Introduction to Public-Key Cryptosystems:

- Technical Underpinnings: RSA and Primality Testing
- Modes of Encryption for RSA
- Digital Signatures for RSA

RSA Block Encryption / Decryption and Signing

- Each principal has *private* and *public* values
 - for encryption/decryption
 - for signing

• **Bob** decrypts block $\{m\}^e$ using d:

$$\{\{m\}^e\}^d = m$$

 $\underline{m}, \{m\}^{d'}$

• Alice encrypts block *m* using *e*: $\{m\}^e$

• Alice verifies $\{m\}^{d'}$ using e':

$$\left\{ \{m\}^{d'}\right\} e' = m$$

• **Bob** signs block m using d':

$$\{m\}^{d}$$

• all operations are mod n, $0 \le m \le n$

I. Technical Underpinnings

- Common Divisor; Greatest Common Divisor
- Relative Primes
- Modular Arithmetic
- Euclid's Algorithm
- $\mathbf{Z}_{\mathbf{n}}^*$
- Euler's Totient Function
- Euler's Theorem
- Generalization of Euler's Theorem
- RSA Block Encryption/Decryption and Signing: choosing *e* and *d*
- Choosing *p* and *q*: Primality Tests
- Miller-Rabin Test

Common Divisor

Definition: *a divides b*, or $a \mid b$, for $a, b \in \mathbb{Z}$, $\mathbb{Z} = \{0, \pm 1, \pm 2 \dots \}$, iff there exists $k \in \mathbb{Z}$, such that $a \cdot k = b$

Properties:

- Linearity: if $a \mid b$ and $a \mid c$, then $a \mid (x \cdot b + y \cdot c)$ for any $x, y \in \mathbb{Z}$
- If $d \mid n, n \neq 0$, then $|d| \leq |n|$

Definition: c is a *common divisor* of a and b if $c \mid a$ and $c \mid b$

Theorem: For any $a, b \in \mathbb{Z}$, there is *common divisor d* that can be expressed $d = x \cdot a + y \cdot b$, for some $x, y \in \mathbb{Z}$. Furthermore, any other common divisor of a and b also divides d.

Proof [Common Divisor Theorem]:

Choose $a, b \ge 0$ and denote n = a + b. Use induction on n Base Case: n = 0 then a = 0 and b = 0 choose d = 0*Hypothesis:* assume the assertion holds for 0...n-1*Induction Step:* From hypothesis, we show it holds for n n = a + b- if b = 0, then n = a, choose $d = 1 \cdot a + 0 \cdot b = a$ - if $b \ge 0$, and b < aConsider (a - b) and bn' = (a - b) + b = a < n, so the hypothesis must hold for n', (a - b) and b; i.e., there is a d s.t. $d \mid (a - b)$ and $d \mid b$ and $d = x \cdot b + y \cdot (a - b)$

Proof [Common Divisor Theorem] (ctnd.)

We now show that this same d also divides a:

from linearity $d \mid [b + (a - b)] = d \mid a$ d can be expressed as $d = (x - y) \cdot b + y \cdot a$

This concludes the induction step.

Now what is left to show is that *any other* divisor of a and b also divides d. Suppose c is such a divisor: $c \mid a, c \mid b$.

We can write $k \cdot c = a$ and $e \cdot c = b$

$$d = (x - y) \cdot b + y \cdot a = (x - y) \cdot e \cdot c + y \cdot k \cdot c = (e \cdot x - e \cdot y + y \cdot k) \cdot c$$

Hence, $c \mid d$.

This completes the proof of the theorem for $a, b \ge 0$.

For the case when a and b are not only positive the proof is analogous applying the above to |a| and |b|.

