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h T A * J = h r ( A I I +  Vchr1 

= h TAJ.  

By induction r =  1,2:. . . 

Therefore. 

r R  

and since  (by assumption) 

hrApm+Jc=O, O < j < p ,  

only  terms of the  form h rA *v - IC* be  nonzero. As a result  all i E J are of 
the form i = tp and hence 

q = mp. m E X .  

2)  We now show  that p is also a multiple of q. By considering 
h TA *&* , ~=O, I : . . , q -2wesee  ’ that 

hTAj+lc=hTA*Jc*=O. 

If we  now consider h T A * q + J c * . j = 0 , 1 . . - . , q - 2  we see  that 

O = h T A * q + J ~ * = [ V ( h T A ~ c ) h T A J + h T A q 4 + J I A ~  

and hence 

hrAq+J+’c=0 (since hrAJ+’c=O). 

Using this inductive  procedure  it is clear  that  only products of the form 
h  TA ‘qc can be nonzero and hence p must  be a multiple of q. i.e.. 

p = sq. s E ,v. 

Combining 1) and 2) gives us the  result. 
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I. INTRODUCTION 

In the  study of model  reference adaptive identification of linear 
systems,  time-varying  differential equations arise, see e.g.. [I]-[7].  It is 
important  to be able  to provide  conditions  for asymptotic stability  of 
these  equations, and even  exponential  asymptotic  stability  where  possi- 
ble,  since  asymptotic  stability of the  equations  is  equivalent to conver- 
gence of the  identification  algorithms. 

In case  the  equation is periodically  time-varying  (which  situation 
obtains  when  the input to  the plant  being  identified  is  periodic), standard 
techn~ques of Lyapunov  theory  can be used to obta~n convergence  fairly 
easily [SI. As  soon as  the input is almost periodic-for example, a sum of 
two  sinusoids with incommensurate frequencies-these techniques  fail; 
indeed, the extension of Lyapunov  results  from  the  periodic  case  to  the 
almost periodic  case is recognized to  be  a significant  problem [8, p. 671. 
For inputs which are not  even  almost  periodic, one  would  expect  the 
difficulties to be  greater  again than in the  almost  periodic  case. 

Stimulated  especially by the work of Narendra  and his colleagues, e.g., 
[ 1H4]: we examined the stability  problem in a  report [9],  summarized  in 
[7]. Most of the results  were  for  the  almost  periodic  case,  though  some 
applied to less restrictive  situations. and we gave necessary  conditions 
for exponential  stability.  These are derived below. Meanwhile,  for one of 
the types of equation studied below. Morgan  and  Yarendra have  inde- 
pendently  derived by quite  different methods necessary conditions along 
lines  allowing  derivation  also of a sufficiency  result.  This  work,  including 
many  insightful  examples, is contained in [IO]. and  prompted US to 
modify our earlier  necessity treatment to recover  sufficiency  results: 
these are described  below. 

The paper is structured  as follows.  In  Section 11,  we present back- 
ground technical  material  used in proving  the  stability  results. The 
stability  results  themselves are established in Section 111. This section 
can be read independently of the  adaptive identification  literature. 
though  its understanding is enhanced by knowledge of the  source of the 
differential equation  and  the significance  (from  the  viewpoint of adap- 
tive  identification) of the  side  conditions  required to  ensure stability. A 
summary of some of the relevant  adaptive  identification  background is 
therefore  included in an  Appendix  and is cross-referenced in Section 111. 
Section IV contains concluding  remarks. 

