| attach two problem sets from H. Khalil on Nonlinear Systems. There are two attachments.
(a) on o.d.e. basics and (problems (1, 3, 4, 6, 8, 17, 23)
(b) on Lyapunov theory. (1, 3, 5, 6, 7, 15, 17, 21, 22)

Due date - Oct 2

Students who have not taken nonlinear control theory (equivalent to ENEE 661) here or
elsewhere can ask me for help, including special group discussions.

For those who have taken that material, | ask you to do these (honor system)
without looking up any solutions and simply show your best understanding of the material from
that class. This would be just a warm up for you.
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3.5 Exercises

3.1 For each of the functions f(z) given next, find whether f is (a) continuously
differentiable; (b) locally Lipschitz; (c) continuous; (d) globally Lipschitz.

(1) f(z} = 2" + |a]. (2) f{z) = = + sgn(x).
(3) f(x) =sin(z) sgn(z). ' (4) f(z) = ~2 + asin(z).
(5) flz) = —z + 2lz]. (6) f(z) = tan(z).

azy + tanh(bzy) — tanh(bz;)
(7) flz) = [ ai; +t:,nh(b§) + tznh(b:si) J

_ -1 + a|$2l
(8) flz) = [ —{a + 6)211 + bzt — 21207 :l '

3.2 Let Dr = {z € R™ | ||lz|| < r}. For each of the following systems, represented
as & = f(¢,x), find whether {a) f is locally Lipschitz in ¢ on D,, for sufficiently
small 7; (b) f is locally Lipschitz in # on D,., for any finite r > 0; (¢) f is globally
Lipschitz in z:

(1) The pendulum equation with friction and constant input torque (Section 1.2.1}.
(2) The tunnel-diode circuit (Example 2.1).

(3) The ma§s~spring equation with linear spring, linear viscous damping, Coulomb
friction, and zero external force (Section 1.2.3).

(4) The Van der Pol oscillator (Example 2.6).
(5) The closed-loop equation of a third-order adaptive control system {Section 1.2.5).

(6) The system & = Az — By(Cxz), where A, B, and C are n x n,nxl,and 1xn
matrices, respectively, and ¥(-) is the dead-zone nonlinearity of Figure 1.10(c).

3.3 Show that if f; : R~ Rand f; : R — R are locally Lipschitz, then fi + fa,
Jfifa and f3 o f1 are locally Lipschitz.

3.4 Let f: R" — R™ be defined by

ke, i g(@)Ka) = p >0

(@) =
20 o, if glx)|| Kl < p

where g : B” — R is locally Lipschitz and nonnegative, and K is a constant matrix.
Show that f(z) is Lipschitz on any compact subset of B,

3.5 Let || - [ and || - {|p be two different p-norms on R™. Show that f : B* — R™
is Lipschitz in || - |l if and only if it is Lipschitz in || - | 5.
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3.6 Let f(t,2) be piecewise continuous in ¢, locally Lipschitz in z, and
17 (¢ 2l < By + kellzll, ¥ (%,2) € fto, 0} x R”

{(a) Show that the solution of (3.1) satisfies

lz () < llzol explkz{t — t0)] + %{exp[kz(f —to)] =1}

for all £ > #g for which the solution exists.

{(b) Can the solution have a finite escape time?

3.7 Let g : B™ — R™ be continuously differentiable for all z € B™ and define f(z)
by

fz) = v g(x

@ = @@

Show that & = f(z), with 2(0) = x¢, has a unique solution defined for all ¢ > 0.

3.8 Show that the state equation

21‘2

3‘3'1 = —$1+1+$%, Il(O)zfl
. 2z
2 2T z2(0)

has a unique solution defined for all ¢ > 0.
3.9 Suppose that the second-order system & = f(x), with a locally Lipschitz f(z),
has a limit cycle. Show that any solution that starts in the region enclosed by the

limit cycle cannot have a finite escape time.

3.10 Derive the sensitivity equations for the tunnel-diode circuit of Example 2.1
as L and € vary from their nominal values.

3.11 Derive the sensitivity equations for the Van der Pol oscillator of Example 2.6
as £ varies from its nominal value. Use the state equation in the r-coordinates.

3.12 Repeat the previous exercise by using the state equation in the z-coordinates.
3.13 Derive the sensitivity equations for the system
Ty = ta.n_l(axl) — I1I9, T = b:.v:;“f — cZo

as the parameters a, b, ¢ vary from their nominal values ag = 1, by = 0, and ¢p = 1.
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3.14 Comsider the system
1
B o= - -7 + tanh(Az;) — tanh(Azz)
1
&y = — —xp+tanh{\zy)+ tanh(Azs)

where A\ and T are positive constants.

a ET1Ve € Sensltivity equations as ana T var 0In elr nomunal values Ag
Derive th Hivit ti A and y from thei inal values A
and 0-

