On the Formal Definition of
Separation-of-Duty (SoD) Policies
and their Composition

Virgil D. Gligor Serban I. Gavrila David Ferraiolo

Department of Electrical Engineering VDG Inc. NIST
University of Maryland 6009 Brookside Drive US Department of Commerce
College Park, Maryland 20742 Chevy Chase, Maryland 20815 Gaithersburg, Maryland 20899
gligor@eng.umd.edu gavrila@csmes.ncsl.nist.gov ferraiolo@csmes.ncsl.nist.gov
May 5, 1998

Gligor, Gavrila, Ferraiolo - 5/5/98

1

SoD premise:

* Violations that require collusion are less likely to happen

SoD goals:

 Separate sensitive tasks of an application such that
integrity violations => collusion
e Minimize risk of collusion
by careful assignment of users to separate tasks

SoD implementation:

* Define integrity property of an application
e Partition application into separate operations and objects
e carefully assign of users to separate application partitions

Gligor, Gavrila, Ferraiolo - 5/5/98 2

SoD Policies

Advantage:

- wide-spread acceptance by business, industry, government

Drawbacks:

- application-oriented policy

=> limited scope
=> separate administration

- family of policies
=> required system flexibility
- uncertain policy interpretation

=> uncertain relative strength

Gligor, Gavrila, Ferraiolo - 5/5/98 3

Drawbacks: Mitigation:

- application-oriented policy - make it a feature of a global policy

=> limited scope
=> separate administration

- family of policies - provide administrative tools
=> required system flexibility
- uncertain policy - define formally
interpretation

=> uncertain relative strength

Solution: Define, implement, and administer SoD policies
in systems suporting Role-Based Access Control (RBAC)

{ users } > {roles } : {operations} > { objects }

Gligor, Gavrila, Ferraiolo - 5/5/98 4

Vision: SoD Administrative Tool

SoD
Policy
Library

r—— -
|SOD

| Policy 1

RBAC/DTOS
Semantics

RBAC / Web
Semantics

Mapper to
Oracle’s SQL

Mapper to
RBAC/Synergy
commands

Mapper to
Other
RBAC APIs

Mapper to

RBAC/Web
APIs

Administrative Tool
SoD Policy Server

I Oracle RBAC
| Server
SQL |

SSCL

RBAC/DTOS

/ security module

Perl

RBAC/Web

scripts

Gligor, Gavrila, Ferraiolo - 5/5/98

Systems

e state machine
STATES, SUBJECTS, USERS, OPERATIONS, OBJECTS

* State transitions
- commands: op(s,, S, 0bj, s,)
- command sequence: op,(S,, S, 0bj, s|)op,(s,, S, 0bj,, s,)...,
- tranquil commands: do not alter security attributes

* system: a set of command sequences with start states s, in STATES,,.
* secure state, commands: those that satisfy properties

* reachable state: a state appearing in a command sequence of a system
* secure system: all state transitions and reachable states are secure

* (-set of all command sequences of a secure system

Gligor, Gavrila, Ferraiolo - 5/5/98 6

Applications and Executability

e application: App = [ObjSet, OpSet, Plan]
- plan: a finite set of pairs {(obj., op,)}

- ordered plan: an ordered set of pairs {(obj;, op,)}
- plans with “operation bracketing” (e.g., least-privilege princ.)

* App; U App, =
[ObjSet, U ObjSet,, OpSet, UOpSet,, Plan, U Plan,]

« command sequence ¢ executes App if for any pair (obj;, op;) 1n
Plan there 1s a command op,(s,, S, obj, s,.,) In G

Gligor, Gavrila, Ferraiolo - 5/5/98 7

Property Types

P = Attribute (AT) properties A

Access Management (AM) properties A

Access Authorization (AA) properties

Gligor, Gavrila, Ferraiolo - 5/5/98 8

Examples of Property Types

 Attribute (AT) Properties

— security (integrity) levels, partial order, lattice property

— roles, hierarchy, permissions, membership, inheritance

* Access Management (AM) Properties

— distribution, review, revocation of permissions
* selectivity, transitivity, independence ...
— object / subject creation and destruction

— object encapsulation

* Access Authorization (AA) Properties

— required subject and object attributes for access
« BLP, Biba, RBAC, UNIX ...