11. BACKGROUND 

Let F ( . ) : R + + R n Y ”  and H ( . ) : R + + R n Y ‘  be regulated  matrix  func- 
tions  (i.e.$  one-sided  limits exist for  all r El?+) .  Let @(., .) be the 
transition  matrix  associated  with F(.). We  say that the  pair [ F , H ]  is 
uniformly  completely  observable’ if [ I l l  the  following  three  conditions 
hold  (any two implying  the  third):  for  some  positive a], a2. cyg, a4, and 6, 
and for  all s , I E R + ,  

a l I < N ( s , s + 6 ) < a 2 1  (2 .1)  

I !@(tJ)l l  < a5(lt-sl) (2.3) 

a31<~(s,s+S):V(s,s+6)@(S,s+6)<(Y4Z (2.2) 

where 

N ( s , s + G ) = I s + 6 @ ’ ( r . s ) H ( t ) H ’ ( r ) @ ( / , s ) d ~  S (2 .4)  

and as( .) : R++R is bounded  on  bounded intervals.  We  remark that if 
the  above conditions hold  for some 6, they  hold  for  all 6’ > 6. 

We  shall  make use of the  following  properties. 
Lemma I :  Let K ( . ) : R + + R n X ‘  be  regulated, and such  that 

JIS+6’I ;K( t ) lJzd l< a6 (2.5) 

for  some  positive  constants a6 and 6’ and all s E R + ;  then [ F , H ]  is 
uniformly  completely  observable if and only if [ F +  KH’:H] is uniformly 
completely  observable. 

Proof: This  lemma is the dual of [12, theorem 41. t V  
Remark: If the hypothesis of the  lemma  holds  for  one  fixed 6’ .  it 

‘The uniformity is wth respect to  time. 
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holds for all  positive S > O  (although a6 depends  on 6). This  fact will be (3.2) guarantees  that (2.5)  holds.) Take i x 'x  as  a  Lyapunov function for 
used in several  proofs in the next section. (3.1), i.e.. P ( I ) =  I in Lemma 2. Then  the  conditions of Lemma 2-2) are 

Lemma 2: The following conditions  are equivalent.  satisfied with F= - VV' and H = V .  
I )  The  equation x = Fx is  exponentially  asymptotically  stable.  Conversely,  assume  exponential  asymptotic  stability. Equations (2.6) 
2)  There exists a symmetric  differentiable  matrix P( .) : R + - R n X " .  a  and (2.7) hold with P =  f I .  F =  - VV' and H = V .  Accordingly, 

regulated H ( . ) : R + + R n x ' ,  and positive constants PI, B2 such  that  for [ -  VV',  VI is uniformly  completely  observable. Now provided 
all I €  R + .  

O < P , I <  P ( l ) <  821<a, (2.6) l s + ' l l  V(r)l12dt< a6 (3.3) 

- P= PF+ F'P+ H H '  (2.7) 

[ F, H 1 is uniformly  completely  observable.  (2.8) 

Moreover.  should i = Fx be exponentially  asymptotically  stable. and 
should (2.6) and (2.7)  hold  for  some P and H ,  then [F.  HI is uniformly 
completely  observable. 

Remark: In  the context of this  lemma, we require that although 
~ x(I)il decay  exponentially fast,  it decays no faster than exponentially. 
This  means  that  there  exist  positive y,. y2. y3. y4 such that y I  exp[ - y2 
. ( r - s ) ] < ~ l @ ( t , ~ ) ~ ~ < y ~ e x p [ - y , ( t - s ) ] f o r a l l t > s > O .  

Proof: That 1) implies 2) follows as in [12. proof of theorem 51. 
taking L ( . )  of that theorem to be I ;  that 2)  implies I )  is a restatement of 
part of the  theorem. The remainder  follows by reversal of part of the 
proof of the theorem. The  details  are  as follows. Identify a  Lyapunov 
function V ( x , r ) = x ' P ( t ) x .  In view  of the  bounds  on P ( . )  exponential 
asymptotic  stability is equivalent to the  existence of some  positive S. &. 
Pa P5, and p6 far which 

and 

- P 5 <  
V ( x ( s + G ) , s + 6 ) -  V ( x ( s ) . s )  