Greatest Common Divisor

- Claim: There exists a unique $d \in \mathbb{Z}$, for any given $a, b \in \mathbb{Z}$, such that: 1) $d \ge 0$
 - 2) $d \mid a$ and $d \mid b$
 - 3) any $c \in \mathbb{Z}$ for which $c \mid a$ and $c \mid b$ it is true that $c \mid d$.
- **Proof**: from the Common Divisor Theorem, there is *d* with properties 2) and 3). All that is left to prove is 1) and uniqueness. The proof of 1) is easy since if 2) and 3) hold for particular *d*, than they also hold for (-*d*).

Uniqueness: assume that there is some other d for which 1), 2) and 3) hold. Then, from 3), we must have $d \mid d' => d \leq d'$ and

 $d' \mid d \Rightarrow d' \leq d$, so we must have d = d'.

Definition: This d is called *greatest common divisor* of a and b, or gcd(a, b)

Relative Primes

Definition: $a, b \in \mathbb{Z}$ and gcd(a, b) = 1, then a and b are called relatively prime.

Property: If $a \mid (b \cdot c)$ and d = gcd(a, b) = 1, then $a \mid c$.

Proof: Let $gcd(a, b) = 1 = x \cdot a + y \cdot b$ and multiply both sides by c; $c = c \cdot x \cdot a + c \cdot b \cdot y$. However,

 $a \mid (c \cdot x \cdot a)$ apparently, and

 $a \mid y \cdot (b \cdot c)$ by hypothesis.

Then, from linearity, $a \mid (c \cdot x \cdot a + c \cdot b \cdot y) = a \mid c$

Modular Arithmetic

In what follows we assume m > 0

Definition: we say that a is equal to b mod m if $m \mid (a - b)$ and we write $a = b \mod m$

Example: $18 = 4 \mod 7 = 25 \mod 7$

Note: There are only m different integers mod m.

A set of m different integers mod m is $\{0, 1, 2, \dots m-1\}$

Properties:

- 1. $a = a \mod m$
- $2. \quad a = b \bmod m => b = a \bmod m$
- 3. $a \mod m = b \mod m => a = b \mod m$
- 4. $a = b \mod m$ and $b = c \mod m \Rightarrow a = c \mod m$

Claim: if $a = b \mod m$ and $c = d \mod m$, then for any $x, y \in \mathbb{Z}$ we have

i)
$$(a \cdot x + c \cdot y) = (b \cdot x + d \cdot y) \mod m$$

ii) $a \cdot c = b \cdot d \mod m$

Proof:

i) $m \mid (a - b)$ and $m \mid (c - d)$ by definition. Then, $m \mid x \cdot (a - b)$ and $m \mid y \cdot (c - d)$. From linearity follows that $m \mid [x \cdot (a - b) + y \cdot (c - d)] = m \mid [(x \cdot a + y \cdot c) - (x \cdot b + y \cdot d)]$ which by the definition of mod above gives the desired result.

ii) $m \mid (a - b)$ and $m \mid (c - d)$ by definition. Then $m \mid c \cdot (a - b)$ and $m \mid b \cdot (c - d)$

From linearity $m \mid (a \cdot c - b \cdot c + b \cdot c - b \cdot d) = m \mid (a \cdot c - b \cdot d)$ which by the definition of mod above gives the desired result.

Theorem (Cancellation Law):

If $a \cdot c = b \cdot c \mod m$ and $d = \gcd(c, m)$, then $a = b \mod (m / d)$

Proof: $m \mid (a \cdot c - b \cdot c) => m \mid c \cdot (a - b)$. Then there is a k, s.t. $k \cdot m = c \cdot (a - b)$, and since gcd(c, m) = d, we can divide by $d \mid k \cdot (m / d) \mid (c / d) \cdot (a - b)$. This means that $(m / d) \mid (c / d) \cdot (a - b)$.

But gcd(m/d, c/d) = 1, so we can apply the Relative Primes property and obtain that $(m/d) \mid (a - b)$, which is the desired result by the definition of mod.

