
1Gligor, Gavrila, Ferraiolo - 5/5/98

On the Formal Definition of 
Separation-of-Duty (SoD) Policies 

and their Composition

Virgil D. Gligor Serban I. Gavrila David Ferraiolo

NIST
US Department of Commerce
Gaithersburg, Maryland 20899
ferraiolo@csmes.ncsl.nist.gov

VDG Inc.
6009 Brookside Drive

Chevy Chase, Maryland 20815
gavrila@csmes.ncsl.nist.gov

Department of Electrical Engineering
University of Maryland 

College Park, Maryland 20742
gligor@eng.umd.edu

May 5, 1998



2Gligor, Gavrila, Ferraiolo - 5/5/98

SoD premise:

• Violations that require collusion are less likely to happen

SoD goals:

• Separate sensitive tasks of an application such that 
integrity violations => collusion

• Minimize risk of collusion 
by careful assignment of users to separate tasks

SoD implementation:

• Define integrity property of an application
• Partition application into separate operations and objects
• carefully assign of users to separate application partitions



3Gligor, Gavrila, Ferraiolo - 5/5/98

SoD Policies 

Advantage:

- wide-spread acceptance by business, industry, government

Drawbacks:

- application-oriented policy 
=> limited scope
=> separate administration

- family of policies
=> required system flexibility

- uncertain policy interpretation 
=> uncertain relative strength



4Gligor, Gavrila, Ferraiolo - 5/5/98

Drawbacks: Mitigation:

- application-oriented policy - make it a feature of a global policy
=> limited scope
=> separate administration

- family of policies - provide administrative tools
=> required system flexibility

- uncertain policy - define formally
interpretation

=> uncertain relative strength

Solution: Define, implement, and administer SoD policies 
in systems suporting Role-Based Access Control (RBAC) 

{ roles } : {operations}{ users } { objects } 



5Gligor, Gavrila, Ferraiolo - 5/5/98

Vision: SoD Administrative Tool

Mapper to
Oracle’s SQL

Mapper to
Other 
RBAC APIs

Administrative Tool
SoD Policy Server

Oracle RBAC 
Server

Other 
RBAC Server

RBAC/Web
scripts

RBAC/DTOS
security module

SQL

APIs

Perl

SSCL

Oracle RBAC 
Semantics

Other
RBAC 

Semantics

RBAC / Web
Semantics

RBAC/ DTOS
Semantics

Mapper to
RBAC/Synergy
commands

A

P

I

s

GUIs

SoD
Policy
Library

SoD
Policy 1

SoD
Policy n

.

.

.

Mapper to
RBAC/Web
APIs



6Gligor, Gavrila, Ferraiolo - 5/5/98

Systems
• state machine 

STATES, SUBJECTS, USERS, OPERATIONS, OBJECTS

• state transitions 
- commands: op(s1, S, obj, s2)
- command sequence: op1(s0, S1, obj, s1)op2(s1, S2, obj2, s2)...,  
- tranquil commands: do not alter security attributes

• system: a set of command sequences with start states  s0 in STATES0.

• secure state, commands: those that satisfy properties

• reachable state: a state appearing in a command sequence of a system

• secure system: all state transitions and reachable states are secure 

• set of all command sequences of a secure systemΩ :



7Gligor, Gavrila, Ferraiolo - 5/5/98

Applications and Executability

• application: App = [ObjSet, OpSet, Plan]

- plan: a finite set of pairs {(obji, opi)}
- ordered plan: an ordered set of pairs {(obji, opi)}
- plans with “operation bracketing” (e.g., least-privilege princ.)

. . . 