V ( x ( s + S ) . s + S )  - P 6  

for  all x ( s )  and x. Now use the  fact that 

V ( x ( s + S ) . s + S ) -  V ( r ( s ) . s ) =  V(X.I)d l  15+' . 
= - X ' ( ~ ) ~ ~ + ' ~ ' [ ~ , S ) H ( I ) H . ( I ) @ ( I . S ) ~ I - \ - ( S )  

=-xYs+G)J c p ' ( t , s + G ) H ( I ) H ' ( I ) @ ( l , s + S ) . x ( s + 6 )  
S + S  

S 

together  with  the bounds on P (  .) to conclude the uniform complete 
observability  result. CVC 

111. APPLICATIONS 

Equation (3.1) in Theorem 1 below  is  representative of some  equations 
arising  in adaptive identification;  its  origin  is  summarized  in the  Appen- 
dix, Section A-I. Condition (3.2) below has  an  interpretation in adaptive 
identification as a "persistently exciting'' condition, see  Section A-11. 
One half of the theorem  was  established in [9]; the complete  theorem is 
stated in [IO]; save that in [9] and [ I O ] ,  boundedness of V ( . )  is assumed. 

Theorem I :  Let V ( . ) :   R + + R " X '  be  regulated. Then 

x = - VV'X (3.1) 

is exponentially  asymptotically stable if and only if for  some  positive 6, 
a,. and a2. and for all s E R , ,  

holds for some positive a6 and 6, we may again  use  Lemma  1 to 
conclude that [0, VI is uniformly  completely  observable, i.e., that (3.2) 
holds.  We  see that (3.3) is a consequence of exponential  stability as 
follows. Let @(., .) be  the  transition  matrix  associated with X= - VV'x.  
Then (2.3) and  the uniform  complete  observability of [ - VV' .  V ]  imply 
that for any fixed 6 and all s. 

so that for some positive a7 

Now  it is a  standard result that the  transition  matrix @( .. .) of X =  F ( r ) x  
satisfies [13. p. 821 

Applying  this  result  with F= - VV' yields 

e x p ~ s + ' ~ V V ' d l = d e t @ ( r , s + S ) ~ n 7 ( S )  

which  implies (3.3). v v  
The  natural question  arises as  to how significant the uniform  assump- 

tion is. If the lower bound in  (3.2) fails. there  may or may not be 
convergence. and if there is convergence. i t  will not  be  exponential. For 
example. x = - ?-'x for f > 1 has  a solution x ( f ) =  K f - ' ,  which con- 
verges to zero, but not  exponentially  fast. while i = - e-'.x for t > 0 is 
not  asymptotically  convergent. In  both cases: the  integral  in (3.2) is 
positive definite for  all s and  any 6 >O, but not  uniformly so. On  the 
other hand, if the  upper bound fails, we should  expect  convergence at 
least as fast as exponential. In this  case of course, V ( . )  would  have  to  be 
unbounded. 

In the following Theorem, we consider a  more  complicated  equation. 
again arising  in the study of model  reference adaptive identification,  see 
Section A-111  of the Appendix.  (Actually, we have made  some  trivial 
modifications to  the equation as it  appears  in,  for example, [4] and [9].) 
This  equation is also  the subject of Theorem 3. The side condition (3.5) 
ensuring stability of the equation is discussed in Section A-IV of the 
Appendix. 

Theorem 2: Let V ( . ) : R + + R n X '  be  regulated, and satisfy Por some 
positive 6 and a6 and all s E R + 

(3.3) 

Let A be a real constant n x n  matrix  with A + A ' =  - I  and B a real 
constant n X r matrix  with rankr. Then 

x= [ lV, -?'Ix (3.4) 

(3.2) s E R +, 
is  exponentially stable if and  only if for  some  positive 6, a; and all 

Remark: Equation (3.2) is equivalent to uniform  complete  observabil- 
ity of [0, VI. 