Euclid's Algorithm

- Algorithm for finding the gcd(a, b)
- Fact: for a, b > 0 there is a *unique* representation $a = q \cdot b + r$ with $q, r \ge 0$, where r is called a *remainder*
- Claim: gcd(a, b) = gcd(b, r)

Proof: Write $a = q \cdot b + r$ or $r = a \cdot b \cdot q$. Let $d = \gcd(a, b)$. Hence, $d \mid a$ and $d \mid b$ and thus $d \mid r$, d is a divisor of r. We need to show that d is also the \gcd of r and b.

 $d = a \cdot x + b \cdot y = x \cdot (q \cdot b + r) + b \cdot y = (y + q \cdot x) \cdot b + x \cdot r$ so d is the gcd of r and b.

Euclid's Algorithm (cont.)

• Euclid's Algorithm – find gcd(a, b)

Use:
$$gcd(a, b) = gcd(b, r_1) = gcd(r_1, r_2) = ...$$

 $a = q_1 \cdot b + r_1$ $r_1 = a \cdot q_1 \cdot b$
 $b = q_2 \cdot r_1 + r_2$ $r_2 = b \cdot q_2 \cdot r_1 = -q_2 \cdot a + (q_1 \cdot q_2 + 1) \cdot b$
 $r_1 = q_3 \cdot r_2 + r_3$...
 $r_n = q_{n+2} \cdot r_{n-1} + 0$ $r_{n-1} = (...) \cdot a + (...) \cdot b$

$$r_{n-1} = gcd(a, b)$$

these allow us to find multiplicative inverses. If some $r_i = 1$, then $1 = a \cdot a + \beta \cdot b$; i.e., a and b are relatively prime. Then $\beta \cdot b = 1 \mod a$, and β is the inverse of $b \mod a$ and α is the inverse of $a \mod b$.

Euclid's Algorithm (cont.)

Example:
$$a = 5, b = 7$$

gcd:

multiplicative inverses

$$7 = 1 \cdot 5 + 2$$

$$5 = 2 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0$$

$$2 = 7 - 1 \cdot 5$$

$$1 = 5 - 2 \cdot 2 = 5 - 2 \cdot (7 - 5)$$

$$= -2 \cdot 7 + 3 \cdot 5$$

$$gcd(5, 7) = 1$$

The inverse of 5 mod 7 is 3:

$$3 \cdot 5 = 15 = 1 \mod 7$$

The inverse of 7 mod 5 is -2,

$$-2 = 3 \mod 5$$

$$7 \cdot 3 = 21 = 1 \mod 5$$

$\mathbf{Z}^*_{\mathbf{n}}$

Definition: Let $\mathbf{Z_n}$ denote the set of integers mod n, namely $\mathbf{Z_n} = \{0, 1, 2 \dots n-1\}$

Definition: \mathbb{Z}_n^* is the set of integers in \mathbb{Z}_n that are relatively prime to n.

Example: $\mathbf{Z_8} = \{0, 1, 2, 3, 4, 5, 6, 7\}$ and $\mathbf{Z_8}^* = \{1, 3, 5, 7\}$ $\mathbf{Z_5} = \{0, 1, 2, 3, 4\}$ and $\mathbf{Z_5}^* = \{1, 2, 3, 4\}$

- Claim: $\mathbb{Z}_{\mathbf{n}}^*$ is closed under multiplication mod n. That is, if $a, b \in \mathbb{Z}_{\mathbf{n}}^*$, then $a \cdot b \in \mathbb{Z}_{\mathbf{n}}^*$.
- **Proof:** a and n are relatively prime so gcd(a, n) = 1. Hence there exist $x, y \in \mathbb{Z}$ s.t. $1 = x \cdot a + y \cdot n$, similarly $1 = z \cdot b + y \cdot n$. Multiply these equations and obtain

$$1 = (x \cdot z) \cdot a \cdot b + (v \cdot x \cdot a + y \cdot z \cdot b + v \cdot y \cdot n) \cdot n \implies$$
$$gcd(a \cdot b, n) = 1 \implies a \cdot b \in \mathbf{Z_n}^*$$