(b) Show that r = \/z% + 22 satisfies the differential inequality
1
< — Sr+2v2
T
(c) Using the comparison lemma, show that the solution of the state equation

satisfies the inequality
lz(®)]lz < e ¥ ||lz(0)]]z + 2v2r(1 — e™*/7)

3.15 Using the comparison lemma, show that the solution of the state equation

PO T 2
e T

satisfies the inequality
lz()ll2 < e *f2(0)]l2 + V2 (1 - €7")

3.16 Using the comparison lemma, find an upper bound on the sclution of the

scalar equation
. sint
.’Eﬁ—I’—I-mé', .’L’(D)=2

3.17 Consider the initial-value problem (3.1) and let D C R™ be a domain that
contains z = 0. Suppose x(¢), the solution of (3.1}, belongs to D for all ¢ > ¢, and
If & )2 < L||zlls on ftg, 00) x D. Show that

(a)

& [ 0a] < 2212

(b)
|zoliz exp[—L(t — to)] < [l2(®)]l2 < [lzolla explL (2 — to)]
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3.18 Let y(f) be a nonnegative scalar function that satisfies the inequality
' ¢
y(0) < kae @) 4 f 2= gy (7) + k] dir
to
where ki, ks, and k3 are nonnegative constants and « is a positive constant that

satisfies & > k9. Using the Gronwall-Bellman inequality, show that

k
< o p——Ra){E—t0) 3 1— —(a—kzz)(t—tg)]
y(t) < ke +a_k2[ e

Hint: Take z(t) = y(£)e*~%’ and find the inequality satisfied by z.

3.19 Let f: R® - R™ be locally Lipschitz in a domain D < R"™. Let S C D be a
compact set. Show that there is a positive constant L such that for all z,y € 5,

If{z) = f) < Lll= — vl
Hint: The set § can be covered by a finite number of neighborhoods; that is,
S ¢ N(ay, 1) UN(ag,r2)U---UN(ak,TE)
Consider the following two cases separately:
e 7,y € 5N N(ay,r;) for some i.
o z,y & SN N(a,r;) for any 7; in this case, [jz — y{| = min; ry.
In the second case, use the fact that f{x) is uniformly bounded on S.

3.20 Show that if f: B® — R" is Lipschitz on W C R™, then f(xz) is uniformly
contimious on W.

3.21 For any € R™ — {0} and any p € [1,00), define y € R™ by

1_:—1
i
<l

sign(a?)

Yi =

Show that yTz = ||zfl, and {y|; = 1, where g € (1, 0] is determined from 1/p -+
1/g = 1. For p = oo, find a vector y such that 37z = ||z]e and |lyfi = 1.

3.22 Prove Lemma 3.3.

3.23 Let f(z) be a continuously differentiable function that maps a convex domain
D ¢ R™ into R™. Suppose D contains the origin # = 0 and f(0) = 0. Show that

1
f(:c)z/o —g{:(crw)dcfm, vzeD

Hint: Set g(o) = f(oz) for 0 < ¢ < 1 and use the fact that g(1)-g¢(0) = 01 g'{c) do.
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3.24 Let V : Rx K™ — R be continuously differentiable. Suppose that V{£,0) =0
for all £ > 0 and

ov
a(ta )

Vit,2) > allz|?; <cellzll, ¥V (t,z)€{0,00)x D

where ¢ and ¢4 are positive constants and D € RB™ is a convex domain that contains
the origin ¢ = 0.

{a) Show that V(t,z) < %eajz|® for all z € D.

Hint: Use the representation V{¢,z} = 01 g—g(t, oz) do .

(b) Show that the constants ¢; and cy must satisfy 2¢; < ¢4.
{c) Show that W(t,z) = \/V (¢, z) satisfles the Lipschitz condition

C4

2/e

IW(t,CL‘g) — W(t, I]_)i < “562 "“931”, Yit>0, Vo, eD

3.25 Let f(t,z) be piecewise continuous in ¢ and locally Lipschitz in z on [ty, 1] x
D, for some domain D0 C R™. Let W be a compact subset of D. Let z(¢) be the
solution of z = f(t,x) starting at x(¢p)} = o € W. Suppose that z(¢) is defined
and z{t}.€ Wfor all ¢ € [to, T), T < t;.

(a) Show that z(¢) is uniformly continuous on [tg, 7).
{b) Show that z(T) is defined and belongs to W and z(t) is a solution on [t, 7.

(c) Skow that there is § > 0 such that the solution can be extended to [ty, 7" + 4].

3.26 Let f(t,x} be piecewise continuous in ¢ and locally Lipschitz in z on [ty, ;] x
D, for some domain D C R". Let y(¢} be a solution of (3.1) on a maximal open
interval [¢5,T") C [fg,%1] with T < co. Let W be any compact subset of D.. Show
that there is some ¢ € [f, T") with y(¢) € W.

Hint: Use the previous exercise.