Proof: Suppose (3.2) holds. Then [O, VI is  uniformly  completely 
observable, and so, by Lemma 1, 1- VV',  Vl is  uniformly  completely 

(3.5) 

observable.  (Identify k with - V and observe that  the  rightinequality of Proof: Observe that the bound (3.3) implies the existence of a 
. -  
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positive a8 such that for  all s E R,, I.e., 

This follows  from the Schwarz  inequality for  some positive constant K ,  existing by (3.3) and  independent of i .  

Now  identify P ( t )  of Lemma 2-2) with I ,  and F ( t )  with the system 
matrix in (3.4). Then (2.7) holds with Since q+O as i+m, this shows that x2=0. Then (3.8) reduces with 

llx]ll= 1, to 

or H'=[O I ] .  The result of the theorem  follows if and only if (3.5) 
implies and is  implied by the uniform complete  observability of [ F , H ] .  
Use  Lemma 1 with 

K=[-y'l 
to note  that uniform  complete  observability of [ F , H ]  is  equivalent to 
uniform  complete  observability of 

The associated  transition  matrix is 

and  the observability  matrix N (s,s + 6) is accordingly 

and  this is  equivalent eo failure of (3.5). v v  
The natural question  arises as  to how  the  left  inequality of (3.2) might 

be  related to (3.5). (This question also presents itself in the  adaptive 
identification  problem  context. See, e.g., [9] and Section A-IV of the 
Appendix.) Our main conclusions are as follows; under  the assumption 
that  the  bound ( 3 3 )  holds: 

1) Equation (3.2) is necessary  for (3.5) 
2 )  However, (3.2) is not sufficient for (3.5) 
3) If V ( . )  is constrained  appropriately, (3.2) is sufficient  for (3.5). 

We shall  now  establish  these  conclusions. 
Propoxifion I :  Let V(,) be as in the hypothesis of Theorem I .  If there 

exists no positive al such that (3.2) holds, there exists no positive a; such 
that (3.5) holds. 

Prmfi Suppose that  for  arbitrary 6 and  an  arbitrary  monotone 
decreasing  sequence of positive 4 with q+O as i+m, there  exists x with 
llxll= 1 and corresponding s, such that 

Set 

L 

Partition x as [ x ;  x;] and set W i ( f ) = B S : V ' ( 7 ) d ~ x l .  Then 

(3.8) for  some K' independent of i. Consequently, the left  inequality of (3.5) 
must fail for the particular 6 chosen;  however, 6 is arbitrary.  and so the 
inequality  fails for all 6. v v  

the Schwarz  inequality  implies that (3.2) holds for some V with V bounded (as indeed  it can). Replace V 
We can  now  that implies as for zE[s;,si+61 We  shall argue  the second  conclusion above in ouhne  only.  Suppose 

by V =  Vsgn(cose'). *Gus, V is V switched -in sign  more and  more 
rapidly. Since v V ' =  VV', (3.2) stiU holds  for V .  On the  other  hand,  the 
switching of V mean  that the positive  lower bound in (3.5) will fail for 
large  enough s. 

Finally, we shall  discuss the situation when (3.2; and (3.5) are equiv- 
alent.  We use an idea  employed by Yuan  and  Wonham [ 141. 



86 IEEE TRAWSACTTONS ON AUTOXXTIC  COhTROL,  FEBRUARY 1977 

Let C, be  a  set ( t i }  of points in [0, co) for  which  there exists a A such 
that for  any ti, 5 E C, with fi# $, one  has It, - $1 > 9. Thus. C, comprises 
points spaced at least A apart.  Denote by T the set of real  functions c ( . )  
on [0, 00) such  that  for  each a( .) E r< there  corresponds  some A and 
some C,  such  that 

