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Lecture 1

Introduction to Nonlinearity

In this course we will discuss nonlinear control theory from the point of view of un-
derstanding the main principles and techniques that shed light on qualitative prop-
erties of such systems. We will address:

(i) Controllability - When does there exist a control that drives the system from
an initial state to a prescribed target state?

(ii) Observability - Can you infer state from observations of an output signal?

(iii) Special solutions - equilibria, periodic orbits, and bifurcations with respect to
parameter variation

(iv) Stability of solutions - a central topic

Further, we will discuss how this understanding leads to approaches for design. Our
techniques will include algebraic, geometric, and analytic methods in the study of
differential equations.

Nonlinearity arises in a number of ways:

(i) If the state space is not a vector space. For instance, in the control of a magnetic
moment using external fields, the state space is a sphere{

(x1, x2, x3) : x21 + x22 + x23 = r2
}

(ii) If the equations of motion are nonlinear. For instance, the pendulum

θ̈ +
g

l
sin(θ) = u

5



6 LECTURE 1. INTRODUCTION TO NONLINEARITY

where u = torque applied at the pivot.

(iii) If actuators (or sensors) are subject to nonlinear constitutive relations - e.g.
hysteresis.

Figure 1.1: Hysteresis

Increasing u from −∞ to β leaves v constant = −1 until a jump occurs for
u = β and thereafter v remains at 1 for further increase in u.

Decreasing u from +∞ to α leaves v constant = +1 until a jump occurs u = α
and thereafter v remains at −1 for further decrease in u.

Magnetic recording processes depend on hysteresis. Other applications of hys-
teresis arise in actuators incorporating deformable materials.

Example 1.1. Consider the controlled pendulum in the adjoining figure.

Figure 1.2: Controlled pendulum

The pendulum is suspended on a string fed through a hole on a table top
and controlled by an investigator. The investigator controls the length of the
pendulum (possibly periodically). The interaction of the pendulum with the
table introduces a frictional torque.

Approximating sin(θ) by θ (small oscillation assumption) and letting x = θ,
we obtain the model (with damping constant b > 0):

ẍ+ v(t)x = −bẋ

where v(t) = g
l(t)

is interpreted as a control that depends on the time function
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used by the investigator. We thus have a state space model:

d

dt

[
x
ẋ

]
=

[
0 1
0 −b

] [
x
ẋ

]
+ v(t)

[
0 0
−1 0

]
←→ ż = Az + vBz

where A =

[
0 1
0 −b

]
; B =

[
0 0
−1 0

]
Here the control enters multiplicatively. If v = constant, these dynamics de-
scribe the free, damped oscillation of a pendulum with natural frequency =

√
v.

Example 1.2. Consider the unicycle seen from above in the adjoining figure.

Figure 1.3: Unicycle in the plane

Forward speed (by pedaling) is u. Steering rate is ω. It is then easy to show
that

ẋ = u cos(θ)

ẏ = u sin(θ)

θ̇ = ω

We can repackage this as,
ġ = gξ

where

g =

 cos(θ) − sin(θ) x
sin(θ) cos(θ) y

0 0 1

 and ξ = ω

 0 −1 0
1 0 0
0 0 0

+u

 0 0 1
0 0 0
0 0 0


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Matrices of the form g above constitute a matrix (Lie) group with multiplication: cos(θ) − sin(θ) x
sin(θ) cos(θ) y

0 0 1

 cos(φ) − sin(φ) x̂
sin(φ) cos(φ) ŷ

0 0 1

 =

 cos(θ + φ) − sin(θ + φ) x+ x̂ cos(θ)− ŷ sin(θ)
sin(θ + φ) cos(θ + φ) y + x̂ sin(θ) + ŷ cos(θ)

0 0 1


The inverse is given by,

g−1 =

 cos(−θ) − sin(−θ) −x cos(θ)− y sin(θ)
sin(−θ) cos(−θ) x sin(θ)− y cos(θ)

0 0 1


The collection of all such g matrices constitutues the rigid motion group in the plane
SE(2). Formally,

SE(n) =

{[
A b
0 1

]
: ATA = In, b ∈ Rn, det(A) = 1, and 0 = row vector of n zeros

}

The block A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
for n = 2 is just a planar, counterclockwise

rotation by θ.

Thus motion of a unicycle in the plane gives a curve in SE(2) with two controls
ω and u. If the controls are set to zero, then there is no motion, i. e. we have a
drift-free system.

SE(2) is not a vector space. It is an example of a smooth manifold.



Lecture 2

Frenet-Serret Equations: Control on a Lie group

2.1. Frenet-Serret Frame

Consider a C3 curve in R3, t 7→ γ(t) starting at γ(t0) = γ0.

Let s(t) =
∫ t
t0

(dγ
dt
· dγ
dt

)1/2dt denote the length of the curve γ from t0 to t. The
dot product is the Euclidean inner product.

Then, speed ds
dt

= ‖γ̇(t)‖ = (γ̇(t) · γ̇(t))1/2.

Hypothesis 1. γ̇(t) 6= 0 for any t ≥ t0 (regular curve). Then s(t) is strict mono-
tonic function of t and can be inverted in principle to obtain t = t(s). Note,
t0 = t(0). Thus the curve can be re-parameterized in terms of s by expressing
γ = γ(t) = γ(t(s)).

Definition 2.1. We call the above re-parameterization, the arc-length parameterization.
We can write tangent

T (s) ,
dγ

ds
=
dγ

dt

dt

ds
=
dγ

dt
/
ds

dt
.

4

Then,

‖T (s)‖ =

∥∥dγ
dt

∥∥
|ds
dt
|

=
ds
dt
ds
dt

= 1

for all s ≥ 0.

9



10LECTURE 2. FRENET-SERRET EQUATIONS: CONTROL ON A LIE GROUP

Thus, in the arc-length parameterization, the curve γ has unit speed. So, we also
refer to the arc length parameterization as the unit speed parameterization.