- **Theorem:** Multiplication of $\mathbf{Z_n}^*$ by some $a \in \mathbf{Z_n}^*$ merely rearranges the elements of $\mathbf{Z_n}^*$
- **Proof:** Denote $\mathbf{Z_n}^* = \{z_1, z_2, ..., z_k\}$. Form the previous Claim we know that all $a \cdot z_i \in \mathbf{Z_n}^*$. Take $z_i, z_j \in \mathbf{Z_n}^*$ and $z_i \neq z_j$. Suppose $a \cdot z_i = a \cdot z_j \mod n$ but from the Cancellation Law we obtain $z_i = z_j \mod n$, which contradicts the assumption, so we must have $a \cdot z_i \neq a \cdot z_j \mod n$.

Euler's Totient Function

Definition: Euler's totient function $\varphi(n)$ is equal to the positive integers that are relatively prime to n and less than n.

$$\mathbf{Z_8}^* = \{ 1, 3, 5, 7 \}$$
 $\varphi(8) = 4$ $\mathbf{Z_7}^* = \{ 1, 2, 3, 4, 5, 6 \}$ $\varphi(7) = 6$

Fact: let p be prime then $\varphi(p) = p - 1$

Euler's Totient Function for $n = p \cdot q$

$$p, q$$
 - prime, $n = p \cdot q$
 $Z_{pq} = \{ 0, 1, 2 \dots ((p \cdot q) - 1) \}, |Z_{pq}| = p \cdot q$
Let's show the numbers in Z_{pq} not relatively prime to $p \cdot q$:
 $p, 2p \dots (q - 1) \cdot p \rightarrow (q - 1)$ numbers $q, 2q \dots (p - 1) \cdot q \rightarrow (p - 1)$ numbers $0 \rightarrow 1$ number $\phi(p \cdot q) = p \cdot q - 1 - (q - 1) - (p - 1)$
 $= (p - 1) \cdot (q - 1)$
 $= \phi(p) \cdot \phi(q)$

Euler's Theorem

Euler's Theorem: for all $a \in \mathbf{Z_n}^*$, $a^{\varphi(n)} = 1 \mod n$ or, for all $a \in \mathbf{Z_n}^*$ and $k \ge 0$, $a^{k \cdot \varphi(n) + 1} = a \mod n$

Proof: Multiply together all elements of $\mathbb{Z}_{\mathbf{n}}^*$: $x = z_1 \cdot z_2 \dots z_{\mathcal{O}(n)}$. Now multiply all elements of \mathbb{Z}_n^* by a and multiply them together $(a \cdot z_1) \cdot (a \cdot z_2) \dots (a \cdot z_{\varphi(n)})$. We showed that multiplication of $\mathbf{Z_n}^*$ by one of its elements merely rearranges the elements in $\mathbf{Z_n}^* => (a \cdot z_1) \cdot (a \cdot z_2) \dots (a \cdot z_{\varphi(n)}) = x = a^{\varphi(n)} \cdot z_1 \cdot z_2 \dots z_{\varphi(n)} = x \cdot a^{\varphi(n)}$ But $\mathbf{Z_n}^*$ is closed under multiplication, so $x \in \mathbf{Z_n}^*$. Then x must be relatively prime to n so x has an inverse mod n. Hence, we can multiply both sides of the equation $x = x \cdot a^{\varphi(n)}$ by x^{-1} and obtain $a^{\varphi(n)} = 1 \mod n$. Using the above result, it is easy to show that

 $a^k \cdot \varphi^{(n)+1} = a^{k} \cdot \varphi^{(n)} \cdot a = 1^k \cdot a = a \mod n$

Generalization of Euler's Theorem

Theorem: If p, q are primes, $n = p \cdot q$, for all $a \in \mathbf{Z_n}$, $a^{k \cdot \varphi(n)+1} = a \mod n$.

Proof:

- i) If gcd(a, n) = 1, then this follows from (variant of) Euler's Thm.
- ii) If $gcd(a, n) \neq 1$, then $a, 0 < a < n = p \cdot q$, must be a multiple of p or q.