Gligor, Gavrila, Ferraiolo - 5/5/98 9

Property Dependencies

“uses”

other types of
dependencies exist

Individual policy properties cannot be composed independently

Gligor, Gavrila, Ferraiolo - 5/5/98 10

Policy Structure

P=P A Admin (P) A Compat(P, App)

A
saccess
management
saccess
authorization
eattribute
properties
Safety Safety or Liveness
Properties Properties ?

Gligor, Gavrila, Ferraiolo - 5/5/98

11

SoD Policy Structure

SoD-P = SoD-PA Admin(SoD-P) ACompat(SoD-P, App) A RBAC-P

Gligor, Gavrila, Ferraiolo - 5/5/98 12

Admin(P)

P: a set of tranquil command sequences with the start state in STATES,

for all
Admin(P) = “for each s in STATES, there exists s, € STATES,,
there exists ® € Q) such that: o starts in s, and
o reaches s, and
Sp* 1s 1n P”

Compat(P, App)

Compat(P) = “there exists s, € STATES, and ¢ € P starting in s,
such that ¢ executes App”

.... Neither Safety nor Liveness

Gligor, Gavrila, Ferraiolo - 5/5/98 13

Mandated Compatibility

USERS

Policy Definition Application Definition
and and
Administration Administration
A A
| Compatibility |

Gligor, Gavrila, Ferraiolo - 5/5/98 14

|
|
|
|
\

Safety-Liveness
Framework

App

Multi-path
Compatible

Types of Compatibility

] P

—>

Machine Closed
Compatible

_— S

App

I
|
|
|
|

Totally multi-path /

Compatible //
/ /
/

S
L\ | Avp
—

App

Compat(P, App)

I,
/ P
/
/
/
/
/
/
/ / Totally
° c \ P Compatible
N
o 3 |App
o
Strongly
Compatible
Gligor, Gavrila, Ferraiolo - 5/5/98 15

Totally Multi-path Compatible
For each start state s, there is a comand sequence ¢ in P starting in s, and for each finite
command sequence o in P there is a command sequence t such that ot is in P and

executes App.
Machine-Closed Compatible

For each finite command sequence o in P there is a command sequence 1 such that
ot 1s in P and executes App.

Multi-path Compatible
There 1s a start state s, such that for each finite command sequence ¢ in P starting in s,
there is T such that ot is in P and executes App.

Totally Compatible
For each start state s, there is a command sequence o in P starting in s,
such that o executes App.

Strongly Compatible
For each start state s, such that s,* 1s in P, there is a command sequence in P
starting in s, that executes App.

Compatible

There 1s a start state s, and a command sequence o 1n P starting in s,
that executes App.
Gligor, Gavrila, Ferraiolo - 5/5/98 16

Types of Compatibility

Overly P
Restrictive Overly
gL | App .
STATES, Restrictive ©s
—> _ 7
—>
—> 7
—> _ 7
Totally multi-path o 7 P
ompatible \ o) App
7
c P
~ - - O \f
~N] -—>
S -] /
\\\\ J . Totally
~~_ Machine-Closed o \ Compatible
~Compatible 2 7 >
AN R _ o———»
~ ~N / (o)
o~
VAN
ﬂ,\ P J S Strongly
T 5| A 7 AN - Compatible
o PP J/ P
X o SN
\‘j >\ o App S~ May Require Administrative
e T » ~_ Work for App’s Execution in P

Multi-path J
Compatible

Compat(P, App)

~
~
~N
~

Gligor, Gavrila, Ferraiolo - 5/5/98

17

Overly Restrictive o

Example:

App =[{0bj}, {0p,, op,}, plan]; plan = {(0bj, op,), (0bj, op,)}
P : “u, and u, are the only users who may execute App and
a user may not execute two distinct (or all) operations on the same object”

Compat(P, App) is true

O = S;i(op,,0bj) S,:(op,, 0bj)
SO > Sl > S2

u;: (op,: 0bj), S, = subject
u,: (op,, op, : 0bj), S,, S,"= subjects

Compat,,(P, App) is false

\

O = Sz ‘:(Opla Ob]) T = SQ‘Z(OPZ, Obf)

%0 > sy 11T "X
u,: (op,: 0bj), S, TTeey
u,: (op, op, : 0bj), S,, S’ S,:(op,, 0bj)

Gligor, Gavrila, Ferraiolo - 5/5/98

18

Simple Policy Composition

P, =P, A Admin(P,) ACompat(P,, App,)
P,=P, A Admin(P,) A Compat(P,, App,)

Let CS(P,) = P, if Admin(P,) ACompat(P,, App,) is True;

O, otherwise.

(Emerging policy) P1 0 Pz =
=P, A P, A Admin(P, A P,) A Compat(P,A P,, App,u App,)

P., P, are composable if and only if
CS(P;0P,) = (I)Whenever cs(P),csP, # (I)

Gligor, Gavrila, Ferraiolo - 5/5/98 19

SoD Properties (1)

Static SoD

Obj,

Dynamic SoD

role membership

Obj.

| Obj,

Obj,

S

| Obj,

1

0 G-

| Obj,

O —
i \ Ri ~ -
N\, / N 7
X\ 7/ X\ o
X >
N SN

{ N e X ~

/ e N
UJ Rj

| Obj;

9
|

|~
I__'I

Obj;

Gligor, Gavrila, Ferraiolo - 5/5/98

20

per-Role Operational Static SoD

SoD Properties (2)

Operational Static SoD

all but op,
Ri

Obj;

Operational Dynamic SoD

U,

1

Obj;

Op;
_ Ri
g

OpSet = {op;, op;, o}

Obj;

Obj;

role activation

all but op,
—®
U
"4

Obj;

U.

1

|
=
3]

Obj;

9/
|
|~
I__'I
7

Gligor, Gavrila, Ferraiolo - 5/5/98

21

SoD Properties (3)

Object-based Static SoD Object-based Dynamic SoD
Op; op.
N U —(R 1 Obj;
<o _4O0bj, \ /
\—x';/ J
U, Ry X

object access

‘_ R || R,
per-Role, Object-based Static SoD 0 / v °P;
op;
/\ X OPJ
(e X en, ou (Subi)—TR[R,

Gligor, Gavrila, Ferraiolo - 5/5/98 22

SoD Properties (4)

History-based Dynamic SoD

OpSet = {op;, op;, opy, Op;}

op; op,

object access

U; Obj;

T all_but op,

— R

N /

Obj,

R,

R.

1
cg

all _but_op,

Gligor, Gavrila, Ferraiolo - 5/5/98

23

Relationships among SoD Properties

OpSSoD

T

ObjSSoD

A

Gligor, Gavrila, Ferraiolo - 5/5/98 24

Example: Non-Composable Separation-of-Duty Policies

Static SoD Operational Static SoD
\
Vel"l.jﬁ/ ;1:;1:;8 \ write Slgl’l
\
\.
po cpo
Purchasing Staff Purchasing Staff
Department Central Administration
Static SoD Operational Static SoD
‘g read ‘a a read .@
verify write read write sign
sign Policy-Management
Change
po cpo
Gligor, Gavrila, Ferraiolo - 5/5/98

25

	On the Formal Definition of Separation-of-Duty (SoD) Policies and their Composition
	Property Types
	Examples of Property Types
	Policy Structure
	SoD Policy Structure
	Admin(P)