Remark 2.1. Changing the (laboratory) coordinate system into a new one by rotation
and translation, the original curve γ becomes a new curve γ̃.

γ̃(t) = Pγ(t) + b

where P ∈ SO(3) and b ∈ R3. Since ˙̃γ(t) = P γ̇(t) , it follows that the arc-length,

s̃(t) =

∫ t

0

∥∥∥∥dγ̃dt
∥∥∥∥ dt =

∫ t

0

∥∥∥∥dγ̃dt
∥∥∥∥ dt =

∫ t

0

∥∥∥∥dγdt
∥∥∥∥ dt = s(t)

i.e. arc-length is invariant under SE(3) action. We seek other invariants. 4

Definition 2.2. Natural curvature κ(s) ,
∥∥dT
ds

∥∥ ≥ 0. 4

Natural curvature is also an invariant under SE(3) action γ 7→ Pγ + b.

Property 1. κ(s) ≡ 0 on an interval of definition of a curve if and only if γ(s) is
a straight line on that interval. 4

Property proof 1.

(⇒) κ(S) ≡ 0 ⇔
∥∥∥∥dTds

∥∥∥∥ ≡ 0 on an interval

⇔ dT

ds
≡ 0 on an interval

⇒ T (s) ≡ constant = c

⇔ dγ

ds
= c

⇔ γ(s) = γ(0) + sc (straight line)
(⇐) Trace backward the above steps.

�

Remark 2.2. Note that
T (s) · T (s) ≡ 1.

Differentiate to obtain,
T ′(s) · T (s) ≡ 0,

where ′ denotes d
ds

. 4

Definition 2.3. (Normal, Binormal, and Frenet-Serret Frame).
If κ(s1) 6= 0 for a particular s1 then we can define the unit normal vector.

N(s1) =
T ′(s1)

κ(s1)
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By continuity, such a normal is defined on a neighborhood of s1. On that neighbor-
hood, one defines the unit binormal vector,

B(s) = T (s)×N(s)

and thus obtains the orthonormal triad {T (s), N(s), B(s)}. We call this the Frenet-Serret
frame of the curve. 4

Figure 2.1: Frenet-Serret Frame

2.2. Frenet-Serret Equations

Recall that this construction works only on a neighborhood of s1 where κ(s1) 6= 0,
to avoid division by zero in the definition ofN . To make this work for all s, we need
an additional hypothesis.

Hypothesis 2. (Non-degeneracy).

κ(s) 6= 0 ∀s

The non-degeneracy hypothesis holds generically. Under this hypothesis, one
can derive a set of differential equations to evolve the triad {T (s), N(s), B(s)}.

Let F , [F1(s) F2(s) F3(s)] , [T (s) N(s) B(s)]. Clearly, F TF ≡ (I)
and det(F ) = +1, since the triad {T (s), N(s), B(s)} is right-handed. Thus, s 7→
F (s) defines a curve in SO(3). Further, we will see that F is generated by a skew
symmetric (s-dependent) matrix Ω̂:

F (s)

ds
= F (s)Ω̂
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where Ω̂ + Ω̂T ≡ 0. The ·̂ operator here represents an operator which forms a
cross-product equivalent matrix from a given vector argument.

The structure of Ω̂ is easy to work out. For s skew-aymmetric matrix, we can
write,

Ω̂ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 .
Then,

dF1

ds
=
dT

ds
= F (s) · 1st column of Ω̂

= T (s) · 0 +N(s)Ω3(s) +B(s)(−Ω3)

= N(s)κ(s) (by definition of N)

⇒ Ω3 = κ and Ω2 ≡ 0.

Similarly,

dF2

ds
=
dN

ds
= F (s) · 2nd column of Ω̂

= T (s)(−Ω3) +B(s)(Ω1)

= −κT (s) + τB(s)

where we define τ(s) , Ω1(s), (torsion). Also,

dF2

ds
=
dN

ds
= F (s) · 3rd column of Ω̂

= −τ(s)N(s)

The last equation also tells us,

τ(s) = −dB
ds
·N(s)

We can take this to be the definition of torsion.

Thus, we have the Frenet-Serret equations

d

ds

[
T (s) N(s) B(s)

]
=
[
T (s) N(s) B(s)

]  0 −κ(s) 0
κ(s) 0 −τ(s)

0 τ(s) 0


Given a program of curvature, κ(s), and torsion, τ(s), we can integrate the above
system of equations starting from the initial frame and compute the curve γ by,

γ(s) = γ(0) +

∫ s

0

T (σ)dσ
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Property 2. A curve is planar if and only if τ(s) ≡ 0. 4

Property proof 2. Recall that we say γ is planar if there is a fixed non-zero vector
µ such that µ · γ(s) ≡ constant

τ(s) ≡ 0⇔ dB

ds
≡ 0⇔ B(s) ≡ constant

(⇒) Suppose B(s) ≡ 0 (a constant vector µ)
⇒ B(σ) · T (σ) = B(s) · T (σ) = µ · T (σ) ≡ 0

⇒ µ · γ(s) = µ · γ(0) +

∫ s

0

µ · T (σ)dσ

= µ · γ(0) = constant⇒ planar

(⇐) Suppose µ · γ(s) ≡ constant, µ 6= 0 (planar),
⇒ µ · γ′(s) = µ · T (s) ≡ 0

⇒ µ · T ′(s) = κ(s)µ ·N(s) ≡ 0

Since κ(s) 6= 0 (nondegeneracy),
µ ·N(s) ≡ 0

⇒ 0 ≡ µ ·N ′(s) = −κ(s)µ · T (s) + τ(s)µ ·B(s)

= 0 + τ(s) · (µ ·B(s))

Since µ · T (s) ≡ 0 and µ · N(s) ≡ 0, it is necessary that µ · B(s) 6= 0 for any s.
Otherwise, the constant vector

µ = (µ · T (s))T (s) + (µ ·N(s))N(s) + (µ ·B(s))B(s)

= 0

But τ(s) · (µ ·B(s)) = 0, hence τ(s) ≡ 0. �

2.3. Kinematics of particles in R3

Suppose a particle in R3 traces a trajectory γ(t) where t = time. Let s(t) = be the
arc length along the trajectory traversed in time t,

s(t) =

∫ t

0

∥∥∥∥dγdt
∥∥∥∥ · dt.

