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SoD premise:

* Violations that require collusion are less likely to happen

SoD goals:

 Separate sensitive tasks of an application such that
integrity violations => collusion
e Minimize risk of collusion
by careful assignment of users to separate tasks

SoD implementation:

* Define integrity property of an application
e Partition application into separate operations and objects
e carefully assign of users to separate application partitions
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SoD Policies

Advantage:

- wide-spread acceptance by business, industry, government

Drawbacks:

- application-oriented policy

=> limited scope
=> separate administration

- family of policies
=> required system flexibility
- uncertain policy interpretation

=> uncertain relative strength
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Drawbacks: Mitigation:

- application-oriented policy - make it a feature of a global policy

=> limited scope
=> separate administration

- family of policies - provide administrative tools
=> required system flexibility
- uncertain policy - define formally
interpretation

=> uncertain relative strength

Solution: Define, implement, and administer SoD policies
in systems suporting Role-Based Access Control (RBAC)

{ users } > {roles } : {operations} > { objects }
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Systems

e state machine
STATES, SUBJECTS, USERS, OPERATIONS, OBJECTS

* State transitions
- commands: op(s,, S, 0bj, s,)
- command sequence: op,(S,, S, 0bj, s|)op,(s,, S, 0bj,, s,)...,
- tranquil commands: do not alter security attributes

* system: a set of command sequences with start states s, in STATES,,.
* secure state, commands: those that satisfy properties

* reachable state: a state appearing in a command sequence of a system
* secure system: all state transitions and reachable states are secure

* ( -set of all command sequences of a secure system
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Applications and Executability

e application: App = [ObjSet, OpSet, Plan]
- plan: a finite set of pairs {(obj., op,)}

- ordered plan: an ordered set of pairs {(obj;, op,)}
- plans with “operation bracketing” (e.g., least-privilege princ.)

* App; U App, =
[ObjSet, U ObjSet,, OpSet, UOpSet,, Plan, U Plan,]

« command sequence ¢ executes App if for any pair (obj;, op;) 1n
Plan there 1s a command op,(s,, S, obj, s,.,) In G
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Property Types

P = Attribute (AT) properties A

Access Management (AM) properties A

Access Authorization (AA) properties
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Examples of Property Types

 Attribute (AT) Properties

— security (integrity) levels, partial order, lattice property

— roles, hierarchy, permissions, membership, inheritance

* Access Management (AM) Properties

— distribution, review, revocation of permissions
* selectivity, transitivity, independence ...
— object / subject creation and destruction

— object encapsulation

* Access Authorization (AA) Properties

— required subject and object attributes for access
« BLP, Biba, RBAC, UNIX ...
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Property Dependencies

“uses”

other types of
dependencies exist

Individual policy properties cannot be composed independently
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Policy Structure

P=P A Admin (P) A Compat(P, App)

A
saccess
management
saccess
authorization
eattribute
properties
Safety Safety or Liveness
Properties Properties ?

Gligor, Gavrila, Ferraiolo - 5/5/98

11



SoD Policy Structure

SoD-P = SoD-PA Admin(SoD-P) ACompat(SoD-P, App) A RBAC-P
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Admin(P)

P: a set of tranquil command sequences with the start state in STATES,

for all
Admin(P) = “for each s in STATES, there exists s, € STATES,,
there exists ® € Q) such that: o starts in s, and
o reaches s, and
Sp* 1s 1n P”

Compat(P, App)

Compat(P) = “there exists s, € STATES, and ¢ € P starting in s,
such that ¢ executes App”

.... Neither Safety nor Liveness ....
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Mandated Compatibility
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Totally Multi-path Compatible
For each start state s, there is a comand sequence ¢ in P starting in s, and for each finite
command sequence o in P there is a command sequence t such that ot is in P and

executes App.
Machine-Closed Compatible

For each finite command sequence o in P there is a command sequence 1 such that
ot 1s in P and executes App.

Multi-path Compatible
There 1s a start state s, such that for each finite command sequence ¢ in P starting in s,
there is T such that ot is in P and executes App.

Totally Compatible
For each start state s, there is a command sequence o in P starting in s,
such that o executes App.

Strongly Compatible
For each start state s, such that s,* 1s in P, there is a command sequence  in P
starting in s, that executes App.

Compatible

There 1s a start state s, and a command sequence o 1n P starting in s,
that executes App.
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Overly Restrictive o

Example:

App =[ {0bj}, {0p,, op,}, plan]; plan = {(0bj, op,), (0bj, op,)}
P : “u, and u, are the only users who may execute App and
a user may not execute two distinct (or all) operations on the same object”

Compat(P, App) is true

O = S;i(op,,0bj) S,:(op,, 0bj )
SO > Sl > S2

u;: (op,: 0bj ), S, = subject
u,: (op,, op, : 0bj ), S,, S,"= subjects

Compat,,(P, App) is false

\

O = Sz ‘:(Opla Ob]) T = SQ‘Z(OPZ, Obf)

%0 > sy 11T "X
u,: (op,: 0bj), S, TTeey
u,: (op, op, : 0bj ), S,, S’ S,:(op,, 0bj)
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Simple Policy Composition

P, =P, A Admin(P,) ACompat(P,, App,)
P,=P, A Admin(P,) A Compat(P,, App,)

Let CS(P,) = P, if Admin(P,) ACompat(P,, App,) is True;

O, otherwise.

(Emerging policy) P1 0 Pz =
=P, A P, A Admin(P, A P,) A Compat(P,A P,, App,u App,)

P., P, are composable if and only if
CS(P;0P,) = (I)Whenever cs(P),csP, # (I)
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SoD Properties (1)
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per-Role Operational Static SoD

SoD Properties (2)

Operational Static SoD
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SoD Properties (3)

Object-based Static SoD Object-based Dynamic SoD
Op; op.
N U —( R 1 Obj;
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SoD Properties (4)

History-based Dynamic SoD

OpSet = {op;, op;, opy, Op;}
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Relationships among SoD Properties

OpSSoD

T

ObjSSoD

A
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Example: Non-Composable Separation-of-Duty Policies

Static SoD Operational Static SoD
\
Vel"l.jﬁ/ ;1:;1:;8 \ write Slgl’l
\
\.
po cpo
Purchasing Staff Purchasing Staff
Department Central Administration
Static SoD Operational Static SoD
‘g read ‘a a read .@
verify write read write sign
sign Policy-Management
Change
po cpo
Gligor, Gavrila, Ferraiolo - 5/5/98

25



	On the Formal Definition of Separation-of-Duty (SoD) Policies and their Composition
	Property Types
	Examples of Property Types
	Policy Structure
	SoD Policy Structure
	Admin(P)

