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hTax=hT{all+VehTlY, 0<j<p
=hT4J.
By induction r=1,2,- - -
B
RTA*P+i= 3 a(rhTAPY,  0< j<p.
i=0
Therefore,
B - .
RTA*P*icr=| X a{r)hTAP* [Ae

i=0
and since (by assumption)

hTAP¥e=0, 0<j<p,
only terms of the form A 74*?~!c* be nonzero. As a result all i €J are of
the form i=rp and hence

g=mp, meN.

2) We now show that p is also a multiple of ¢g. By considering
hT4*ic*, j=0,1,---,g~2 we see that

hTA/*le=hTa%c*=0.

If we now consider h74**/c* j=0,1,---,g—2 we see that
0=hTa*a+ic* =V (hTA%)RTA/ + hTAT+ JAc
and hence
hT4 9%+ e =0 (since h 747+ e =0).

Using this inductive procedure it is clear that only products of the form
hT4"c can be nonzero and hence p must be a multiple of ¢, i.e.,

pP=35q, SEN.

Combining 1) and 2) gives us the result.
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I. INTRODUCTION

In the study of model reference adaptive identification of linear
systems, time-varying differential equations arise, see e.g., [1]-{7]. It is
important to be able to provide conditions for asymptotic stability of
these equations, and even exponential asymptotic stability where possi-
ble, since asymptotic stability of the equations is equivalent to conver-
gence of the identification algorithms.

In case the equation is periodically time-varying (which situation
obtains when the input to the plant being identified is periodic), standard
techniques of Lyapunov theory can be used to obtain convergence fairly
easily [8]. As soon as the input is almost periodic—for example, a sum of
two sinusoids with incommensurate frequencies—these techniques fail;
indeed, the extension of Lyapunov results from the periodic case to the
almost periodic case is recognized to be a significant problem [8, p. 67].
For inputs which are not even almost periodic, one would expect the
difficuities to be greater again than in the almost periodic case.

Stimulated especially by the work of Narendra and his colleagues, e.g.,
[1H4], we examined the stability problem in a report [9], summarized in
[7]. Most of the results were for the almost periodic case, though some
applied to less restrictive situations, and we gave necessary conditions
for exponential stability. These are derived below. Meanwhile, for one of
the types of equation studied below, Morgan and Narendra have inde-
pendently derived by quite different methods necessary conditions along
lines allowing derivation also of a sufficiency result. This work, including
many insightful examples, is contained in [10], and prompted us to
modify our earlier necessity treatment to recover sufficiency results;
these are described below.

The paper is structured as follows. In Section I, we present back-
ground technical material used in proving the stability results. The
stability results themselves are established in Section III. This section
can be read independently of the adaptive identification literature.
though its understanding is enhanced by knowledge of the source of the
differential equation and the significance (from the viewpoint of adap-
tive identification) of the side conditions required to ensure stability. A
summary of some of the relevant adaptive identification background is
therefore included in an Appendix and is cross-referenced in Section III.
Section IV contains concluding remarks.

II. BACKGROUND

Let F(-):R,—R"*"and H(-): R, —R"*" be regulated matrix func-
tions (i.e., one-sided limits exist for all rER,). Let ®(-,-) be the
transition matrix associated with F(-). We say that the pair [F,H] is
uniformly completely observable! if [11] the following three conditions
hold (any two implying the third): for some positive a,, oy, a3, a4, and 8,
and for all 5,7ER,.,

a ] < N(s,s+8)<ayl 2.1)
oyl <D (5,5+8)N (5,54 8)D(s.s+8) <a,] (2.2)
[0 s)| < as{(2—s)) (2.3)
where
N(ss+8)= [0 H O (D0(1s)dr 2.4)

and as(-): R, - R is bounded on bounded intervals. We remark that if
the above conditions hold for some §, they hold for all §’> 8.

We shall make use of the following properties.