Let ν = ds
dt

denote the speed.
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Then,

v(t) = velocity

=
dγ

dt

=
dγ

ds

ds

dt

= T (s)
ds

dt
= ν(s)T (s)

Let g(s) provide the location and orientation of the Frenet-Serret frame, packaged
in a convenient manner. That is, let

g(s) =

[
F (s) γ(s)

0 1

]
∈ SE(3).

Then

dg

ds
=

[
F Ω̂(s) dγ

ds

0 0

]
= g(s) ·

[
Ω̂(s) e1

0 0

]
(2.1)

where

e1 =

 1
0
0



Equation (2.1) is a control system on a Lie group, controlled by the curvature
and torsion. It is very interesting to consider optimal control problems of the form,

min

∫ L

0

(κ2(s) + γ2(s))ds

subject to κ(s) > 0, s ∈ [0, L]

g(0) = I4×4
g(L) = g1 prescribed

and
dg

ds
= g

[
Ω̂ e1
0 0

]
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We can also alternately express everything in the original non-unit speed param-
eterization, t.

dg

dt
= g

[
νΩ̂ νe1
0 0

]
(2.2)

where ν = speed (is a function of t).





Lecture 3

Lie Groups and Lie Algebras

Definition 3.1. A set S together with an operation denoted by (·) : S × S → S, is
a group if the following axioms hold:

(i) a · (b · c) = (a · b) · c ∀a, b, c ∈ S

(ii) there is an element e ∈ S such that a = e ·a = a · e ∀a ∈ S. (e is the identity
element; if an identity element exists, it is unique).

(iii) for each a ∈ S there is an element b such that a · b = b ·a = e. It can be shown
that ’b’ is uniquely determined by a and we denote ’b’ as a−1.

We call the pair G = (S, ·) a group. 4

Example 3.1. G = (Gl(n,R), ·) where Gl(n,R) denotes the set of all n × n
nonsingular matrices with matrix multiplication as the operation that completes
the group structure. This is the general linear group.

Definition 3.2. A subset Q ⊂ S where G = (S, ·) is a group can also inherit the
group structure from G, provided,

(i) a, b ∈ Q =⇒ a · b ∈ Q

(ii) e the identity element in S is also in Q

(iii) a ∈ Q =⇒ a−1 ∈ Q

17



18 LECTURE 3. LIE GROUPS AND LIE ALGEBRAS

In this case, we call G̃ = (Q, ·) a subgroup of G = (S, ·). 4

Example 3.2. O(n,R) the set of all n × n real orthogonal matrices is a sub-
group of Gl(n,R). Note, for shorthand we have omitted the group operation
when referring to the group (O(n,R), ·) as simply O(n,R). We have made a
similar abbreviation for Gl(n,R). Subsequently, for matrix groups, the matrix
multiplication operation will be implied.

Example 3.3. Let SO(n,R) = {M ∈ O(n,R) : det(M) = 1}. Then
SO(n,R) is a subgroup of O(n,R). It is the special orthogonal group.

Definition 3.3. A group is abelian if a · b = b · a ∀a, b ∈ G. 4

Example 3.4. G = (R,+), G = (Rn,+), G = (Mat(n),+), G = SO(2,R)
are all abelian groups. Gl(n,R) for n ≥ 2 is not abelian.

Definition 3.4. Given two groups G1 = (S1, ·1) and G2 = (S2, ·2), we define the
direct product of these two groups to beG = (S, ·), where S = S1×S2 (the cartesian
product of the sets) and (a1, a2) · (b1, b2) = (a1 ·1 b1, a2 ·2 b2) for a1, b1 ∈ G1 and
a2, b2 ∈ G2. 4

Direct products give us a way to define new groups out of building blocks of other
groups.

Example 3.5. LetG1 = SO(2,R) andG2 = (R2,+), thenG = SO(2,R)×R2

with a multiplication rule given by([
cos θ1 − sin θ1
sin θ1 cos θ1

]
,

[
x1
y1

])
·
([

cos θ2 − sin θ2
sin θ2 cos θ2

]
,

[
x2
y2

])
=([

cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

]
,

[
x1 + x2
y1 + y2

])
Contrast this group with the group SE(n,R), encountered in our previous dis-
cussion of the unicycle model. These groups are NOT the same, since the mul-
tiplication rules are different. G = SO(2,R)×R2 derives its multiplication rule
from combining the multiplication in SO(2,R) and the vector addition in R2. In
contrast, the semi-direct product SE(2,R) derives its multiplication rule from
matrix multiplication as a subgroup of Gl(3,R).

The matrix groups encountered so far are all subgroups of Gl(n,R) which in turn
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is an open subset (because of the condition det(X) 6= 0) of Mat(n,R) the set of all
n × n matrices over the reals. Mat(n,R) is clearly a vector space of dimension n2

and can be equipped with metrics (from norms) in a number of different ways. For
instance, a ball BMo(ε) of radius ε > 0 centered at Mo in Mat(n,R) can be defined
to be

BMo(ε) = {M ∈ Mat(n,R) : (tr((M −Mo)
T (M −Mo)))

1/2 < ε}

This is the open Euclidean ball in Mat(n,R) defining what is known as the usual
topology. Gl(n,R) inherits this topology by the following definition.