1) a(r) and t'(f) are  continuous  and  bounded  on ([a, 00)- C,}. 
2) a(t) and t ' ( f )  have  finite  limits as fJt,  and r r r , ,  t i€  C,. 
Think of functions  in ?' as being smooth  enough  to have bounded 

continuous derivatives,  save that  a  countable  number of finite-step 
switchings are allowed, which cannot occur too frequently.  An important 
subclass of T is the class of linear  combinations of a finite number of 
sinusoids. As preparation for  the  main  result  relating (3.2) and (3.5). we 
introduce  a  lemma  and corollary. 
kmma 3: Let f : [ a , b ] + R  be a C2 function  on [a,b]. with If; <do 

and I f 1  < d, on [a:b].  Suppose that (2do/d2)'/' G f(b - a). Then 

Ijl <2(2d0d2)1'2 on [a,bl. 

Proof: Choose f I  < t 2E[a .b]  and observe that for  some r 3 E [ f l . t 2 ] ,  

~ ( r 2 ) = ~ ( ~ l ) + ( r 2 - t l ) f  (IJ 

whence 

Also, 

Because entries of V ( . )  lie in T-, V ( . )  is bounded. Therefore 

for  some K ,  independent of i. Now  apply  a trivial  vector  generalization 
of Corollary 1, choosing i large  enough that the bound  on (2dO/d2)'/' in 
the  corollary is met. There results 

I \  V'( t )x i l=  11 W, (r)il< C!/*K' 

for  some K'. independent of i and  as  a consequence 

~ ' ~ , " + ~ V ( t ) V ' ( t ) d r x < ~ , ' / " K ' .  

for  some K "  independent of i. Therefore. (3.2) fails  for  the  value of 6 
selected.  However, 6 is arbitrary, so that (3.2) fails for any 6. 6 V  

Using  Proposition 2 in conjunction with  Theorem 2. we have the 
following  theorem. 

Theorem 3: Assume  the  same  hypotheses  as in Theorem 2, and also 
that entries of V ( . )  lie  in 7'. A necessary and sufficient  condition for  the 
exponential  stability of (3.4) is that (3.2) hold. i.e.. [O. VI be uniformly 
completely  observable. 

The last  results we obtain concern  the  equation 

X =  ' [ - D @ V V '  -,,V], 
B @  V '  (3.9) 

which also  finds application  in  identification  problems, see Section A-V 
of the  Appendix. 

Theorem 4: Consider (3.9) in which V :  R  ++R" is a regulated  vector 
function  satisfying (3.3) and { A , B , C , D )  is a  quadruple of constant 
matrices  defining a minimal  realization of a transfer function matrix 

nonsingular  almost  everywhere. and with D = D'. Then (3.9) is exponen- 
tially  stable if and only if for  some  positive a', and 6 and for  all 5 E R,. 

li (f')l < [2-11+ (12- tI)d2. 
2dO 2 ( s )  = D + C'(s1 - A ) -  ' B  with 2 (s - u )  positive  real  for  some u > 0. 

Select r I  E [ a , ( a + b ) / 2 ]  but otherwise arbitrary  and t 2 -  tl=(2do/d2)"2 
to yield 

I f  ( I  '11 < 2(2d0d2 ) ' j 2 .  

A minor  variation  yields  the  same  inequality  for lf(rd\ with f 2 € [ ( a +  
b)/2,b] and the  result follows. P V 6  

With  the  above  definition of q.-. we then  have a simple  extension to 
the lemma. 

CoroIlaty I: Let fE  T, let I f 1  < do on [a,b] and l j l <  d2 on [a.b]- C,. 
Suppose  that (2d0/d31/2  G :A. Then 

2(2d04 ) ' I2  on [a, bl - C,. 

Proof: Apply  the  lemma to intervals of length A E [ a . b ]  not contain- 
ing as  an interior  point any point of C,. Y6 

Proposition 2: With V ( . )  as defined  in  Theorem I ,  suppose  also that 
entries of V ( . )  lie in T. Then (3.2) and (3.5) are equivalent. 