Lemma 1: Let K(+): R, —R"*" be regulated, and such that

+8°
f‘ VK (5)|2dr < og (2.5)
5
for some positive constants a and 8’ and all sER,; then [F,H] is
uniformly completely observable if and only if [+ KH’, H] is uniformly
completely observable.

Proof: This lemma is the dual of [12, theorem 4]. Vv
Remark: If the hypothesis of the lemma holds for one fixed §°, it

'The uniformity is with respect to time.
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holds for all positive & >0 (although &4 depends on &). This fact will be
used in several proofs in the next section.

Lemma 2: The following conditions are equivalent.

1) The equation x = Fx is exponentially asymptotically stable.

2) There exists a symmetric differentiable matrix P(-): R, —»R"*" a
regulated H(-): R, —R"*’, and positive constants 8, 8, such that for
allieR .

0<BI<P(1)< Byl <o (2.6)
—P=PF+FP+HH' 2.7
[ 7, H | is uniformly completely observable. (2.8)

Moreover. should x=Fx be exponentially asymptotically stable, and
should (2.6) and (2.7) hold for some P and H, then [F,H] is uniformly
completely observable.

Remark: In the context of this lemma, we require that although
: x(Di| decay exponentially fast, it decays no faster than exponentially.
This means that there exist positive v,, va, ¥3. Y4 such that y, exp[— 1,
(=D))< ys exp[—yq(r—s)l forall t > 5> 0.

Proof: That 1) implies 2) follows as in [12, proof of theorem 5].
taking L(-) of that theorem to be /; that 2) implies 1) is a restatement of
part of the theorem. The remainder follows by reversal of part of the
proof of the theorem. The details are as follows. Identify a Lyapunov
function V(x,r)=x"P(#)x. In view of the bounds on P(-) exponential
asymptotic stability is equivalent to the existence of some positive &, 85,
Bs Bs, and B for which

V(x(s+8)s+8)— V(x(s),s)
V{x(s).s)

< =B

3 <

and

V(x(s+8),s+8)—V{(x(s).5)

ch V{x(s+8).5+8) < b

for all x(s) and s. Now use the fact that

S+

V(x(s+8)s+8)— V(x(s),s)=f SV(.r.t)dt

5

=— x’(s)fﬁa‘i:'(z,s)H {(DH (nP(1.5)dr x(s)

- —x’(s+8)fs+6d>’(t,s+6)H(t)H’(t)¢(t,:+8).\’(5+8)

together with the bounds on P(-) to conclude the uniform complete
observability result. Vvy

III. APPLICATIONS

Equation (3.1) in Theorem 1 below is representative of some equations
arising in adaptive identification; its origin is summarized in the Appen-
dix, Section A-l. Condition (3.2) below has an interpretation in adaptive
identification as a “persistently exciting” condition, see Section A-Il.
One half of the theorem was established in [9]; the complete theorem is
stated in [10]; save that in [9] and [10)], boundedness of V' (-) is assumed.

Theorem 1: Let V(-): R, —R"*" be regulated. Then

x=-VV'x 3.1)
is exponentially asymptotically stable if and only if for some positive §,
«,. and a,, and for all s€ER,,

al< [TV @V dr <ol (3.2)
5
Remark: Equation (3.2) is equivalent to uniform complete observabil-
ity of [0, V']
Proof: Suppose (3.2) holds. Then [0, V] is uniformly completely
observable, and so, by Lemma 1, [— V¥, V] is uniformly completely
observable. (Identify K with — V and observe that the night inequality of
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(3.2) guarantees that (2.5) holds.) Take ;x"x as a Lyapunov function for
(3.1), i.e., P(£)=1 in Lemma 2. Then the conditions of Lemma 2-2) are
satisfied with F=—VV’' and H=V.