Definition 3.5. U ⊂ Gl(n,R) is an open set in Gl(n,R) if and only if U =
Gl(n,R) ∩ V where V is an open subset of Mat(n,R). V is an open subset of
Mat(n,R) if and only if for each Mo ∈ V there is an ε = ε(Mo) > 0 such that
BMo(ε) ⊂ V is a strict subset of V . 4

Figure 3.1 depicts these relationships.

Figure 3.1: Graphic of subset relationships.

Observe that the definition of SO(n,R) as a subgroup of Gl(n,R) allows us to
introduce the subspace topology on SO(n,R): V ⊂ SO(n,R) is open if and only if
V = SO(n,R) ∩ U where U ⊂ Gl(n,R) is open. All subgroups of Gl(n,R) inherit
a topology in this way.

One can actually show more: Gl(n,R) can be given the structure of a manifold
(i.e. open sets can be used to cover Gl(n,R) in such a way as to yield coordinate
charts {(Uα, φα) : Uα ⊂ Gl(n,R) open and φα : Uα → Rk smooth map, invertible
and with smooth inverse, α ∈ A = index set}). This is a starting point for thinking
of Gl(n,R) as a smooth manifold.
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The classical groups (and their subgroups) are of great importance for physical
problems. We list them over the reals R and complexes C.

Classical groups over R:

• General linear group Gl(n,R) = {X : X is an n×n matrix with det(X) 6=
0}

• Special linear group Sl(n,R) = {X : X ∈ Gl(n,R), det(x) = 1}

• Orthogonal group O(n,R) = {X : X ∈ Gl(n,R), XTX = In}

• Special orthogonal group SO(n,R) = O(n,R) ∩ Sl(n,R)

• Symplectic group Sp(2n,R) = {X : X ∈ Gl(n,R), XTJX = J}

• Pseudo-orthogonal group O(p, q,R) = {X : X ∈ Gl(p+q,R), XTΣp,qX =
Σp,q}

where J =

[
0 In
−In 0

]
and Σp,q =

[
Ip 0
0 −Iq

]
.

Classical groups over C:

One replaces the transpose operation by the Hermitian transpose (·∗) (complex
conjugate transpose). In particular, we refer to two following groups:

• Unitary group U(n,C) = {X : X ∈ Gl(n,C), X∗X = In}

• Special unitary group SU(n,C) = Sl(n,C) ∩ U(n,C).

Since the groups above are embedded in the space Mat(n,R) (or Mat(n,C)), it
makes sense to speak of a curve in a classical group that is continuously differen-
tiable with respect to its parameter. Thus, consider

t 7→ Φ(t) ∈ SO(n,R)

a differentiable curve for t ∈ [0, T ].
Then,

ΦT (t)Φ(t) = In ∀t ∈ [0, T ]

Differentiating both sides, we get,

Φ̇T (t)Φ(t) + ΦT (t)Φ̇(t) ≡ 0

=⇒ (ΦT (t)Φ̇(t))T + (ΦT (t)Φ̇(t)) ≡ 0
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=⇒ ΦT (t)Φ̇(t) = ξ(t) n× n skew-symmetric matrix-valued function of t.

Equivalently,
Φ̇(t) = Φ(t)ξ(t) (3.1)

since (ΦT (t))−1 = (Φ−1(t))−1 = Φ(t).

Thus, to each smooth curve in SO(n), one can associate a smooth curve in so(n),
the space of n × n skew-symmetric matrices. Conversely, given any continuous
curve ξ(t) in so(n), and Φ(0) ∈ SO(n), one can produce (by integration) an unique
curve Φ(t) in SO(n). The proof of this converse is not so obvious, but we can see
it easily in a special case: ξ(t) ≡ ξ a constant skew-symmetric matrix. In that case,
by the theory of differential equations,

Φ(t) = Φ(0)etξ.

Hence,

Φ(t)ΦT (t) = Φ(0)etξetξ
T

ΦT (0)

= Φ(0)etξe−tξΦT (0)

= Φ(0)et(ξ−ξ)ΦT (0)

= In ∀t ∈ [0, T ].

To prove the converse in general for a time dependent ξ, one needs a representation
of the solution to the differential equation (3.1). See the Wei-Norman (1964) paper.

In a similar way, consider t 7→ Φ(t) a smooth curve in Sp(2n,R). Then

ΦT (t)JΦ(t) ≡ J

Differentiating both sides, we get

Φ̇T (t)JΦ(t) + ΦT (t)JΦ̇(t) ≡ 0

−Φ̇T (t)JTΦ(t) + ΦT (t)JΦ̇(t) ≡ 0 (since J = −JT )

−(ΦT (t)JΦ̇(t))T + ΦT (t)JΦ̇(t) ≡ 0

Thus ξ̃(t) , ΦTJΦ̇ is a symmetric matrix-valued function. Note that

(Jξ̃)TJ + J(Jξ̃) = ξ̃TJTJ + JJξ̃

= ξ̃T − ξ̃
= 0

Hence Jξ̃ : [0, T ] → sp(2n), where sp(2n) = {X : XTJ + JX = 0}. We call
sp(2n) the space of hamiltonian (or infinitesimally symplectic) matrices. It is clearly



22 LECTURE 3. LIE GROUPS AND LIE ALGEBRAS

a vector space, and since

ΦTJΦ̇ = ξ̃

⇐⇒ Φ̇ = J−1(ΦT )−1ξ̃

= −ΦJξ̃ (since ΦTJΦ = J and J−1 = JT = −J)

, Φξ (where ξ , −Jξ̃)

Hence, we again have the matrix differential equation

Φ̇ = Φξ.

It follows that sp(2n) plays the same role for Sp(2n) as does so(n) for SO(n). In
particular, if ξ(t) ≡ ξ constant ∈ sp(2n), then

t 7→ exp(tξ) ∈ Sp(2n)

∀t ∈ R. Also note that the constraint derived for ξ̃ to be symmetric can be put in
terms of ξ. This constraint is used to defined the space sp(2n,R).