Proof: In view of Proposition 1, we need  only  show  that  failure of 
(3.5) implies  failure of (3.2). Suppose  that for arbitrary 6 and  an  arbitrary 
monotone decreasing  sequence of positive E, with E,+O as i+w. there 
exists x with JJxII = 1 and corresponding s, such that 

Set 

Then, as in Proposition 1, for t E[si,si+ 61 we have that 

A necessary  condition is that (3.2) hold. and if entries of V lie in 9^, this 
condition is also sufficient. 

Proof: The positive  real condition implies [I51 the existence of a 
positive  definite  symmetric P and  a matrix L such that PA + A ' P =  
- 20P - LL' and PB = C - LD '1'. With  the  aid of an inessential  coordi- 
nate basis  change in (3.9) and  of the  state-space, we can assume  without 
loss of generality  that P= I .  Then  one  can check that 

A B 8  V' A 

L 1'. 
L 0 ' 4  

Consequently, (3.9) is exponentially  stable if and only if the pair 

- D @ V V '  - C * @ V ] ,  [ d ? D ' i 2 @ V  [ B 8 V '  A L 

is uniformly  completely  observable. XOW by a minor  extension of 
Lemma 1. [ F , H ]  is  uniformly  completely  observable if and only if 
[ F +  K H R . H R ]  has  this  property  where R is a  constant nonsingular 
matrix and K is as in Lemma 1. The choices 
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following pair is uniformly completely observable: 

[ 0 , :], [ \ .5D1/’€3V 01. 
B Q V  0 I 

ix.. if and  only if for  some positive a ,  and 6 and all 5,  

(3.11) 

(Equation (3.3) holding by assumption.  ensures  that  the  other require- 
ments  for  uniform  complete  observability hold.) 

Suppose  that  for  arbitrary positive 6 and  an  arbitrary  monotone 
decreasing  sequence of positive q with E,+O as ; + x $  there exists x =[-x; 
x;]’ with 11x1 = 1 and corresponding s, such  that 

whence 

and 

By an  argument like that used in proving  Theorem 2. it follows that 
x2 = 0 and 

i.e.. there  does  not exist positive a’, and 6 such  that  for all 5 E R +  

In  summary,  failure of (3.1 I )  implies failure of (3.10). It is trivial  that 
(3.11) implies (3.10). Therefore. (3.10) and (3.11) are equivalent. and  the 
first part of the theorem is proved. 

A straightforward extension of the  argument used to prove Proposi- 
tion I establishes that (3.2) is necessaq for (3.10) to  hold. 

To show  that (3.2)  is sufficient in case  entries of V lie  in T. we note 
that a straightforward-extension of the  argument used to prove Proposi- 
tion 2 will shou,  that if (3.10)  fails, then  the following inequality fails. for 
a f  an  arbitrary positive constant  and all s E R + : 

for a certain  constant K >O.  Now  because Z ( s )  is nonsingular  almost 
everywhere, 2 D + X B ’ B  is nonsingular,  and  underbounded  by P I  for 
some positive /3. This implies that 2D 8 V V ’ +  KB’B €3 V V ’  > PI  @ VV’.  
and so the following inequality  fails  for  arbitrary positive a, and all 
s E R + :  

Equivalently. (3.2) fails. Therefore. (3.2) implies (3.10). V Y  

IV. CONCLUSIONS 

We have shown  how  the  concept of uniform  complete observability, 
including  various  consequences thereof, can  be used to  demonstrate  the 
exponential stability of certain  linear time-varying equations. Of interest 
is  the simplification of all sets of necessary and sufficient conditions  for 
exponential stability made possible by constraining a function  to  “not 
switch too often:” functions which are  linear  combinations of a finite 
number of sinusoids  are  included  within  the  constraint class. In  the 
identification  context,  such  constraints  are  normally physically reason- 
able. 