Conversely, assume exponential asymptotic stability. Equations (2.6)
and (2.7) hold with P=1Il, F=—-V¥V’ and H=V. Accordingly,
[— V'V, V] is uniformly completely observable. Now provided

.

fs+6||V(z)||2dz<a6 (3.3)
5

holds for some positive ag and 6, we may again use Lemma 1 to
conclude that [0, ¥] is uniformly completely observable, i.e., that (3.2)
holds. We see that (3.3) is a consequence of exponential stability as
follows. Let ®(-, -) be the transition matrix associated with x= — V¥ "x.
Then (2.3) and the uniform complete observability of [— V'V’ V] imply
that for any fixed 8 and all s.

|®(s.5+6)| < a5(8)
so that for some positive a,
det®(s,5+8) < a,(8).

Now it is a standard result that the transition matrix @(-.-) of x=F(f)x
satisfies [13. p. 82]

det®(s,,s,) =exp fs‘trF(t)dz.
52
Applying this result with F= — V'V~ yields
s+ 8
expf tr VV dr=det®(s,5+8) < a;(8)
5

which implies (3.3). LAY

The natural question arises as to how significant the uniform assump-
tion is. If the lower bound in (3.2) fails, there may or may not be
convergence, and if there is convergence, it will not be exponential. For
example, x=—1¢"!x for 7> 1 has a solution x(r)= Kr~', which con-
verges to zero, but not exponentially fast, while x=—¢ % for >0 is
not asymptotically convergent. In both cases, the integral in (3.2) is
positive definite for all s and any § >0, but not uniformly so. On the
other hand, if the upper bound fails, we should expect convergence at
least as fast as exponential. In this case of course, ¥ (-) would have to be
unbounded.

In the following Theorem, we consider a more complicated equation,
again arising in the study of model reference adaptive identification, see
Section A-IIl of the Appendix. (Actually, we have made some trivial
modifications to the equation as it appears in, for example, [4] and [9].)
This equation is also the subject of Theorem 3. The side condition (3.5)
ensuring stability of the equation is discussed in Section A-IV of the
Appendix.

Theorem 2: Let V' (-):R,—R"™" be regulated, and satisfy for some
positive § and a5 and all sER

+8
f’ WV ())2dt < o (3.3)
5
Let A be a real constant »Xn matrix with A+A4'=—1 and B a real
constant #X r matrix with rankr. Then
-_[0 - VB’
x [BV’ y ]x (3.9)

is exponentially stable if and only if for some positive §, a] and all
SER,,

oyl <f’+6f'V(T)dff'V'(f)dfdz.
5 5

s

(3.5)

Proof: Observe that the bound (3.3) implies the existence of a
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positive ag such that for all s€E R,

[ @id<e 3.6)

This follows from the Schwarz inequality
12 72

1
f”su V(|di< [f”au V(t)llzdt] [f’”ldz]

Now identify P(f) of Lemma 2-2) with 7, and F(#) with the system
matrix in (3.4). Then (2.7) holds with

[ 0 0
HH [0 ]]

or H'=[0 [I]. The result of the theorem follows if and only if (3.5)
implies and is implied by the uniform complete observability of [F, H].

Use Lemma 1 with
_| —VB’
=73 ]

to note that uniform complete observability of [F,H] is equivalent to
uniform complete observability of

0 0 0
BV oy |1]
The associated transition matrix is

1 0

0(z.5)= BflV'(T)d‘r ;

and the observability matrix N (s,s+ 8) is accordingly

[Bf’V'(f)dT 1 ]dt.