The above construction is applicable to all the classical groups.

Definition 3.6. Corresponding vector spaces:

• gl(n,R) = {all n× n matrices}

• sl(n,R) = {X : X ∈ gl(n,R), tr(X) = 0)}

• so(n,R) = {X : X ∈ gl(n,R), XT +X = 0}

• sp(2n,R) = {X : X ∈ gl(2n,R), XTJ + JX = 0}

• so(p, q,R) = {X : X ∈ gl(p+ q,R), XTΣp,q + Σp,qX = 0}

These vector spaces each have the important property that,

X ∈ V =⇒ exp(X) ∈ G

where V has been used as a generic symbol to represent one of the vector spaces
just defined, and G is used to represent the corresponding classical group. We note
that the exponential maps take values in appropriate classical groups. However, in
general, it is not onto. For example, there does NOT exist a real matrix X such that

exp(X) =

[
−2 0
0 −1

]
∈ Gl(2,R)

4
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Since,

d

dt
exp(tX) = exp(tX)X

and exp(0 ·X) = I at t = 0, we have that d
dt

exp(tX) = X at t = 0. Therefore, we
can interpret gl(n), sl(n), so(n), sp(2n), and so(p, q) as the spaces where velocities
of curves passing through identity in corresponding classical groups live. These
vector spaces also carry another, algebraic structure.

Definition 3.7. A vector space V , together with an operation (Lie bracket)

[·, ·] : V × V → V

(a, b) 7→ [a, b]

is said to constitute a Lie algebra g = (V, [·, ·]) is the operation above satisfies the
axioms:

(i) [a, b] = −[b, a]

(ii) [αa+βb, c] = α[a, c]+β[b, c] where α, β ∈ F, the underlying field of scalars for V .

(iii) (The Jacobi identity) [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0

4

Defining [X, Y ] = XY − Y X to be the matrix commutation for matrices X, Y
causes each of the spaces gl(n), sl(n), so(n), sp(2n), and so(p, q) to be a Lie algebra.
These are the classical Lie algebras.

Definition 3.8. For any subgroup, G ⊆ Gl(n), we define the associated Lie alge-
bra to be the vector space g = {X ∈ gl(n) : exp(tX) ∈ G ∀t ∈ R}. See Theorem
17 in R. Howe’s Very Basic Lie Theory. 4

Definition 3.9. Given a set of matrices {A1, A2, . . . , Ak} of size n× n, we define

g = L.A.{A1, A2, . . . , Ak}

to be the smallest Lie algebra generated by A1, A2, . . . , Ak if

(i) the underlying vector space contains the linear span of {A1, A2, . . . , Ak}

(ii) is closed under the Lie bracket

(iii) there is no lower dimensional space satisfying (i) and (ii).
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4

The dimension of the Lie algebra is the dimension of the underlying vector
space. A Lie algebra of n × n matrices, being necessarily a subspace of gl(n),
has dimension at most = n2.
Let g = (V, [·, ·]) and let ξ1, ξ2, . . . , ξm constitute a basis for V . Then, [ξi, ξj] being
an element of V , can be uniquely written as a linear combination of ξ1, ξ2, . . . , ξm,

[ξi, ξj] =
m∑
k=1

T kijξk

The numbers T kij are called the structure constants of the Lie algebra in that basis.

Exercise 3.1. What are the dimensions of sl(n), so(n), sp(2n) and so(p, q)?



Lecture 4

Lie Groups in Control – Examples

4.1. Example of Lie brackets in a bilinear control system

Consider the bilinear control system

ẋ = uAx+ vBx, (4.1)

where u and v are controls and A, B are constant n × n matrices. Consider the
choice of controls depicted in the graphs in Figure 4.1.

Figure 4.1: Control signals for the bilinear system.

The corresponding evolution in state space after 4ε time units is given by

x(4ε) = e−εB e−εA eεB eεA x0

=

(
I−εB+

ε2

2!
B2+· · ·

)(
I−εA+

ε2

2!
A2+· · ·

)(
I+εB+

ε2

2!
B2+· · ·

)(
I+εA+

ε2

2!
A2+· · ·

)
x0.

25
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Multiplying terms yields,

x(4ε) =

(
I−ε(A+B)+ε2

(
B2

2!
+
A2

2!
+BA

)
+· · ·

)(
I+ε(A+B)+ε2

(
B2

2!
+
A2

2!
+BA

)
+. . .

)
x0

=
(
I − ε2

(
A2 +B2 + AB +BA

)
+ ε2

(
B2 + A2 + 2BA

)
+ · · ·

)
x0

= x0 + ε2 (BA− AB)x0 + o(ε2).

(Recall ‘little o(·)’ notation: we say that f(σ) is o(σ) if limσ→0
f(σ)
σ

= 0). Now we
see that a gap may exist between the initial and ending locations, given by

x(4ε)− x0 = ε2 (BA− AB)x0 + o(ε2). (4.2)

This gap is depicted in Figure 4.2.

Figure 4.2: Illustration of difference in starting and ending locations due to switch-
ing.

Further, if (BA − AB) is linearly independent of A and B, then we have a
control (sequence) that generates an entirely new direction of motion, given by the
Lie Bracket (matrix commutator)

[A,B] = BA− AB. (4.3)

Additionally, this suggests that the controllability of bilinear control systems is re-
lated to Lie brackets.