Suppose, wlog, $a = c \cdot p$, where c is a positive integer. In this case, $gcd(a, q) = gcd(c \cdot p, q) \neq 1$. [Otherwise, since q is prime, c would have to be a multiple of q, which would contradict our hypothesis since $a = r \cdot q \cdot p \geq n$, where r is a positive integer.]

Proof (cont.)

Since $gcd(a, q) \neq 1$, by Euler's Theorem, we have $a^{\varphi(q)} = 1 \mod q$, and hence by definition of mod. arithm., $[a^{\varphi(q)}]^{\varphi(p)} = 1 \mod q$, and $a^{\varphi(n)} = 1 \mod q$, which means that $q \mid a^{\varphi(n)} - 1$, or, for some positive integer k, $a^{\varphi(n)} = 1 + k \cdot q$.

Multiplying both sides of $a^{\varphi(n)} = 1 + k \cdot q$ by $a = c \cdot p$, we obtain $a^{\varphi(n)+1} = a + k \cdot c \cdot p \cdot q = a + k \cdot c \cdot n = a \mod n$, and thus $a^{\varphi(n)} = 1 \mod n$.

By similar reasoning, we obtain the same result in the case when m is a multiple of q.

But,

$$[a^{\varphi(n)}]^k = 1^k \mod n$$
, and $a^k \cdot \varphi^{(n)+1} = a^k \cdot (p-1)(q-1)+1 = a \mod n$.

Proof (cont.)

Alternate Proof:

- i) If *a* is relatively prime to *n* then trivial by variation of Euler's Theorem.
- ii) If a is not relatively prime to n, so it must be a multiple of p or q. Let $a = k \cdot q$ wlog.

$$a = k \cdot q = 0 \mod q$$
, so $a^{k \cdot \varphi(n) + 1} = 0^{k \cdot \varphi(n) + 1} \mod q = a \mod q = a_1$
 $a = a \mod p$, since $\gcd(p, q) = 1$

From Euler's Theorem $a^{\varphi(p)} = 1 \mod p$, then

$$a^{k \cdot \varphi(n)+1} = a^{k \cdot \varphi(p) \cdot \varphi(q)+1} = a \cdot 1^{k \cdot \varphi(q)} = a \mod p = a_2.$$

From *Chinese Remainder Thm.*, $a^{k \cdot \varphi(n)+1} = a_2 \cdot u \cdot p + a_1 v \cdot q \mod p \cdot q$, where $u \cdot p + v \cdot q = 1$. Substituting the values for $a^{k \cdot \varphi(n)+1} \mod p$ and $a^{k \cdot \varphi(n)+1} \mod q$ we get

$$a^{k \cdot \varphi(n)+1} = a \cdot u \cdot p + a \cdot v \cdot q = a \cdot (u \cdot p + v \cdot q) = a \mod p \cdot q$$

Chinese Remainder Theorem

Theorem: Let z_1 , z_2 and z_N be pairwise relatively prime numbers. If we know that a number is equal to $x_1 \mod z_1$, $x_2 \mod z_2 \ldots x_N \mod z_N$, then we can find what the number is $x \mod z_1 \cdot z_2 \ldots z_N$

Proof: N = 2, so $\mathbf{x} = \mathbf{x}_1 \bmod z_1$ and $\mathbf{x} = \mathbf{x}_2 \bmod z_2$ where $gcd(z_1, z_2) = 1$. Also there exist integers \mathbf{k}_1 , \mathbf{k}_2 s.t. $\mathbf{x} = \mathbf{x}_1 + \mathbf{z}_1 \mathbf{k}_1$ and $\mathbf{x} = \mathbf{x}_2 + \mathbf{z}_2 \mathbf{k}_2$. Since $gcd(z_1, z_2) = 1$ there are a and b s.t. $a \cdot z_1 + b \cdot z_2 = 1$. Multiply both sides by x $x = x \cdot a \cdot z_1 + x \cdot b \cdot z_2 = (x_2 + \mathbf{k}_2 \cdot z_2) \cdot a \cdot z_1 + (x_1 + \mathbf{k}_1 \cdot z_1) \cdot b \cdot z_2 = x_2 \cdot z_1 \cdot a + x_1 \cdot z_2 \cdot b + z_1 \cdot z_2 \cdot (a \cdot \mathbf{k}_2 + \mathbf{k}_1 \cdot b)$ Take $mod(z_1 \cdot z_2)$ we obtain:

$$x = (x_2 \cdot z_1 \cdot a + x_1 \cdot z_2 \cdot b) \bmod (z_1 \cdot z_2)$$

Chinese Remainder Thm. (cont.)

Example:
$$z_1 = 5$$
, $z_2 = 8$,
 $1 = 2 \cdot z_2 - 3 \cdot z_1 \implies b = 2$, $a = -3$
Number = 3 mod 5 = 2 mod 8
 $x_1 = 3$ and $x_2 = 2$, $z_1 \cdot z_2 = 40$
 $(x_2 \cdot z_1 \cdot a + x_1 \cdot z_2 \cdot b) = 2 \cdot 5 \cdot (-3) + 3 \cdot 8 \cdot 2 = 18 \text{ mod } 40$
To go the opposite way:
 $18 = 3 \text{ mod } 5$
 $18 = 2 \text{ mod } 8$

RSA Block Encryption and Signatures

- 1. Choose 2 large primes *p* and *q*
- 2. Compute $n = p \cdot q$ and $\varphi(n) = (p 1) \cdot (q 1)$
- 3. Choose *public e* such that $gcd(e, \varphi(n)) = 1$, relatively prime
- 4. Find secret d s.t. $e \cdot d = 1 \mod \varphi(n)$ (by Euclid's Algorithm)
- 5. To *encrypt* plaintext block m < n, compute the ciphertext $CT = m^e \mod n$
- 6. To *decrypt* ciphertext block CT and obtain the plaintext PT $PT = CT^d \mod n = m^{ed} \mod n,$
 - $e \cdot d = 1 \mod \varphi(n) \implies e \cdot d = 1 + k \cdot \varphi(n)$
 - $PT = m^{k \cdot \varphi(n)+1} \mod n = m \mod n$ from Generalized Euler's Theorem.
- 1. To sign plaintext block m < n, compute the signature $S = m^d \mod n$
- 2. To *verify* that block *S* is block *m*'s signature, compute $S^e \mod n = m^{ed} \mod n = m^{k \cdot \varphi(n)+1} \mod n = m \mod n = m$.

Choosing p and q

Preliminary Remarks

1. Fermat's Theorem (p = prime, 0 < a < p) ==> $a^{p-1} = 1 \mod p$ <=/=

holds only in one direction.

Example: p = 100 digits, $a^{p-1} = 1 \text{ mod } p$, Pr [p = /= prime] \oplus 10⁻¹³

2. For same p try multiple values of a to lower Pr [p =/p] prime $a_1^{p-1} = 1 \mod p$, $a_2^{p-1} = 1 \mod p$, ..., $a_n^{p-1} = 1 \mod p$

Problem (Carmichael Numbers): there exist values p such that p = /= prime and $a^{p-1} = 1 \mod p$ for all choices of 0 < a < p.

Primality tests

Recall *Fermat's theorem*: if p is prime, then $a^{p-1} = 1 \mod p$. Hence, if p = odd, prime (i.e., not 2), then p - 1 = even, and we can write $(a^{(p-1)/2})^2 = 1 \mod p$ or $x^2 = 1 \mod p$, where $x = a^{(p-1)/2}$.

Theorem: If p = odd prime, then $x^2 = 1 \mod p$ has only two solutions, namely x = 1 and x = -1.