Now (3.6) shows that ||®(1,5)]| < as((z—s]) for some as(-) and all
s,t E R as required in (2.3); the upper bound in (2.1) on N (s,5+ &) also
exists because of (3.6). It remains therefore to show that (3.5) implies and
is implied by the existence of some positive a,6 such that forallseR ,

fs+6 LIV(T)d’TB'
5
I

a11<fs+6 L’V(T)dTB' [BfrV'(T)d'r I}dt. (37)
3 I 5

That this implies (3.5) is trivial. We argue now that failure of (3.7)
implies failure of (3.5). -

Suppose then for arbitrary 8 and an arbitrary monotone decreasing
sequence of positive ¢; with -0 as i—c0, there exists x with {|x||=1 and
corresponding s; such that

t
X[ LV(T)dtB Bf'V'(T)dr I ax<e,
S ' 7 S

Partition x as [x] x3] and set W, (#)=B f V'(7)drx,. Then

f SEONW (1) + x, Pt < €, (3.8)

i

We can now argue that this implies x,=0, as follows; for 7 €E[s,,s; + 8]
the Schwarz inequality implies

lf’[ W, () 1w, (1) + x,)ar

172

1/2
<[ f 'W,-’(T)W,-(f)dr] [ [ _’||W,-(r)+x2||2df] :
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ie.,

1 1
5" W, (1) + x,)*— 5”)‘2"2

<[5 v (0B BV (D)xydi Ve, <KV
S,

i

for some positive constant K, existing by (3.3) and independent of i.
Then (3.8) implies that

[ Ikl <2K Ve 8+,
A

Since g—0 as i—oo, this shows that x,=0. Then (3.8) reduces with
lxill=1, to

x;f:-'*“f'v(f)dr(B'B)L’V'(T)drd:x, <g

5‘

and this is equivalent to failure of (3.5). vv

The natural question arises as to how the left inequality of (3.2) might
be related to (3.5). (This question also presents itself in the adaptive
identification problem context. See, e.g., [9] and Section A-IV of the
Appendix.) Our main conclusions are as follows; under the assumption
that the bound (3.3) holds:

1) Equation (3.2) is necessary for (3.5)

2) However, (3.2) is not sufficient for (3.5)

3) If V(-) is constrained appropriately, (3.2) is sufficient for (3.5).
We shall now establish these conclusions.

Proposition 1: Let V (-) be as in the hypothesis of Theorem 1. If there
exists no positive a; such that (3.2) holds, there exists no positive a} such
that (3.5) holds.

Proof: Suppose that for arbitrary 8 and an arbitrary monotone
decreasing sequence of positive ¢; with ¢—0 as i—0c0, there exists x with
|[x]j=1 and corresponding s; such that

x'fs"l”sl/(t) Vi(t)dix<e,.
5

i

wiAo= [ "V'(T)m.

It is easy to check that for 1 €[s,,s;+ 8), W,(¢) is bounded independently
of i by virtue of (3.3), and in fact

RACLACE WACTACY,

Sl

1/2

1/2
<[ [ ’W;(T)m(T)df] [ [ (T)W,-(f)dr]

172

i

1/2
<[ "‘”W,-'(T)Wf)df] [[’f”x'V(:)V'(ﬁxdz}

<Ve¢ K

for some K, independent of i. Therefore,
s;+6 1 ! 5;+8 o
x % V(e | v(Ddedix= [ 57°W (OW,()dr< Ve K’
f f f e f (W (2)dt < Ve,

for some K’ independent of i. Consequently, the left inequality of (3.5)
must fail for the particular 8 chosen; however, § is arbitrary, and so the
inequality fails for all 8. vv

We shall argue the second conclusion above in outline only. Suppose
that 32 holds for some ¥V wilp V bounded (as indeed it can). Replace ¥V
by V=Vsgn(cose’). Thus, ¥V is V switched in sign more and more
rapidly. Since VV’'= ¥V, (3.2) still holds for ¥. On the other hand, the
switchings of ¥ mean that the positive lower bound in (3.5) will fail for
large enough s.

Finally, we shall discuss the situation when (3.2 and (3.5) are equiv-
alent. We use an idea employed by Yuan and Wonham {14].
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Let C, be a set {;} of points in [0, o) for which there exists a A such
that for any 4,4 € C5 with 7, one has |1,— ] > A. Thus, C, comprises
points spaced at least A apart. Denote by V" the set of real functions v(-)
on [0,c0) such that for each v(-)EV there corresponds some A and
some C, such that

1) »(r) and ¢(r) are continuous and bounded on {[0,0c)— C,}.