A ~ P E N D I X  

BACKGROLTD MATERIAL ON ADAPTIVE IDENTIFICATION 

In this Appendix, we attempt to put  into perspective the  differential 
equations  and  uniform  observability  conditions  arising in the  body of 
the  paper.  Derivations  are  truncated or omitted. 

A-I Origin of (3.1) 

Let a stable  plant  transfer  function  be n(s)=Z:=,bI,r’-I(sn + 
E?= luts’-’)-l in which n is assumed  known,  the ai and b, unknown, and 
there  are no pole zero  cancellations.  Measurements of the  plant  input 
and  output  are  available,  and  the task is to find the a,. bi. One  procedure 
for  doing this. which encompasses  the  ideas of: e.g., 151, is as follows. Let 
F be a fixed an n X n matrix, arbitrary  save  that  Re[h,(F)] < 0 for all i ,  
and g a fixed n-vector. arbitrary  save  that  [F.g] is completely  controlla- 
ble. One seeks n-vectors k , . k 2  such  that I I (s)=k;(sI  - F)-’g[l -k’ , ( s l -  
F)-’g]: this is precisely equivalent to determining the a, (though  it might 
not seem so). Let up(.).>b(.) be the  plant  input  and  output. Define a 
“model”  [driven by up( .) andyp(.)   and with  output y,( ’)] by 

i.,=Fc,+gV, 

U,=FL?,+gU, (AI) 

y,,,=/;(r)c,+/;(t)v,. 

Here, I l ( t )  and /,([) are time-varying gains. If / l ( r )=  k , ,  /,(t)= k ,  for  all t. 
then  one  can  show (it is  not  obvious)  thaty,(r)=yp(f)  for all f and u p ( . ) ,  
after  initial  condition effects die  away. The  aim of adaptive  identifica- 
tion is to  cause /l(r)+kl, 12(r)+k2 as [+x .  To this  end:  one  forms an  
adjustment law for the / , ( t )  based on the  errory,(r)-yp(r): 

(Scaling gains  are  permitted.  but  omitted  for clarity.) 
One  can  show  that this equation  may  be rewritten as 

where w * ( r ) + O  exponentially  fast. Letting x , ( f ) =  i1(r)- k , .  x , ( r ) =  
k ,  we  see that  the  equation  has  the  form 

x = - VV‘X + w .  ( ‘44 ) 

Given  exponential  stability of i= - VV’x.  exponential stability of this 
equation is immediate. A scalar  plant  leads  to vector V ( . )  and a 
multivariable  plant  (not discussed here) to matrix V ( . ) .  

A-11 The Obsercability Condirion f3.2) 

In  the  context of the  adaptive  identification  problem,  the  observability 
condition (3.2)  is termed a persistenrly exciring condition.  In  order  that 
adaptive  identification of the k, be possible or equivalcntly  that s(t)-O, 
there  must  be no pole zero  cancellation (else the k, are  not unique). and 
the  input z$(.) must  have sufficient complexity. (If it were a pure  sine 
wave  for.example,  one  could  hope  to identify only  the  magnitude  and 
phase of the plant  transfer  function  at a single frequency  and  not all its 
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parameters.) Also. the  input  must  retain this property  for  all time. If 
these  conditions, intuitively reasonable  for  adaptive  identification.  are 
fulfilled, then  the lower bound  in (3.2) holds.  while the  upper  bound 
reflects boundedness of up( .). 

A common  procedure  to  ensure  fulfillment of those requirements is to 
take up( . )  to  be a finite  sum of sinusoids or periodic signals. In this  way. 
u p ( . )  is periodic, or almost periodic, and if there  are  sufficient  different 
frequencies  within up( .), the persistently exciting condition holds for 
V ( - ) .  

A-111  Origin of (3.4) 

An alternative  approach  to the above (useful because, as it  turns out, 
integrators  are  saved) is developed in. e.g., [4] and [9]. The model. this 
time. partly in Laplace  transform  notation  and neglecting the  transform 
of exponentially  decaying  quantities. is 

i= I 
- .  