Proof: $x^2 = 1 \mod p \implies x^2 - 1 = 0 \mod p$ $\Rightarrow (x - 1) \cdot (x + 1) = 0 \mod p$ $\Rightarrow p \mid (x - 1) \text{ or } p \mid (x + 1) \text{ or } p \text{ divides both.}$ Suppose p divides both. Hence, $(x + 1) = k \cdot p$ and $(x - 1) = j \cdot p$

Proof of Theorem (ctnd.)

Subtract these two expressions and get:

$$(x+1) - (x-1) = 2 = (k-j) \cdot p$$
, which holds only for $p = 2$.
But since $p = \text{odd}$, prime (i.e., different from 2) we reach a contradiction. Hence, $p \mid (x-1)$ or $p \mid (x+1)$ but *not* both. Suppose $p \mid (x-1)$. Then $(x-1) = j \cdot p$ for some j .
Thus, $x = 1 \mod p$ and similarly for $x = -1 \mod p$.

Stating the Theorem in the opposite direction:

Theorem: If there exists a solution to $x^2 = 1 \mod p$ other than ± 1 , then p is *not* prime.

Examples

```
• x^2 = 1 \mod 7

1^2 = 1 \mod 7

6^2 = 36 \mod 7 = 1 \mod 7; 6 = -1 \mod 7

Solutions = 1, -1
```

•
$$x^2 = 1 \mod 8$$

 $1^2 = 1 \mod 8$;
 $3^2 = 9 \mod 8 = 1 \mod 8$; $3 = -5 \mod 8$
 $5^2 = 25 \mod 8 = 1 \mod 8$; $5 = -3 \mod 8$
 $7^2 = 49 \mod 8 = 1 \mod 8$; $7 = -1 \mod 8$
Solutions: 1, -1, 3, -3

Miller-Rabin Test

Part 1: Quick reject

Fermat's Theorem: $a^{p-1} = 1 \mod p$, or $a^{p-1} \mod p = 1$, if p = prime. Hence, compute $d = a^{p-1} \mod p$. If $d \neq 1$, then $d \neq \text{prime}$.

Part 2:

Otherwise, if d = 1, there is a possibility that p = prime. Now, we use the result of previous Theorem. That is, at every step of computation of $a^{p-1} \mod p$ check $x^2 = 1 \mod p$ for roots other than ± 1 . When computing $d = a^{p-1} \mod p$, represent $p - 1 = c \cdot 2^b$, where c is odd and $b \neq 0$,

$$a^{p-1} \operatorname{mod} p = [\dots [a^c \operatorname{mod} p]^2 \dots]^2$$

$$b \text{ times}$$

Miller-Rabin Test (cont.)

If early in squaring $a^c \mod p \neq 1$, then one squaring took a number $\neq 1$ and squared it to produce 1. However, that number is a square root of 1 mod p. Hence, by the Theorem above $p \neq p$ rime.

[If test shows $p \neq$ prime, then more than $\frac{3}{4}$ of all different values of a will produce p to be composite.]

If the test for p using a single a shows p to be prime, repeat test for other distinct values of a.

- choose s random values of a and repeat the test Pr [p = prime] > 1 - 2^{-s} or Pr [p = /= prime] $\leq 2^{-s}$.

II. Modes of Encryption for RSA

1. Only short messages should be encrypted

- short message of m bits s.t. 2^{l} $1 \le n$ (RSA modulus)
- performance is one/two orders of magnitude lower than symmetric enc.
- encrypt (probabilistically) long message with symmetric key and encrypt symmetric key (and per message random value) with RSA

2. Example 1: RSA PKCS #1

Attack against SSL implementation of PKCS #1based on server (decryption oracle)

- checks the first two bytes and returns errors if malformed
- checks data length and returns errors
- modify ciphertext of encrypted key and in about 2²⁰ tries get valid key

II. Modes of Encryption for RSA (ctnd.)

3. Example 2: PKCS #1 version 2 (OAEP-RSA)

III. Digital Signature for RSA

Example: RSA PKCS #1 Signature for message m