2) v(¢) and ¢() have finite limits as 7} and 111, ;€ Cj.

Think of functions in V" as being smooth enough to have bounded
continuous derivatives, save that a countable number of finite-step
switchings are allowed, which cannot occur too frequently. An important
subclass of 7V is the class of linear combinations of a finite number of
sinusoids. As preparation for the main result relating (3.2) and (3.5). we
introduce a lemma and corollary.

Lemma 3: Let f:[a,b]>R be a C? function on [a,b], with |fi<d,
and | f| < d, on [a.b]. Suppose that (2dy/ d5)!/2 < L{(b—a). Then

1fi<2(2dgd;)""? on La,b).
Proof: Choose {1, < 1, E€[a.b] and observe that for some 15 €[7;.1,],

F) =)+ (5~ £} f (13)

whence
. 2d,
If ()< P
Also,
1f (1) =F ()< [ O Olar<(ty= 1)
so that

. 24,
|f <= + (-1l
27 h
Select 1, E[a,{a+ b)/2] but otherwise arbitrary and 1, — t, =(2d,/d,)!/?
to yield

Lf (D] <2(2dgdy )"

A minor variation yields the same inequality for | f(¢5)] with ,E[(a+
b)/2,b] and the result follows. VvV
With the above definition of V', we then have a simple extension to
the lemma. . R
Corollary 1: Let f€V, let | f|<djon [a,b} and | fl< d, on {a.b]— C,.
Suppose that (2dy/d,)!/% < JA. Then

1fl<2deds)”? onlabl-C,

Proof: Apply the lemma to intervals of length AE€[a, ] not contain-

ing as an interior point any point of C,. Vv
Proposition 2: With ¥ (-) as defined in Theorem I, suppose also that
entries of ¥(+) lie in V. Then (3.2) and (3.5) are equivalent.

Proof: In view of Proposition 1, we need only show that failure of
(3.5) implies failure of (3.2). Suppose that for arbitrary § and an arbitrary
monotone decreasing sequence of positive g with ¢,—0 as i—oc. there
exists x with ||x||=1 and corresponding s; such that

XI£_5'+BLIV(T)d"'fIV'(T)detx<ei.

5,

i i i

Set

W,.(t)=flV‘(1-)dfx.

Sl

Then, as in Proposition 1, for ¢ €[s;,s;+ 8] we have that
1/2

1/2
LW (z)w,»(rx[ / **'SW,»'(T)W,-mm] [ f;f”x'V(oV'(z)xdz}

:l
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Because entries of V() lie in V, ¥ (-) is bounded. Therefore
LW (W, ()<Ve K

for some X, independent of i. Now apply a trivial vector generalization
of Corollary 1, choosing i large enough that the bound on (2d,/d>)'/? in
the corollary is met. There results

1V ()] = W, (1)1l < }/3K
for some X', independent of / and as a consequence

x'fs‘+5V(l) V(1) dix <el/ K"
£

for some K independent of i. Therefore, (3.2) fails for the value of &
selected. However, § is arbitrary, so that (3.2) fails for any §. vy

Using Proposition 2 in conjunction with Theorem 2, we have the
following theorem.

Theorem 3: Assume the same hypotheses as in Theorem 2, and also
that entries of ¥ () lie in V. A necessary and sufficient condition for the
exponential stability of (3.4) is that (3.2) hold, ie.. [0,¥] be uniformly
completely observable.

The last results we obtain concern the equation

BV A (39)

i={ -DRVY' -C ®V]X
which also finds application in identification problems, see Section A-V
of the Appendix.