4.2. Flows and Lie Derivatives

Nonlinear control systems modeled by differential equations also lead to the consid-
eration of Lie brackets, as applied to vector fields. First, we consider the nonlinear
system

ẋ(t) = f(x(t)). (4.4)
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This system is associated with a vector field x 7→ f(x) defined on Rn (or an open
subset of Rn). Suppose that for each x0 ∈ Rn, there is a unique solution φ(t, x0)
such that

d

dt
φ(t, x0) = f (φ(t, x0))

defined for all t ∈ R under suitable hypotheses—we will later prove the Cauchy-
Lipschitz Existence-Uniqueness Theorem for t ∈ (−δ, δ), δ > 0.

It follows that the following properties hold for the unique solution φ(t, x0):

(i) φ(0, x0) = x0

(ii) φ(t, φ(s, x0)) = φ(t+ s, x0), ∀t, s ∈ R, and x0 ∈ Rn

(iii) φ(−t, φ(t, x0)) = x0.

Thus {φ(t, ·) : t ∈ Rn} defines a one parameter group of invertible maps with
smooth inverses defined by the differential equation. It is customary to explicitly
denote the dependence on f and refer to the flow of vector field f :

{Φf
t : Φf

t (x0) = φ(t, x0), satisfying
d

dt
φ(t, x0) = f (φ(t, x0))}, (4.5)

where Φf
t (x0) denotes the solution at t of ẋ = f(x) starting from x0 ∈ Rn.

The effect (action) of a vector field on a function ψ can be computed as follows:

Evaluate ψ : Rn 7→ R on the trajectory generated by ẋ = f(x), yielding ψ(x(t)) =
ψ ◦ Φf

t (x0) for some initial condition x0.

Then,

d

dt
ψ(x(t)) =

∂ψ

∂x

∣∣∣
x(t)

dx(t)

dt
(chain rule)

=
∂ψ

∂x
f(x)

∣∣∣
x(t)
,

where,
∂ψ

∂x
=

(
∂ψ

∂x1
,
∂ψ

∂x2
, · · · , ∂ψ

∂xn

)
,
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a row vector of partial derivatives of ψ with respect to the coordinates. We can also
write,

d

dt
ψ(x(t)) =

(
n∑
i=1

f i(x)
∂

∂xi

)
ψ
∣∣∣
x=x(t)

.

Letting,

Lf ,
n∑
i=1

f i(x)
∂

∂xi
(4.6)

denote the (first-order) Lie derivative operator, we can say a vector field f acts on a
function ψ by Lie differentiation,

ψ 7→ Lfψ.

This view of how vector fields behave with respect to functions is key to understand-
ing the Lie bracket of vector fields. Before considering the Lie bracket of two vector
fields, first consider the quantity (LfLg − LgLf )ψ.
We have,

(LfLg−LgLf )ψ =Lf (Lgψ)− Lg(Lfψ)

=
∑
i

f i
∂

∂xi

(∑
j

gj
∂ψ

∂xj

)
−
∑
i

gi
∂

∂xi

(∑
j

f j
∂ψ

∂xj

)

=
∑
i

f i
∑
j

∂gj

∂xi

∂ψ

∂xj
+
∑
i

f i
∑
j

gj
∂2ψ

∂xi∂xj

−
∑
i

gi
∑
j

∂f j

∂xi

∂ψ

∂xj
−
∑
i

gi
∑
j

f j
∂2ψ

∂xi∂xj

Since mixed partial derivatives commute, the terms involving second derivatives
cancel.
We have,

(LfLg−LgLf )ψ =

(∑
j

(∑
i

∂gj

∂xi
f i

)
∂

∂xj
−
∑
j

(∑
i

∂f j

∂xi
gi

)
∂

∂xj

)
ψ

=

(∑
j

((
∂g

∂x

)
f −

(
∂f

∂x

)
g

)j
∂

∂xj

)
ψ

Thus we see that LfLg−LgLf is simply the Lie derivative operator associated with
the vector field (

∂g

∂x

)
f −

(
∂f

∂x

)
g

which we denote as [f, g], the Lie bracket of two vector fields.
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It follows that the operator commutator

[Lf , Lg] , LfLg − LgLf = L[f,g], (4.7)

forms an operator L[f,g] by commutating the Lf and Lg operators.

The following properties hold for Lie Brackets involving vector fields f , g, h:

(i) [f, g] = −[g, f ]

(ii) [αf + βg, h] = α[f, h] + β[g, h] where α, β ∈ R

(iii) (The Jacobi identity) [f, [g, h]] + [h, [f, g]] + [g, [h, f ]] = 0

We may verify the Jacobi identity in a smart way by making use of the corre-
spondence between vector fields and Lie derivative operators. Let φ be an arbitrary,
differentiable test function.

[Lf , [Lg, Lh]]φ+ [Lh, [Lf , Lg]]φ+ [Lg, [Lh, Lf ]]φ

= (LfLgLh − LfLhLg − LgLhLf + LhLgLf )φ

+ (LhLfLg − LhLgLf − LfLgLh + LgLfLh)φ

+ (LgLhLf − LgLfLh − LhLfLg + LfLhLg)φ

≡ 0 ∀ test functions

This shows that the set of all Lie differentiation operators (Lf etc.) is a Lie algebra
under operator commutation over the field of reals. Since the correspondence from
vector fields to Lie derivative operators preserves brackets, and since the Lie deriva-
tive operators form a Lie algebra under operator commutation, it follows that the
vector fields also form a Lie algebra under the bracket [f, g] defined above.

The Lie bracket of vector fields is also referred to as the Jacobi-Lie bracket. Note
that when f(x) = Ax and g(x) = Bx are linear vector fields, then

[f, g] =
∂g

∂x
f − ∂f

∂x
g

= BAx− ABx
= (BA− AB)x

= [B,A]x

where the [·, ·] is the last line denotes the Lie bracket in the Lie algebra gl(n,R).
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The flow of vector field f satisfies(
Φf
t

)−1
= Φf

−t = Φ−ft

(reversing the arrow is the same as reversing the flow of time). For linear vector
fields f(x) = Ax, and g(x) = Bx, using

Φf
t (x) = etAx and Φg

t (x) = etBx,

we have shown that

Φg
−ε

(
Φf
−ε
(
Φg
ε

(
Φf
ε (x0)

)))
= e−εB e−εA eεB eεA x0

= x0 + ε2 (BA− AB)x0 + o(ε2)

= x0 + ε2[f, g]x0 + o(ε2)

In fact, the last line holds for general nonlinear vector fields. The proof of this
relies on an expression for the flow from using the fundamental theorem of integral
calculus.