3.27 ([43]) Let z; : B — R™ and z; : R ~» R™ be differentiable functions such
that
lei(a) —z2(a)l] <, [:(6) — F((E 2 ()] < pay fori=1,2

for a <t < 0. If f satisfies the Lipschitz condition (3.2), show that

_ gllt—=a) _ 1
21(2) — a(D)l] < 75D 4 (i + 1) [“’“‘*—L } fora<t<h

3.28 Show, under the assumptions of Theorem 3.5, that the solution of (3.1) de-
pends continuously on the initial time #;.
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3.29 Let f(t,x) and its partial derivatives with respect to z be continuous in
(t,x) for all (t,@) € [to, t1] x R™. Let z(t,7) be the solution of (3.1) that starts at
z(ty) = 1 and suppose z(t,7) is defined on [, ?:]. Show that z(t,n) is continuously -
differentiable with respect to i and find the variational equation satisfied by [0z /n).
Hint: Put y = x — 7 to transform (3.1) into

g= f(tiy+n): y(tﬂ) =0
with 1 as a parameter.

3.30 Let f(#,z) and its partial derivative with respect to z be continuous in (¢, z}
for all (¢,z) € R x R™. Let (¢, a,n) be the solution of (3.1) that starts at zla) =17
and suppose that (¢, a,n) is defined on [a,;]. Show that (¢, a,7)} is continuously
differentiable with tespect to a and 7 and let z,(t) and z,(t) denote [6z/0a] and
i8z/0m), respectively. Show that z,(t) and z, (t) satisly the identity

Ta(t) + zn(Of (@) =0, Vi€ [ab]

3.31 ([43]) Let f: R x R — R be a continuous function. Suppose that f(t,z)
is locally Lipschitz and nondecreasing in  for each fixed value of t. Let x(t) be a
solution of & = f(t,z} on an interval [a,b]. If a continuous function y(t) satisfies

the integral inequality
#
o) S a(@)+ [ Floy(s)) ds

for a <t < b, show that y(¢) < z(¢) throughout this interval.
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4.10 Exercises

4,1 Consider a second-order autonomous syster. For each of the following types
of equilibrium points, classify whether the equilibrium peint is stable, unstable, or
asymptotically stable:

(1) stable node  °  (2) unstable node  (3) stable focus

{4) unstable focus  (5) center (6) saddle
Justify your answer using phase portraits.

4.2 Consider the scalar system & = az? + g(z), where p is a positive integer and

g(z) satisfies jg{z)| < k|z[P* in some neighborhood of the origin z = 0. Show that
the origin is asymptotically stable if p is odd and a < 0. Show that it is unstable if
pisodd and a > 0 or p is even and a # 0.

4.3 For each of the following systerns, use a quadratic Lyapunov function candldate
to show that the origin is asymptotically stable:

(1) #1 = —x T2, o = —Iq

(2) &y = —zg—z1(1—2? —13), Ty = oy —x2(l -2 —a3)
{3) g1 = @a(l-ai), dz = —(z1+z2)(1—2f)
(4) 1 = —r1— 23, To = 23— :cg'

Investigate whether the origin is globally asymptotically stable.
4.4 {[151]) Euler equations for a rotating rigid spacecraft are given by

Jian = (Jo = J3)waws +us
Jawy = (J3 - J)wawy + us
chc')g = (Jl -— Jg)wlw‘g + U3

where w; o wp are the components of the angular velocity vector w along the
principal axes, u; to us are the torque inputs applied about the principal axes, and
J1 to J3 are the principal moments of inertia.

(a) Show that with u; = uz = ug = 0 the origin w = 0 is stable. Is it asymptotically
stable?

{(b) Suppose the torque inputs apply the feedback control u; = —k;w;, where k; to
ks are positive constants. Show that the origin of the closed-loop system is
globally asympiotically stable.

4.5 Let g(z) be a map from R™ into R™. Show that g{x) is the gradient vector of
a scalar function V : R® — R if and only if

99: 09 vii_19. g

6233' 85.."2 !
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4.6 Consider the system
1 =Tz, ¢2$—($1+$2)—h($1+$2)

where h is continuously differentiable and zh(z) > 0 for all z € R. Using th
variable gradient method, find a Lyapunov function that shows that the origin i

globally asymptotically stable.

4.7 Consider the system & = —Q¢(x), where Q is a symmetric positive definit
matrix and $(z) is a continuously differentiable function for which the ith compc

nent ¢; depends only on w;, that is, ¢ (z) = ¢i(x:). Assume that $:{0) =0 an
y@:(y) > 0 in some neighborhood of y=0,forall1 <i<n.

(a) Using the variable gradient method, find a Lyapunov function that shows the
the origin is asymptotically stable.

(b} Under what conditions will it be globally asymptotically stable?

(c) Apply to the case
2
1

y

n=2 ¢1(z1) =z — 25, 2(wa) = T2 +a3, Q= [

4.8 ([72]) Consider the second-order system

. —bz ) —2(zy + =
xr = 3 ! + 23, Tp = —-“—‘—"‘( 12 2)
T U

where u = 1+ 2. Let V(z) = z}/(1 +23) + z3.
(a) Show that V(z) > 0 and V{z) < 0 for all z € R* — {O}.