Theorem 4: Consider (3.9) in which ¥: R —R" is a regulated vector
function satisfying (3.3) and {4,B.C,D} is a quadruple of constant
matrices defining a minimal realization of a transfer function matrix
Z(s)=D+C'(sI—A4)" !B with Z(s—0) positive real for some ¢ >0,
nonsingular almost everywhere, and with D= D‘. Then (3.9) is exponen-
tially stable if and only if for some positive «] and § and for all sSER .

a‘,1<‘£"+8[20®VV’+B’B®fSIVd‘rJ;’V’dT}dt. (3.10)

A necessary condition is that (3.2) hold, and if entries of V¥ lie in ¥, this
condition is also sufficient.

Proof: The positive real condition implies {15] the existence of a
positive definite symmetric P and a matrix L such that P4+ A4 P=
—20P— L1’ and PB=C— LD'/2 With the aid of an inessential coordi-
nate basis change in (3.9) and of the state-space, we can assume without
loss of generality that P=/. Then one can check that

~DRVV' -C'®V |,
BOV’ 4

-peVV —Cc'er|
BV’ A

-_|V2D'2@yv 0 ||V2DY@V 0 |
L ol L a7y

Consequently, (3.9) is exponentially stable if and only if the pair

[—D@VV’ —c@y} [v’z D2®Y 0 }

BRV 4 L a7

is uniformly completely observable. Now by a minor extension of
Lemma 1. [F,H] is uniformly completely observable if and only if
[F+ KHR,HR] has this property where R is a constant nonsingular
matrix and K is as in Lemma 1. The choices

I 0 —ITD‘/2®V v
R= K=] />
-0~V o712 0 -4

lead to the conclusion that (3.9) is exponentially stable if and only if the
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following pair is uniformly completely observable:

0 0| V2D'W®V 0]
B®V 0 0 A

i.e., if and only if for some positive a; and & and all s,

V2 D@V B'®f’VdT V2 D12@¥ 0
5

l<fs+ di

o & .

VA 0 I B®f’V'dT I
5

3.11)

(Equation (3.3) holding by assumption, ensures that the other require-
ments for uniform complete observability hold.)

Suppose that for arbitrary positive 8 and an arbitrary monotone
decreasing sequence of positive €; with ,—0 as i—oc, there exists x =[x}
x3]" with ||x| =1 and corresponding s; such that

o

/5 nl/2 , g /5 /2 ,
x'f"” V2 D12QY B®fsVd. V2 pli2Qy
4
s 0 I B®f Vdr
5

i

drx<¢;

whence

x-',f"”w@ YV dix, <e,

Sl

and

t s
x; x,z]j;s,-+8 B®j; Vdr B®jx Vide 1|, % <e.

7 X

By an argument like that used in proving Theorem 2, it follows that
x,=0 and

x',f"+5[2D®VV'+ B’B®frVd.~flV'dT}a'tx1<€,,
5, 5 5

i

i.e., there does not exist positive o] and & such that for all sER
al< ("t 2@V +BB® ['var ['Viar|d  (3.10)
<), [ vl —

In summary, failure of (3.11) implies failure of (3.10). It is trivial that
(3.11) implies (3.10). Therefore, (3.10) and (3.11) are equivalent, and the
first part of the theorem is proved.

A straightforward extension of the argument used to prove Proposi-
tion 1 establishes that (3.2) is necessary for (3.10) to hold.