Y , ( s ) = B ‘ ( s I - A ) - ’ B w , ( s ) ,  A + A ’ = - I .  

One  can shoa: that Y,, ,(s)=  Yp(s) if and only if I , ( t ) = k , ,  12(t)=k2  for 
two constant n-vectors k 1 , k 2  determined  by and  determining  the  plant 
transfer  function. The task  therefore is to  ensure  that I i ( f ) - d j  as ?-x~.  
One still adjusts Il(?), I , ( [ )  using  the  errory,,,(t)-yp(f): 

- -  

although  the errorym(.)-yp(.) is not  formed in the  same way as before. 
By taking 

where . ~ 2 = A ~ ~ 2 + B [ ~ m ( r ) - k ; t . l ( f ) - k ; n , ( r ) ] .  (3.4) follows, other  than 
for an additive, exponentially  decaying  term. 

A-IV The Observability Condition (3.5) 

The  remarks concerning (3.2) apply of course, but there is additional 
intuition  regarding  the  need  for the integral  in (3.5). In forming the error 
y, , ,(f)-yp(r) which is used for adjusting  the I;(.) in (A6). the c,(c) are 
integrated [see last  equation in (A5)] in the  second scheme. while no 
integration  occurs in the  first  scheme [see last equation  in (AI)]. The 
persistently exciting condition is required of the  integrated c , ( . ) .  

Proposition 1 states  that if a persistently exciting condition is absent. it 
cannot  be  regained by integration, while Proposition 2 states  that if it  is 
present,  and if V ( . ) E Y ,  then  it is retained  by  integration.  Requiring 
V ( . ) E ’ 7 -  is equivalent  to  not allowing V ( . ) .  as  time evolves, to  contain 
less and less low frequency  content.  Since the effect of integration is to 
cut  down high frequency  content,  taking V(.)E‘?’ therefore ensures  that 
the integral of V ( . )  does  not  die  away  as ~+cc .  

A -  V Origin of (3.9) 

The thinking is much  as  for  the origin of (3.4). save that instead of 
having Y , ( s ) = B ’ ( s I -   A ) - ’ B W , ( s )  where the  constraint A + A ’ =  - I  

forces B ’ ( s I -   A ) - ’ B  to  be positive real one allows Ym(s )=  Z(s)W,(s) 
where Z(s)  is positive real (in a strict sense described  in  Theorem 4). 
Equation (3.9) is thus a generalization of (3.4). 
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On the Stability of Solutions to Minimal and 
Nonminimal Design Problems 

w. A. WOLOVICH. MEMBER. IEEE, P. ANTSAKLIS. AND 

H. ELLIOTT, MEMBER, IEEE 

Abwucr-A partial resolution to  the question of stability of solutions to 
the minimal  design problem is given in terms of transfer  matrix factoriza- 
tions employing the new notions of common system p o l e s  and common 
systems  zeros as well as the fixed poles of a l l  solutions and the  fixed poles 
of minimal  solutions. The results are employed to more directly and easily 
resolve questions involving the  attainment of stable solutions to  the model 
matching problem and  stable minimal-order state observers. 

1. INTRODC.CTlON 

The primary  purpose of this paper is to investigate various  questions 
involving minimal-order  dynamic  compensation.  In  particular. in Section 
I1  we present  some prelimiilary mathematical  notions involving minimal 
bases of rational  vector  spaces.  In Section I11 we formulate  the  minimal 
design problem and illustrate  how  it  can  he  rather easily and directly 
resolved via prime  polynomial  matrix  reductions  to  either row or column 
proper form. 

The  question of obtaining  stable  solutions  to  the  minimal design 
problem is then  considered in Section IV. Here we define the new and 
intuitively appealing  notions of the  common poles and  the  common 
zeros of dynamical systems. as \vel1 as the fixed poles of all  solutions  and 
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