{(b) Consider the hyperbola z2 = 2/(xy — v2). Show, by investigating the vect
field on the boundary of this hyperbola, that trajectories to the right of ¢
branch in the first quadrant cannot cross that branch.

(¢) Show that the origin is not globally asymptotically stable.

Hint: In part (b), show that &#z/&1 = —~1/(1+ 2v/2z1 + 2x%) on the hyperbola, &
compare with the slope of the tangents to the hyperbola.

4.9 In checking radial unboundedness of a positive definite function V{x), it o
appear that it is sufficient to examine V{x) as l|lz|| — oo along the principal ax
This is not true, as shown by the function

(z1+ z2)?

I 2 St Y
= T dap z2)

Vi)
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(a) Show that V(z)} — oo as ||z|| — co along the lines z; = 0 or z3 = 0.
(b) Show that V'{z) is not radially unbounded.

4.10 (Krasovskii’s Method) Consider the system # = f(z) with f(0} = 0.
Assume that f(x) is continuously differentiable and its Jacobian [0f/8z] satisfies

[gf( )} { (a:)jl P<—I, YzeR"®, whereP=PT >

(a) Using the representation f{x) = [, gf (ez)x do, show that
TP Pf(z) + fT (&) Pe < —2¥z, YazeR®

(b) Show that V{z) = fT(z)Pf(z) is positive definite for all z € R" and radially
unbounded.

(¢} Show that the origin is globally asymptotically stable.

4.11 Using Theorem 4.3, prove Lyapunov’s first instability theorem:

For the system (4.1}, if a continuously differentiable function Vi{x} can be found
in a neighborhood of the origin such that V;(0) = 0, and V4 along the trajectories
of the system is positive definite, but 17 itself is not negative definite or negative
semidefinite arbitrarily near the origin, then the origin is unstable.

4.12 Using Theorem 4.3, prove Lyapunov’s second instability theorem:

For the system (4.1), if in a neighborhood D of the origin, a continuously differ-
entiable function Vi(z) exists such that V1 (0) = 0 and V; along the trajectories of
the system is of the form V3 = AV; + W(z) where A > 0 and W{z) > 0 in D, and
if Vi(z) is not negative definite or negative semidefinite arbitrarily near the origin,
then the origin is unstable.

4.13 For each of the following systems, show that the origin is unstable:

(1) 1 = 2%+ iz, $2 = -xp+ i+ 170 — I3
(2) iy = —z§+x;,>, &y = E?*CL‘%

Hint: In part (2), show that ' = {0 < = < 1}n{xy 2 o} n{z < 23} isa
nonempty positively invariant set, and investigate the behavior of the trajectories
inside I'.

4.14 Consider the system
&1 =z, Ty = —g(z1)(z1 + z2)

where g is locally Llpschztz and g(y) > 1 for all y € R. Verify that V(z) =
I va(y) dy + z122 + 23 is positive definite for all x £ R? and radially unbounded,
and use it to show that the equilibrium point z = 0 is globally asymptotically stable.
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4.1% Consider the system
@1 =@y, Za=—hi{z1) — 22— ha(zs), ETz=o2-73

where hy and hg are locally Lipschitz functions that satisfy h;(0) = 0 and yh; () >0
for all y £ 0.

(a) Show that the system has a unique equilibrium point at the origin.

(b) Show that V(z) = [ ha(y) dy +z3/2+ I3 ha(y) dy is positive definite for °
all z € R%, ,

{c) Show that the origin is asymptotically stable.

(d) Under what conditions on Ay and hg, can you show that the origin is globally
asymptotically stable?

4,16 Show that the origin of
by =T, 3= —a} o}
is globally asymptotically stable.
4.17 ([77]) Consider Liénard’s equation
§+h(y)y+9(y) =0
where g and h are continuously differentiable.

(a) Using z; = y and xz = ¥, write the state equation and find conditions on g
and h to ensure that the origin is an isolated equilibrium point.

(b) Using V(z) = * g(y) dy + (1/2)z3 as a Lyapunov function candidate, find
conditions on g and h to ensure that the origin is asymptotically stable.

. 1 2 T
(c) Repeat part (b) using V' (z) = (1/2) [z2 + f5" h(y) dy]” + Jy" 9(v) dy-
4.18 The mass—spring system of Exercise 1.12 is modeled by
Mij= Mg —ky —c19 — e23l9|

Show that the system has a globally asymptotically stable equilibrium point.

4.19 Consider the equations of motion of an m-link robot, described in Exer-
cise 1.4. Assume that P(g) is a positive definite function of ¢ and g(g) = 0 bas an
isolated roots at ¢ = 0.

(a) With u = 0, use the total energy V(g,§) = 34" M ()¢ + P(q) as a Lyapunoy
function candidate to show that the origin (g =0, ¢ = 0) is stable.




