
m is a multiple of q.
But, 
[aφ(n)]k = 1k mod n,  and
ak •φ(n)+1  = ak • (p-1)(q-1)+1 = a mod n. 
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Proof (cont.)
Alternate Proof: 
i) If a is relatively prime to n then trivial by variation of Euler’s

Theorem.
ii) If a is not relatively prime to n, so it must be a multiple of p or q. 

Let a = k • q wlog.
a = k • q = 0 mod q, so ak•φ(n)+1 = 0k• φ(n)+1 mod q = a mod q = a1
a = a mod p, since gcd(p, q) = 1

From Euler’s Theorem aφ(p)= 1 mod p, then
ak• φ(n)+1= ak • φ(p) • φ(q)+1 = a • 1k • φ(q) = a mod p = a2.
From Chinese Remainder Thm., ak • φ(n)+1 = a2 • u • p + a1v • q mod p • q,
where u • p + v • q = 1. Substituting the values for ak • φ(n)+1 mod p and 

ak • φ(n)+1 mod q we get
ak • φ(n)+1 = a • u • p + a • v • q = a • (u • p + v • q) = a mod p • q       
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Chinese Remainder Theorem
Theorem: Let z1, z2 and zN be pairwise relatively prime numbers. 

If we know that a number is equal to x1 mod z1, x2 mod z2 … 
xN mod zN , then we can find what the number is  
x mod z1 • z2….zN

Proof: N = 2, so x = x1modz1 and x = x2modz2 where  
gcd(z1, z2) = 1. Also there exist integers k1 ,k2 s.t. 
x = x1+z1k1 and x = x2+z2k2. Since gcd(z1, z2) = 1 there are a and
b s.t.  a • z1+b • z2= 1. Multiply both sides by x
x = x • a • z1+x • b • z2 = (x2 + k2 • z2) • a • z1+ (x1 + k1 • z1) • b • z2=

= x2 • z1 • a + x1 • z2 • b + z1 • z2 • (a • k2 + k1 • b)
Take  mod (z1 • z2) we obtain:
x = (x2 • z1 • a + x1 • z2 • b) mod (z1 • z2) 
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Chinese Remainder Thm. (cont.)

Example: z1 = 5, z2 = 8, 
1 = 2 • z2 - 3 • z1 => b = 2,  a = -3
Number = 3 mod 5 = 2 mod 8
x1 = 3 and x2 = 2,  z1 • z2= 40
(x2 • z1 • a+ x1 • z2 • b) = 2 • 5 • (-3) + 3 • 8 • 2 = 18 mod 40 
To go the opposite way:
18 = 3 mod 5
18 = 2 mod 8
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RSA Block Encryption and 
Signatures

1. Choose 2 large primes p and q
2. Compute n = p • q and  φ(n) = (p - 1) • (q - 1)
3. Choose public e such that gcd(e, φ(n)) = 1, relatively prime
4. Find secret d s.t.  e • d = 1 mod φ(n) (by Euclid’s Algorithm)
5. To encrypt plaintext block m < n, compute the ciphertext CT = me mod n
6. To decrypt ciphertext block CT and obtain the plaintext PT

PT = CTd mod n = med mod n, 
e • d = 1 mod φ(n) =>  e • d = 1 + k • φ(n)
PT = mk•φ(n)+1 mod n = m mod n from Generalized Euler’s Theorem.

1. To sign plaintext block m < n, compute the signature S  =  md mod n
2. To verify that block S is block m’s signature, compute Se mod n = med mod n

= mk•φ(n)+1 mod n = m mod n = m.
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Choosing p and q
Preliminary Remarks

1. Fermat’s Theorem (p = prime, 0 < a < p) ==> ap-1 = 1 mod p
<=/=

holds only in one direction.
Example: p = 100 digits, ap-1 = 1 mod p,  Pr [ p =/= prime ] 10-13

2. For same p try multiple values of a to lower Pr [p =/= prime]
a1

p-1 = 1 mod p,  a2
p-1 = 1 mod p , …, an

p-1 = 1 mod p

Problem (Carmichael Numbers): there exist values p such that 
p =/= prime and ap-1 = 1 mod p for all choices of  0 < a < p.
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Primality tests

Recall Fermat’s theorem: if p is prime, then ap-1 = 1 mod p. 
Hence, if p = odd, prime (i.e., not 2), then p - 1 =  even, and we
can write (a(p-1)/2)2  = 1 mod p or x2 = 1 mod p, where x = a(p-1)/2.