• App1 App2 = 
[ObjSet1 ObjSet2,  OpSet1 OpSet2,  Plan1 Plan2]

• command sequence      executes App if for any pair (obji, opi)  in 
Plan there is a command opi(sk, S, obji, sk+1) in

∪
∪ ∪ ∪

σ
σ



8Gligor, Gavrila, Ferraiolo - 5/5/98

Property Types

P = Attribute (AT) properties ∧

Access Management (AM) properties ∧

Access Authorization (AA) properties 



9Gligor, Gavrila, Ferraiolo - 5/5/98

Examples of Property Types

• Attribute (AT) Properties
– security (integrity) levels, partial order, lattice property
– roles, hierarchy, permissions, membership, inheritance

• Access Management (AM) Properties
– distribution, review, revocation of permissions

• selectivity, transitivity, independence ...
– object / subject creation and destruction
– object encapsulation

• Access Authorization (AA) Properties
– required subject and object attributes for access

• BLP, Biba, RBAC, UNIX ...



10Gligor, Gavrila, Ferraiolo - 5/5/98

Property Dependencies

AA

AM

AT

X

aa

aa
X

at

at

“uses”

other types of 
dependencies exist

Individual policy properties cannot be composed independently



11Gligor, Gavrila, Ferraiolo - 5/5/98

Policy Structure

P = P ∧ Admin (P) ∧ Compat(P, App)

•access
management

•access 
authorization

•attribute
properties

Safety or Liveness
Properties  ?

Safety
Properties



12Gligor, Gavrila, Ferraiolo - 5/5/98

SoD Policy Structure

SoD-P = SoD-P∧ Admin(SoD-P) ∧Compat(SoD-P, App) RBAC-P∧



13Gligor, Gavrila, Ferraiolo - 5/5/98

Admin(P)
P: a set of tranquil command sequences with the start state in STATES0

for all
Admin(P) = “for each s in STATES, there exists s0 STATES0, 

there exists ω Ω such that: ω starts in s, and
ω reaches s0 and
s0* is in P”

∈
∈

Compat(P, App)
Compat(P) = “there exists s0 STATES0 and         P starting in s0

such that     executes App”
σ

σ
∈ ∈

.... neither Safety nor Liveness ....



14Gligor, Gavrila, Ferraiolo - 5/5/98

USERS
permissions

Policy Definition
and 

Administration

Application Definition
and 

Administration

Compatibility

Application
Operations OBJECTS

permissions

Mandated Compatibility



15Gligor, Gavrila, Ferraiolo - 5/5/98

Types of Compatibility

Totally multi-path
Compatible

Multi-path
Compatible

Totally
Compatible

τσ

P

App

P
Appτσ

σ
P

App

P
Appσ

P

App
τ

σ

Machine Closed
Compatible

Strongly
Compatible

P

App

σ

Safety-Liveness
Framework

Compat(P, App)



16Gligor, Gavrila, Ferraiolo - 5/5/98

Totally Multi-path Compatible
For each start state s0 there is a comand sequence σ in P starting in s0 , and for each finite 
command sequence σ in P there is a command sequence τ such that στ is in P and 
executes App.

Machine-Closed Compatible
For each finite command sequence σ in P there is a command sequence τ such that 
στ is in P and executes App.

Multi-path Compatible
There is a start state s0 such that for each finite command sequence σ in P starting in s0
there is τ such that στ is in P and executes App.

Totally Compatible
For each start state s0 there is a command sequence σ in P starting in s0
such that σ executes App.

Strongly Compatible
For each start state s0 such that s0* is in P, there is a command sequence σ in P 
starting in s0 that executes App.

Compatible
There is a  start state s0 and a command sequence σ in P starting in s0
that executes App.



17Gligor, Gavrila, Ferraiolo - 5/5/98

Types of Compatibility

Totally multi-path
Compatible

Multi-path
Compatible

Totally
Compatible

τσ

P

App

P
Appτσ

σ
P

App

P
Appσ

P

App
τ

σ

Machine-Closed
Compatible

Strongly
Compatible

P

App

σ

Overly
Restrictive σs

Overly
Restrictive
STATES0

May Require Administrative 
Work for App’s Execution in P

x

Compat(P, App)



18Gligor, Gavrila, Ferraiolo - 5/5/98

Overly Restrictive σs

Example: 
App = [ {obj}, {op1, op2}, plan];  plan = {(obj, op1), (obj, op2)}
P : “u1 and u2 are the only users who may execute App and

a user may not execute two distinct (or all) operations on the same object”