R4 LYAPUNGV STABILITY

3 =g — I3

sty hi(0) = 0 and yhi(y) > 0

nt at the origin.

) dy is positive definite for

v that the origin is globally

1 and find conditions on g

ibrium point,

w function candidate, find -

asymptotically stable.

W)+ [T g(y) dy.

ed by

le equilibrium point,.
robot, described in Exer-

tof g and g{g) =0 has an

)¢ + P(g) as a Lyapunov
¢ = () is stable.

4.10. EXERCISES . 185

(b) With u = —Kyq, where K, is a positive diagonal matrix, show ﬂm'?%ﬁg'm\ -
is asymptotically stable.

c) With v = g(g) - K,(¢q — q* — Ky, where K, and K, are positive diagonal
P »
matrices and ¢* is a desired robot position in ™, show that th point (g =
g%, ¢ =0) is an asymptotically stable equilibrium point. /

-

4.20 Suppose the set M in LaSalle’s theorem consists of a finite number of isolated
points. Show that lim; ., z(t) exists and equals one of thess points.

4.21 ([81]) A gradient system is a dynamical systerd of the form & = ~VV{(z);
where VV(z) = [0V/0z/T and V : D c B* — Ris twice t8rtinuously differentiable. \

{a) Show that V(z) < 0 for all z € D, and V(z) = 0 if and only if 2 is an
equilibrium point. ;

(b) Suppolse the set Q. = {z € B" | V(2) < ¢} is compact for every ¢ € R. Show\'
that every solution of the system is defined for all ¢ > 0. /

(¢} Continuing with part (b), suppose VV{(z) # 0, except for a finite number of
points p1,...,p,. Show that for every solution z{t}, lm_,, z(t) exists and
equals one of the points pi, ..., p,. -

4.22 Consider the Lyapunov equation PA+ATP = —C7(, where the pait (4,C)

is observable. Show that A is Hwwitz if and only if thewexi!'ﬁ:sf):ﬂ PP >0

that satisfies the equation. Furthermore, show that if 4 is Hurwitz, the Lyapunoy
equation will have a unique solution.

Hint: Apply LaSalle’s theorem and recall that for an observable pair (A4,C), the

vector Cexp(At)z =0V ¢ if and only if 2 = 0,

4.23 Consider the linear system & = (A — BR™'BT P}z, where P = PT >
satisfies the Riccati equation

PA+ATP+Q - PBR'BTP =

R=RT >0,and Q = Q7 > 0. Using V(2) = 2T Pz as a Lyapunov function
candidate, show that the origin is globally asymptotically stable when

(1) @>0
(2) @ =C7TC and (4, C) is observable; see the hint of Exercise 4.22.
4.24 Consider the system?®

T
&= f(z) - kGx)R™(2)G" (x) (%)

38 This is a closed-loop system under optimal stabilizing control. See [172].
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where V{z) is a continuously differentiable, positive definite function that satisfies
the Hamilton—Jacobi-Bellman equation

Y 1@+ - 4o sr@eme () =

g(z) is a positive semidefinite function, R(x) is a nonsingular matrix, and & is a
positive constant. Using V(z) as a Lyapunov function candidate, show that the
origin is asymptotically stable when

(1) q(z) is positive definite and & > 1/4.

(2) g{z) is positive semidefinite, k¥ > 1/4, and the only solution of & = f(z) that
can stay identically in the set {g(z) = 0} is the trivial solution z(t) = (.

When will the origin be globally asymptotically stable?

4.25 Consider the linear system £ = Az + Bu, where (A4, B) is controllable. Let

W =[5 e~4*BBTe ~4%t gt for some 7 > 0, Show that W is positive definite and
let K = BTW~L. Use V(z) = zT W'z as a Lyapunov function candidate for the
system & == {A — BK yz to show that {A — BK) is Hurwitz.

4.26 Let £ = f(z), where f : B® — R™. Consider the change of variables z =
T(z), where T(0) = 0 and T : R® — R™ is a diffeomorphism in the neighborhood
of the origin; that is, the inverse map 771(-) exists, and both T(-} and T—*(:) are
continuously differentiable. The transformed system is

. . aT
— , wh - o
f(2), where f(z) e flz) e

(2) Show that z = 0 is an isolated equilibrium point of £ = f{z) if and only if
z =10 is an isolated equilibrium point of £z = f(z).

(b) Show that x = 0 i stable (asymptotically stable or unstable) if and only if
z = 0 is stable (asymptoticalty stable or unstable).

4.27 Consider the system
T = —zpz3+ 1, Tg = T1T3 — Tg, I3 = .’L‘%(l - $3}
(a) Show that the system has a unique equilibrium point.

{b) Using linearization, show that the equilibrium point asymptotically stable. Is
it globally asymptotically stable?