Theorem: If p = odd prime, then x2 = 1 mod p has only two 
solutions, namely x = 1 and x = -1.

Proof: x2 = 1 mod p  =>  x2 - 1= 0 mod p
=> (x - 1) • (x + 1) = 0 mod p
=> p | (x - 1) or  p | (x + 1) or p divides both.

Suppose p divides both. Hence,  (x + 1) = k • p and (x - 1) = j • p
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Proof of Theorem (ctnd.)

Subtract these two expressions and get:
(x + 1) - (x - 1) = 2 = (k - j) • p, which holds only for p = 2.
But since p = odd, prime (i.e., different from 2) we reach a 
contradiction. Hence,  p | (x - 1) or  p | (x + 1) but not both.
Suppose p | (x - 1). Then (x - 1) = j • p for some j.
Thus, x = 1 mod p and similarly for x = -1 mod p.

Stating the Theorem in the opposite direction:

Theorem: If there exists a solution to x2  = 1 mod p other than ±1, 
then p is not prime.
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Examples
• x2 = 1 mod 7

12 = 1 mod 7
62 = 36 mod 7 = 1 mod 7;   6 =  -1 mod 7

Solutions = 1, -1

• x2 = 1 mod 8
12 = 1 mod 8; 
32 = 9 mod 8 = 1 mod 8;   3 = -5 mod 8
52 = 25 mod 8 = 1 mod 8; 5 = -3 mod 8
72 = 49 mod 8 = 1 mod 8; 7 = -1 mod 8

Solutions: 1, -1, 3, -3
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Miller-Rabin Test
Part 1: Quick reject
Fermat’s Theorem: ap-1 =1 mod p, or ap-1 mod p = 1, if p = prime.
Hence, compute d = ap-1 mod p. If d ≠ 1, then d ≠ prime.
Part 2:
Otherwise,  if d = 1, there is a possibility that p = prime. Now, we
use the result of previous Theorem. That is,  at every step of 
computation of ap-1 mod p check x2 = 1 mod p for roots other than ±1.
When computing d = ap-1mod p, represent p - 1= c • 2b, where c is odd 
and b ≠ 0,

ap-1mod p = […[ac mod p]2…]2

b times
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Miller-Rabin Test (cont.)
If early in squaring ac mod p ≠ 1, then one squaring took a 

number ≠ 1 and squared it to produce 1. However, that 
number is a square root of 1 mod p. Hence, by the Theorem 
above p ≠ prime.
[ If test shows p ≠ prime, then more than ¾ of all different 
values of a will produce p to be composite.]

If the test for p using a single a shows p to be prime, repeat test 
for other distinct values of a. 

- choose s random values of a and repeat the test
Pr [ p = prime ] > 1 - 2-s or Pr [ p =/= prime ] ≤ 2-s .
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II. Modes of Encryption for RSA
1. Only short messages should be encrypted 

- short message of m bits s.t. 2l - 1 ≤ n (RSA modulus)
- performance is one/two orders of magnitude lower than symmetric enc.
- encrypt (probabilistically) long message with symmetric key

and encrypt symmetric key (and per message random value) with RSA 

2. Example 1: RSA PKCS #1
l

0 2 at least 8 random 
nonzero octets

0 m

(2l - 1  n) ≤ enc. data start tag

8 8 8

Attack against SSL implementation of PKCS #1based on server (decryption oracle)
- checks the first two bytes and returns errors if malformed
- checks data length and returns errors 
- modify ciphertext of encrypted key and in about 220 tries get valid key 
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II. Modes of Encryption for RSA (ctnd.)
3. Example 2: PKCS #1 version 2 (OAEP-RSA)

m0k1 r

|m| = l - k0 - k1
G = generator function
H = hash function
G, H = random functions

|m| + k1 k0

GG(r)

H

r H (m0k1             G(r))m0k1             G(r)

Ee(m)

r H (m0k1             G(r))m0k1             G(r)
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III. Digital Signature for RSA 

Example : RSA PKCS #1 Signature for message m

l

0 1 at least 8 octets of FF16
0 ASN.1 encoded hash type || H(m)

(2l - 1 ≤ n)  sign.. data start tag

8 8 8
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