To show that (3.2) is sufficient in case entries of ¥ lie in . we note
that a straightforward_extension of the argument used to prove Proposi-
tion 2 will show that if (3.10) fails, then the following inequality fails. for
aj an arbitrary positive constant and all SER , :

s+8
a1< [ 2D@VY'+KB'BR VYV ldl
5

for a certain constant K >0. Now because Z(s) is nonsingular almost
everywhere, 2D + KB'B is nonsingular, and underbounded by BI for
some positive 8. This implies that 2D QR VV'+ KB'BQVV' > BI® V)",
and so the following inequality fails for arbitrary positive «, and all
SER,:

8
al< [ lrevyla

5

Equivalently, (3.2) fails. Therefore, (3.2) implies (3.10). A%
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IV. CONCLUSIONS

We have shown how the concept of uniform complete observability,
including various consequences thereof, can be used to demonstrate the
exponential stability of certain linear time-varying equations. Of interest
is the simplification of all sets of necessary and sufficient conditions for
exponential stability made possible by constraining a function to “not
switch too often;” functions which are linear combinations of a finite
number of sinusoids are included within the constraint class. In the
identification context, such constraints are normally physically reason-
able.

APPENDIX
BACKGROUND MATERIAL ON ADAPTIVE IDENTIFICATION

In this Appendix, we attempt to put into perspective the differential
equations and uniform observability conditions arising in the body of
the paper. Derivations are truncated or omitted.

A-I Origin of (3.1)

Let a stable plant transfer function be II(s)=37_ b " (s"+
=2.1a:5' 7Y~V in which # is assumed known, the a; and b; unknown, and
there are no pole zero cancellations. Measurements of the plant input
and output are available, and the task is to find the a;,b;. One procedure
for doing this, which encompasses the ideas of, e.g., [5), i1s as follows. Let
F be a fixed an n X n matrix, arbitrary save that Re[A,(F)] <0 for all 4,
and g a fixed n-vector, arbitrary save that [F.g] is completely controlla-
ble. One seeks n-vectors k), k, such that II{s) = ky{s/ — F)~ 'g[1— ki(sF—
F)~g); this is precisely equivalent to determining the @, (though it might
not seem s0). Let u,(-).,(-) be the plant input and output. Define a
“model” [driven by u,(-) and y,(-) and with output ,,(-)] by

1.'-1=Fvl+gyp

ty= Fo,+gu, (A1)

Y=l (De + (Do,

Here, /,(¢) and /,(¢) are time-varying gains. If /[(r)=k,, L,(1)=k, for all ¢,
then one can show (it is not obvious) that y,,(1)=y,(1) for all ¢ and u,("),
after initial condition effects die away. The aim of adaptive identifica-
tion is to cause /|(t)—>k;, (1)—>k, as r—oc. To this end, one forms an
adjustment law for the /,() based on the error y,, (1) = y,(1):

ING) v, (1)
== T [ ()=, ()] (A2)
L (1) ©, ()
(Scaling gains are permitted, but omitted for clarity.)
One can show that this equation may be rewritten as
I A gl -k ,
,'() —_|n® [e; (1) v (1)) T e w(n) (A3
(1) ty{1) 1 (1) —ky

where w(1)—0 exponentially fast. Letting x,(t}=/,(1)— k. x,(1)=1,()—
k, we see that the equation has the form

x=—VV'x+w. (A4)

Given exponential stability of x= — VV’x, exponential stability of this
equation is immediate. A scalar plant leads to vector V(-) and a
multivariable plant (not discussed here) to matrix ¥ (-).

A-Il1 The Observability Condition (3.2)

In the context of the adaptive identification problem, the observability
condition (3.2) is termed a persistently exciting condition. In order that
adaptive identification of the %; be possible or equivalently that x(#)—0,
there must be no pole zero cancellation (else the &; are not unique). and
the input u,(-) must have sufficient complexity. (If it were a pure sine
wave for example, one could hope to identify only the magnitude and
phase of the plant transfer function at a single frequency and not all its
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parameters.) Also, the input must retain this property for all time. If
these conditions, intuitively reasonable for adaptive identification, are
fulfilled, then the lower bound in (3.2) holds, while the upper bound
reflects boundedness of up(-)-

A common procedure to ensure fulfillment of those requirements is to
take u,(-) to be a finite sum of sinusoids or periodic signals. In this way,
u,(-) is periodic, or almost periodic, and if there are sufficient different
frequencies within u,(-), the persistenily exciting condition holds for
V).