4.28 Consider the system

$1=-x1, 4= (2172 — 1)ad + {mzs — 1+ )y
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(a) Show that z = 0 is the unique equilibrium point.
(b} Show, by using linearization, that z = 0 is asymptotically stable.
() Show that I'= {z € R* | zyx2 > 2} is a positively invariant set.
(d) Is z = 0 globally asymptotically stable?
4.29 Consider the system
¢1=x1—x‘;’+m2, &9 = 3x1 — X2
{a) Find all equilibrium point of the system.
{b) Using linearization, study the stability of each equilibrium point.

(¢) Using quadratic Lyapunov functions, estimate the region of attraction of each
asymptotically stable equilibrium point. Try to make your estimate as large
as possible.

{d) Construct the phase portrait of the system and show on it the exact regions of
attraction as well as your estimates.

4.30 Repeat the previous exercise for the system

. e . L
ml;—%tan(?l)—l-xg, Fo =3 — %tan(TQ)

4.31 For each of the systems of Exercise 4.3, use linearization to show that the
origin is asymptotically stable.

4.32 For each for the following systems, investigate whether the origin is stable,
asymptotically stable, or unstable:

2 = —o+af z; z S.igsin T3 + T[22 — sat(y)]?
(1) &2 = —z3+a3 2 .= _
b = g g2 &3 2x3 — sat{y)
3 37! where y = —2x; — Bay + 213
5:3]_ = ‘—233]_ + E‘]rj: i?]_ = -
(3) Tg = —To-+ :E% (4) Ty = —I{—Tg—T3— T1T3
T3 = —x3 3 = (21+ 1)z

4.33 Consider the second-order system & = f(z), where f(0) = 0 and f(z) is
twice continuously differentiable in some neighborhood of the origin. Suppose
[8f/0z](0) = —B, where B be Hurwitz. Let P be the positive definite solution
of the Lyapunov equation PB + BTP = —I and take V{z) = 27 Pz. Show that
there exists ¢* > 0 such that, for every. 0 < ¢ < ¢*, the surface V{(z) = ¢ Is closed
and [8V/8z]f(x) > 0 for all z € {V(z) = c}.
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4.34 Prove Lemma 4.2.
4,35 Let o be a class K function on [0, a). Show that
a(ry + 1) € a(2r) +a(2r), VYri,r2€[0,a)

4.36 Is the origin of the scalar system £ = —az/(t -+ 1), ¢ > 0, uniformly asymp-
totically stable?’

4.37 For each of the following linear systems, use a quadratic Lyapunov function
to show that the origin is exponentially stable:

o= [ Ylewoss oo [ 9]
In all cases, (¢) is continuous and bounded for all £ > 0. .

4.38 (]95]) An RLC circuit with time-varying elements is represented by
1 , 1 R(2)

&1 = 77572, T = — F=T1— %2

L) OO

Suppose that L(t), C(t), and R(t) are continuously differentiable and satisfy the
inequalities ky < L(t) < ks, k3 < C(#) < ks, and ks < R(2) < ke for all ¢ 2 0, where
k1, k3, and ks are positive. Consider a Lyapunov function candidate

Vit,z) = [R(t) + R(%)S%a] 22 + 2my79 + E%wg

(a) Show that V(¢,x) is positive definite and decrescent.

(b) Find conditions on L(t), C(t), and R(t) that will ensure exponential stability
of the origin.

4.39 ([154]) A pendulum with time-varying friction is represented by
&1 = X9, Gy = —sinz — g{t)me
Suppose that g(t) is continuously differentiable and satisfies
b<a<a<gt)y<B<oo and () <y<2
for all # > 0. Consider the Lyapunov function candidate

Vit ,z) = H(asinz + z2)? + 1+ ag(t) — a?)(1 — cosz)
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(a) Show that V(z,x) is positive definite and decrescent.

{b) Show that V < —(a—a)z3 —a(2 —v)(1 — cos z1) + O(|z||%), where O(||z||®) is
a term bounded by k|z|/® in some neighborhood of the origin.

(c) Show that the origin is uniformly asymptotically stable.

4.40 (Floquet theory) Consider the linear system & = A(t)x, where A(t) =
A(t+T).3" Let ®(-,-) be the state transition matrix. Define a constant matrix B
via the equation exp(BT) = &(7,0), and let P(f) = exp(Bt)@(0,t). Show that

(a) P(t+7T) = P(Y).
(b) @(t.7) = P~H(t) exp[(t — ) BIP(7).
(c) the origin of = A(t)z is exponentially stable if and only if B is Hurwitz. |
4.41 Consider the system

1 =z, Fo = 22172 + 3t + 2 — 3z1 — 20t + V)xg

(a) Verify that z1(¢} =1, z2(f) = 1 is a solution.

e

= en

(b) Show that if z(0) is sufficiently close to [ g } then xz(t) approaches [
t — oo,
4.42 Consider the system
@ = —all, + §(z) + zz7)z

where ¢ is a positive constant, I, is the n x n identity matrix, and S{z) is an -
dependent skew symmetric matrix. Show that the origin is globally exponentially
stable.