Let F : Rn → Rn be sufficiently differentiable. Let g(t) = F (x+ th). Then,

g(1) = g(0) +

∫ 1

0

dg

dt
dt

= F (x) +

∫ 1

0

d

dt
F (x+ th)dt

= F (x) +

∫ 1

0

DF (x+ th)hdt (Chain rule),

where DF (y) denotes the linear operator defined by

DF (y)η =
d

dε
F (y + εη)

∣∣∣∣∣
ε=0

. (4.8)

(It is simply given by the Jacobian matrix, DF (x) =
[
dF i

dxj

]∣∣∣
x
). Recalling that

g(1) = F (x+ h), we may now write,

F (x+ h) = F (x) +

∫ 1

0

DF (x+ th)hdt (4.9)

Now the process can be repeated as follows:
Let g(s) = DF (x+ tsh)h. Note the correspondence to the term within the integral
in equation (4.9).
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Then,

g(1) = DF (x+ th)h

= g(0) +

∫ 1

0

dg(s)

ds
ds

= DF (x)h+

∫ 1

0

d

ds
DF (x+ tsh)hds

= DF (x)h+

∫ 1

0

D2F (x+ tsh)(h, h)tds (chain rule),

where D2F (x+ tsh)(h, h) is a column vector with ith element given by
n∑
j=1

n∑
k=1

∂2F i

∂xj∂xk

∣∣∣
x+tsh

hjhk.

Hence,

F (x+ h) = F (x) +

∫ 1

0

(
DF (x) · h+

∫ 1

0

D2F (x+ tsh)(h, h)tds

)
dt

= F (x) + tDF (x)h+

∫ 1

0

∫ 1

0

tD2F (x+ tsh)(h, h)dsdt

= F (x) + tDF (x)h+
t2

2!
D2F (x)(h, h) + o(t2)

(The last step can be completed by an additional application of the fundamental
theorem after letting g(σ) = D2F (x+ tsσh)(h, h) and repeating the process.)

Applying this process to the flow Φf
t and using

d

dt
Φf
t (x) = f(Φf

t (x)),

or equivalently,

Φf
t (x) = x+

∫ t

0

f(Φf
σ(x))dσ,

we obtain:

Φf
t (x) = x+ tf(x) +

t2

2!
Df(x)x+ o(t2) (4.10)

Exercise 4.1. Use this formula to prove the Lie-Trotter composition formula:

Φg
−ε

(
Φf
−ε
(
Φg
ε

(
Φf
ε (x0)

)))
= x0 + ε2[f, g]x0 + o(ε2)

(Hint: Carry along terms up to ε2, and refer all values f(x), g(x), Df(x), Dg(x),
back to x = x0. Again for this purpose, use the fundamental theorem of integral
calculus).
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Example 4.1. Unicycle and Lie Brackets. The model of a unicycle,ẋẏ
θ̇

 =

u cos θ
u sin θ
ω

 ,
can be written as a drift-free control system,

ż = uf(z) + wg(z),

where

f(z) =

cos(z3)
sin(z3)

0

 and g(z) =

0
0
1

 .
Clearly, f and g are linearly independent vectors (directions of motion) at each
z. Moreover,

[f, g] =
∂g

∂z
f − ∂f

∂z
g

= 0 · f −

− sin(z3)
cos(z3)

0

 =

− sin(z3)
cos(z3)

0

 .
This direction is linearly independent of f and g at each z as well. Thus, we
obtain three independent directions of motion at each z: (1) using u alone, (2)
using w alone, or (3) alternating peddling and steering. (This indicates control-
lability.)

Example 4.2. Non-holonomic integrator (R. Brockett).

ẋ = u

ẏ = v

ż = xv − yu

f =

 1
0
−y

 and g =

0
1
x

 and [f, g] =

0
0
2

 ,
and the situation is the same as in the case of the unicycle.
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Example 4.3. Kinematic Car (E. Nelson)
Consider a car represented schematically below.

Figure 4.3: Kinematic model of a car.

B , (x, y)

AB = l

θ = steering angle
φ = body orientation

Set l = 1 for convenience. There are two distinguished vector fields that a driver
controls:

f = steer =
∂

∂θ
(expressed via Lf )

g = drive = cos(φ+ θ)
∂

∂x
+ sin(φ+ θ)

∂

∂y
+ sin(θ)

∂

∂φ

(expressed via Lg)

Define

wriggle , [steer, drive]

= − sin(φ+ θ)
∂

∂x
+ cos(φ+ θ)

∂

∂y
+ cos(θ)

∂

∂φ

slide , − sin(φ)
∂

∂x
+ cos(φ)

∂

∂y

rotate ,
∂

∂φ

Verify that at θ = 0,
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(i) [steer, drive] = slide + rotate

(ii) [steer,wriggle] = −drive

(iii) [wriggle, drive] = slide

Thus, steer, drive, [steer, drive], and [drive, [steer, drive]] give a set of linearly
independent directions. Note also that slide has vanishing brackets with steer,
drive, and wriggle.

Using the directions of motion outlined above, one can formulate a parallel-
parking algorithm: wriggle, drive, −wriggle, −drive, repeat ...

Example 4.4. Pendulum with parametric amplification (R. Brockett)

This example is a model for a child pumping a swing.