A-111 Origin of (3.4)

An alternative approach to the above (useful because, as it turns out,

integrators are saved) is developed in. ¢.g., [4} and [9]. The model, this

time, partly in Laplace transform notation and neglecting the transform
of exponentially decaying quantities, is

1
1 s
Vi(s)= — Y, (s)
Sn—l+ 2 B‘_Si—] .
i=1 Ls™7 0
S
S
V,(s)= nl_l . U, (s) (A5)
n—\+ 3 i~1 N
: i§1 Bis Ls"“ i
w, ()= (e (D) + (e, (1)
Y, (s)=B(sI-A) 'BW,(s), A+A'=-1

One can show that Ym(:v)=~ Y,(s) if and only if /()= k.l, ()= k.2 for
two constant z-vectors k,k, determined by and determining the plant
transfer function. The task therefore is to ensure that /;(£)—4; as t—oc.
One still adjusts /,(¢), /,(¢) using the error y,, (1)~ y,(6):
I (e
oo [ (A6)

. m )=y, (1)
4 (1) g * ]

although the error y,,,(-)—»,(-) is not formed in the same way as before.
By taking

LDk,
= L0 -k,
X,

where %= Ax,+ B[w,, (1)~ kjt,(1) = Kjo,(9)], (3.4) follows, other than
for an additive, exponentially decaying term.

A-1V The Observability Condition (3.5)

The remarks concerning (3.2) apply of course, but there is additional
intuition regarding the need for the integral in (3.5). In forming the error
Ym(8) =¥, (1) which is used for adjusting the /(-) in (A6), the r;(1) are
integrated {see last equation in (AS)] in the second scheme. while no
integration occurs in the first scheme [see last equation in (AD)). The
persistently exciting condition is required of the integrated ¢;(-).

Proposition 1 states that if a persistently exciting condition is absent, it
cannot be regained by integration, while Proposition 2 states that if it is
present, and if V()& then it is retained by integration. Requiring
¥ (-)EV is equivalent to not allowing ¥ (-). as time evolves, to contain
less and less low frequency content. Since the effect of integration is to
cut down high frequency content, taking V' (-) €S therefore ensures that
the integral of V() does not die away as t—oc.

A-V Origin of (3.9)

The thinking is much as for the origin of (3.4), save that instead of
having Y, (s)=B'(sI— A)~'BW,(s) where the constraint 4 +4'=—1
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forces B'(sI— A)~'B to be positive real one allows Y (5)=Z(s)W,(s)
where Z(s) is positive real (in a strict sense described in Theorem 4).
Equation (3.9) is thus a generalization of (3.4).
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On the Stability of Solutions to Minimal and
Nonminimal Design Problems

W. A. WOLOVICH, MEMBER, IEEE, P. ANTSAKLIS. AND
H. ELLIOTT, MEMBER, IEEE

Abstract—A partial resolution to the question of stability of solutions to
the minimal design problem is given in terms of transfer matrix factoriza-
tions employing the new unotions of common system poles and common
systems zeros as well as the fixed poles of all solutions and the fixed poles
of minimal solutions. The results are employed to more directly and easily
resolve questions involving the attainment of stable solutions to the meodel
matching problem and stable minimal-order state observers.

1. INTRODUCTION

The primary purpose of this paper is to investigate various questions
involving minimal-order dynamic compensation. In particular, in Section
I we present some preliminary mathematical notions involving minimal
bases of rational vector spaces. In Section Iil we formulate the minimal
design problem and illusirate how it can be rather easily and directly
resolved via prime polynomial matrix reductions to either row or column
proper form.

The question of obtaining stable solutions to the minimal design
problem is then considered in Section IV. Here we define the new and
intuitively appealing notions of the common poles and the common
zeros of dynamical systems, as well as the fixed poles of all solutions and
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