4.43 Consider the system & = f(z)+G(z)u. Suppose there exist a positive definite
symumetric matrix P, a positive semidefinite function W (z}, and positive constants

« and o such that
22T Pf{z) + y2T Pz + W(z) — 2027 PG(z)GT{x)P2 <0, YzeR®

Show that with u = —oG7 (z) Pz the closed-loop system has a globally exponentially
stable equilibrium point at the origin.

4.44 Consider the system
£ =-z+x2+ (zf + m%) sin ¢, Te = —T1 —To+ (a:% + a:%) cost

Show that the origin is exponentially stable and estimate the region of attraction.

37See [158] for & comprehensive treatment of Floquet theory.
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4.45 Consider the system
1= h()zs — g(t)z3, &2 = —h(t)z: — g(t)23

where h(t) and g{t) are bounded, continuously differentiable functions and g{t) >
k>0, forallt>0.

(a) Is the equilibrium point z = 0 uniformly asymptotically stable?
(b) Is it exponentially stable?
(¢) Is it globally uniformly asymptotically stable?
(d) Is it globally exponentially stable?
4.46 Show that the origin of the system
iy =~z — 21 (1 — 2% — 2), do =2y —x3(1 — 2} — 23)
is asymptotically stable. Is it exponentially stable?
4,47 Consider the system
&y = —p(B)zy + ad(t)za,  d2 = bod(t)z1 — abp{t)za — ep(t)as

where a, b, and ¢ are positive constants and ¢(t) and 1(f) are nonnegative, contin-
tous, bounded functions that satisfy

dE) = o >0, Y(E) =1 >0 Vi=0

Show that the origin is globally uniformly asymptotically stable. Is it exponentially
gtable?

4.48 Consider two systems represented by & = f(x) and & = h(z)f(z) where
f: R*— R and h : R* — R are continuously differentiable, f(0) = 0, and
R(0) > 0. Show that the origin of the first system is exponentially stable if and only
if the origin of the second system is exponentially stable.

4.49 Show that the system
i1 = -~azry1 +0b, Te = —cxg + :231(0.’ — Bzy33)
where all coefficients are positive, has a globally exponentially stable equilibrium
point.

Hint: Shift the equilibrium point to the origin and use V' of the form V = kY7 +
koys + kayf, where (y1,2) are the new coordinates.
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4.50 Consider the system
2 . . &= f(t,z); f(t,0) =0

nctions and g(t) = where [0f/0z] is bounded and Lipschitz in z in a neighborhood of the origin, uni-
5 formly in ¢ for all ¢ > ¢y = 0. Suppose that the origin of the linearization at z =0
is exponentially stable, and the solutions of the system satisfy

able?
=) < B{ll={to)l, t —t0), YE=1020, ¥ |alt)l <c (4.59)

for some class XL function 8 and some positive constant e.

(a) Show that there is a class X function o and a positive constant -y such that

@l < elilz(@)) expl—{t —to)l, Yi>to, Vla(to)l <e

22— 2 {b)} Show that there is a positive constant M, possibly dependent on ¢, such that

[z < Mi|z(to)llexp[-v( —to)], YVezto, Yzt <e  (4.60)

(c) If inequality (4.59) holds globally, can you state irequality (4.60) globally?

— eb(t)zS : 4.51 Suppose the assumptions of Theorem 4.18 are satisfied with o (r} = k7%,
] aa(r) = kor?, and W(z) > ksl|z||*, for some positive constants ki, ks, k3, and a.
nonnegative, contin- Show that (4.42) and (4.43) are satisfied with 3(r, s) = krexp(—vs) and a; {ao(p)) =
kp, where k = (ko/k1)Y® and v = ka/(ke0).

4.52 Consider Theorem 4.18 when V£, ) = V(z) and suppose inequality (4.40)

] is replaced by
a. Is it exponentially av
%f(t, ) < -Walz), YWulz)>p>0

for some continuous positive definite functions Wa{z) and Way{z). Show that (4.42)
and (4.43) hold for every initial state x(tp) € {V () < ¢} C D, provided {V(z) < ¢}
is compact and maxy, (;)<, V(z) < c.

t = h(z)f(z) where
able, f{0) = 0, and
\ly stable if and only

4.53 ([72]) Consider the system & = f(¢, z) and suppose there is a function V (¢, 2)
that satisfies :
Wiz) <V(t,2) < Walz), Vzfzr>0

T2} _
id + LZ}—Zf{t,;u) <0, Viz|=r 27

ly stable equilibrium ot
: where W3 (z) and Wa(z) are continuous, positive definite functions. Show that the
he form V =k Y + : solutions of the system are uniformly bounded.