Compat(P, App) is true

s0

S1:(op1, obj ) Sσ = 2:(op2, obj )
s2s1

u1: (op1: obj ), S1 = subject
u2: (op1, op2 : obj ), S2, S2`= subjects

CompatM(P, App) is false

s0
u1: (op1: obj ), S1
u2: (op1, op2 : obj ), S2, S2’

S2 `:(op1, obj )σ` =
s1`

S2`:(op2, obj )

x
x

S1:(op2, obj )

τ =



19Gligor, Gavrila, Ferraiolo - 5/5/98

Simple Policy Composition

P1 = P1 Admin(P1) Compat(P1, App1)
∧ ∧
∧

P2 = P2 Admin(P2) Compat(P2, App2)
∧

Let CS(Pi) = Pi, if Admin(Pi) Compat(Pi, Appi) is True;  ∧

φ, otherwise. 

(Emerging policy)  P1 o P2 =
= P1        P2 Admin(P1 P2) Compat(P1 P2,  App1 App2)∧ ∧ ∧ ∧ ∧ ∪

P1, P2 are composable if and only if
CS(P1 o P2 ) whenever CS(P1), CS(P2)≠ φ ≠ φ



20Gligor, Gavrila, Ferraiolo - 5/5/98

SoD Properties (1) 
Static SoD Dynamic SoD

Ui

Uj

Ri

Rj

Obji

Objj

op

x
x

role membership

Ui Ri

Rj

Obji

Objj

op

Strict Static SoD

Ui

Uj

Ri

Rj

Obji

Objj

op

x
x

x
x

role activation

Ui Subji

x
Ri Rj

Subjj Rj Ri1-step Strict Static SoD

Ui

Uj

Ri

Rj

Obji

Objj

one op

x
x

x
x



21Gligor, Gavrila, Ferraiolo - 5/5/98

SoD Properties (2) 
Operational Static SoD Operational Dynamic SoD

OpSet = {opi, opj, opk}

Ui

Ri

Rj

Obji

Objj

all_but_opx

all_but_opx

all_but_op x

Ui Ri

Rj

Obji

Objj

opi

opj

opk

Ui Subji

x
Ri Rj

Subjj Rj Ri

role activation
per-Role Operational Static SoD

Ui Ri Obji

Objj

all_but_opx

all_but_op
x



22Gligor, Gavrila, Ferraiolo - 5/5/98

SoD Properties (3) 

Object-based Static SoD Object-based Dynamic SoD

Ui

Ri

Rj

Obji

opi

op j x

opj
x

Ui Ri

Rj

Obji
opj

opi

object access

Ui

Subji Ri Rj

Subjj Rj Ri

Obji

opi x opj

opjx

per-Role, Object-based Static SoD

Ui Ri Obji

opi

opj
x



23Gligor, Gavrila, Ferraiolo - 5/5/98

SoD Properties (4) 

History-based Dynamic SoD

OpSet = {opi, opj, opk, opl}

Ui Ri

Rj

Obji

opjopi

oplopk

object access

Ui

Subji Ri Rj

Subjj Rj Ri

Obji

all_but_opx

all_but_opx



24Gligor, Gavrila, Ferraiolo - 5/5/98

Relationships among SoD Properties

HDSoD

ObjDSoD OpDSoD

RObjSSoD DSoD

SSoDObjSSoD

ROpSSoD

OpSSoD

SSSoD

and and

1sSSSoD



25Gligor, Gavrila, Ferraiolo - 5/5/98

Example: Non-Composable Separation-of-Duty Policies
Static SoD Operational Static SoD

R2 R1 R3

po cpo

verify

read
write
sign sign

read
write

x
Purchasing Staff

Central Administration
Purchasing Staff

Department

Static SoD Operational Static SoD

R2 R1 R3

po cpo

verify
read
write
sign

sign

R1’
read

read
write

Policy-Management 
Change


	On the Formal Definition of Separation-of-Duty (SoD) Policies and their Composition
	Property Types
	Examples of Property Types
	Policy Structure
	SoD Policy Structure
	Admin(P)