‘Hint: Notice that V(,z) is not necessarily positive definite.
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4.54 For each of the following scalar systems, investigate input-to-state stability:

(1) =—(1+u)z? (2) £=-(1+u)z®—2°

(8) ¢ =~z+zu (4) t=z—2°+u

4.55 For each of the following systems, investigate input-to-state stability:

{1) &3 = —x1+Ties, iy = —ad—zx+u

(2) £y = —T1+Te, Fg = —zf-—zptu

(3) T = g, g = —x3—Totu

(4) i = {z1— 19 +u)(zf—1), gy = (z1 -+ 2 +u){e?-—1)
(5) 1 = —zq+xizg, Fn = —Xa4+T1+U

{6) £1 = —Z1—Tp+u, & = 1 —75+us

(7) £ = —T1+ %2, gy = —x1—o(z)—x3+u

where ¢ is a locally Lipschitz function, ¢(0) = 0, and yo(y) = 0 for all y # 0.

4.56 Using Lemma 4.7, show that the origin of the system

. 3 s 3
I1 = —a7 + Zg, To = Ty

is globally asymptotically stable.

4.57 Prove another version of Thecrem 4.19, where ali the assumptions are the
same except that inequality (4.49) is replaced by

ov  ov
ot Oz

where o s a class Ko function and () is a continuous function of » with 1(0) = 0.

Ftsz,u) < —og(llall) +¥(u)

4.58 Use inequality (4.47) to show that if u(¢) converges to zero as t — oo, so does
z(t).

4.59 Consider the scalar system & = —% + ¢~*. Show that z(t) — 0 as £ - oo.

4.60 Suppose the assumptions of Theorem 4.19 are satisfied for [|lz}| < r and
]| < 7. with class K functions oy and o that are not necessarily class Koo. Show
that there exist positive constants k; and k2 such that inequality (4.47) is satisfied
for flz(to)|l < k1 and sup,s,, lu(t)]l < k2. In this case, the system is said to be
locally input-to-state stable. '
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4.61 Consider the system

2
3.3‘1=$1{[Sin(£§2)} —}.}, g = —zo+u

(a) With v = 0, show that the origin is globally asymptotically stable.
(b) Show that for any bounded input u(t), the state z(t) is bounded.

(c) With u(t) =1, z1(0) = a, and z3(0) = 1, show that the solution is x1(8) = a,
ﬂ?g(f) =1.

(d) Is the system input-to-state stable?
In the next seven exercises, we deal with the discrete-time dynamical systemn?®
z(k+1) = f(z(k)), f(0)=0 (4.61)

The rate of change of a scalar function V(z) along the motion of (4.61) is defined
by
AV(z) = V(f(z)) - V(z)

4.62 Restate Definition 4.1 for the origin of the discrete-time system (4.61).

4.63 Show that the origin of (4.61) is stable if, in a neighborhood of the origin,
there is a continuous positive definite function V(z) so that AV{(z) is negative
semidefinite. Show that it is asymptotically stable if, in addition, AV (z) is nega-
tive definite. Finally, show that the origin is globally asymptotically stable if the
conditions for asymptotic stability hold globally and V(z) is radially unbounded.

4.64 Show that the origin of (4.61) is exponentially stable if, in a neighborhood
of the origin, there is a continuous positive definite function V{z) such that

allel® < V(@) S alal®,  AV(2) < —efl)?

for some positive constants €1, c9, and c3.
Hint: For discrete-time systems, exponential stability is defined by the inequality
lz(k)l| < a]|lz(0)]|y* for all k>0, where & > 1 and 0 <y < 1.

4.65 Show that the origin of {4.61) is asymptotically stable if, in a neighborhood
of the origin, there is a continuous positive definite function V() so that AV(z) is
negative semidefinite and AV/(z) does not vanish identically for any z # 0.

4.66 Consider the linear system z(k+ 1) = Az(k). Show that the following state-
ments are equivalent:

383ee [05] for a detailed treatment of Lyapunov stability for discrete-time dynamical systems.
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(1) z = 0 is asymptotically stable.
(2) I\ < 1 for all eigenvalues of A.

(3) Given any ¢ = QT > 0, there exists P = PT > 0, which is the unique solution
of the linear equation AT PA — P'= —(Q.

4.67 Let A be the linearization of (4.61) at the origin; that is, A = [0f/0z[{0).
Show that the origin is asymptotically stable if all the eigenvalues of A have mag-

nitudes less than one.

4.68 Let = 0 be an equilibrium point for the nonlinear discrete-time system
z(k+1) = f(z(k)), where f : D — R" is continuously differentiable and D = {z €
B | ||zl < r}. Let C, v < 1, and 7y be positive constants with rp < r/C. Let
Do = {z € R | |lzil < ro}. Assume that the solutions of the system satisfy

ekl < Cl=(O)1¥*, ¥ 2(0) € Do, ¥k 20
Show that there is a function V : Dy — R that satisfies
allzl? < V(e) < eallel®
AV (z) = V(f{z)) - V(2) < —cslial”
[V(z) — V)l < calle =yl (=l + ilpi)

for all =,y € Dy for some positive constants ¢, c2, 3, and ca.
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