See page 64 of R.W. Brockett, ”Nonlinear Systems and Differential Geom-
etry,” Proc. IEEE, Vol 64, No 1, pp. 61-72, 1976.

This problem has a drift term. It also involves brackets of depth two, as in
the case of the parking problem.



Lecture 5

Contraction Mapping, Existence & Uniqueness

In this lecture, we discuss the existence and uniqueness of solutions to ordinary
differential equations. The central idea is the Contraction Mapping - Fixed-Point
Theorem due to S. Banach.1

Definition 5.1. Let (S, d) be a metric space and let f : S → S be a map. We say
that f is a contraction if there exists ρ ∈ (0, 1) such that

d(f(x), f(y)) ≤ ρd(x, y) ∀x, y ∈ S.

4

Example 5.1. Let S = Rn and let ‖·‖∞ be defined by ‖x‖∞ = max
1≤i≤n

|xi|,
x ∈ Rn. Let d(x, y) = ‖x− y‖∞. Suppose A : Rn → Rn is a linear map
(matrix) satisfying

|aii| >
n∑
j 6=i
j=1

|aij| ∀i ∈ {1, 2, . . . , n}

(diagonal dominance). Then Ã = D−1(L + U) is a contraction, where D is a
matrix containing only the diagonal elements of A, and L and U are matrices
containing only the upper and lower components of A, respectively. We will
re-visit this contraction in a later example.

1Stefan Banach was a central figure in the mathematical life of Poland in the pre-WWII era. See
http://www-groups.dcs.st-and.ac.uk/ history/Mathematicians/Banach.html.

35
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Definition 5.2. We say that x∗ ∈ S is a fixed point of a mapping f : S → S
provided f(x∗) = x∗. 4

The notion of a fixed point is important in economics (game theory) and many other
fields.

Definition 5.3. A sequence {xk : k = 1, 2, . . . } ⊂ S a metric space with metric
d, is said to be convergent, if ∃x∗ ∈ S such that lim

n→∞
d(xn, x

∗) = 0. In that case
x∗ is unique (proof: use the triangle inequality), and hence we can write x∗ =
lim
n→∞

xn. 4

Definition 5.4. A sequence {xk : k = 1, 2, . . . } ⊂ S a metric space with metric d,
is said to be a Cauchy sequence, if

lim
n→∞
m→∞

d(xn, xm) = 0.

4

Exercise 5.1. Show that every convergent sequence is a Cauchy sequence.
Note: the converse is NOT true in general.

Definition 5.5. A metric space is said to be complete if every Cauchy sequence in
S is convergent in S. (That is, if the converse of Exercise 5.1 holds.) 4

Example 5.2. S = R with d(x, y) = |x − y| is a complete metric space.
Because of this example, Rn is also a complete metric space if we consider
d(x, y) =

∑n
i=1|xi − yi|.

Norbert Wiener and (later) Stefan Banach focused attention on infinite dimensional
vector spaces of functions that have a norm such that the associated metric is com-
plete. Initially, these spaces came to be known as Wiener-Banach spaces, and now
simply Banach spaces.

Given any norm ‖·‖ on a vector space V , we can associate a metric

d(x, y) = ‖x− y‖ , x, y ∈ V.

Theorem 5.1 (Contraction Mapping - Fixed-Point Theorem)
Let X be a Banach space and let S ⊂ X be a closed subset. Let f : S → S be

a mapping such that, for some ρ ∈ (0, 1),

‖f(x)− f(y)‖ ≤ ρ ‖x− y‖ ∀x, y ∈ S.
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Then ∃ a unique fixed point x∗ ∈ S such that f(x∗) = x∗. Further, this fixed
point can be obtained by that method of successive approximations (Banach
iteration).

Before we proceed to the proof of Banach’s theorem, we need a few basics.

Definition 5.6. An open ball in a metric space (S, d) centered at x0 ∈ S and of
radius ε > 0 is denoted

Bε(x0) = {x ∈ S : d(x, x0) < ε}

4

Definition 5.7. We say a set P ⊂ S is open (in a given metric) if given any x ∈ P ,
there is an ε > 0 such that Bε(x) ⊂ P . 4

Definition 5.8. A closed set has the property that for every convergent sequence
{xk : k = 1, 2, . . . } contained in the set, the limit of the sequence x∗ is also in the
same set. 4
Proof of Theorem 5.1

Proof of Banach’s fixed-point theorem
Let x1 ∈ S. Define the sequence {xk : k ≥ 1} by xk+1 = f(xk). By hypothesis,
{xk} ⊂ S. Looking at the distance between successive elements,

‖xk+1 − xk‖ = ‖f(xk)− f(xk−1)‖
≤ ρ ‖xk − xk−1‖
≤ ρ2 ‖xk−1 − xk−2‖ (repeating the previous step)

...

≤ ρk−1 ‖x2 − x1‖

We can also look at the distance between two nonsuccessive terms, ‖xk+r − xk‖,
for r ≥ 1,

‖xk+r − xk‖ = ‖xk+r − xk+r−1 + xk+r−1 − xk+r−2 + xk+r−2 · · · − xk‖
≤ ‖xk+r − xk+r−1‖+ ‖xk+r−1 − xk+r−2‖+ · · ·+ ‖xk+1 − xk‖
≤ (ρk+r−2 + ρk+r−3 + · · ·+ ρk−1) ‖x2 − x1‖ for k ≥ 1

≤ ρk−1
∞∑
j=0

ρj ‖x2 − x1‖

=
ρk−1

1− ρ
‖x2 − x1‖ .

Since ρ < 1, ‖xk+r − xk‖ → 0 as k → ∞. Hence, {xk} is a Cauchy sequence.
Since X is a Banach space, there is an x∗ such that xk → x∗. But S is closed.
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Therefore, x∗ ∈ S. To see that x∗ is a fixed point,

‖x∗ − f(x∗)‖ ≤ ‖x∗ − xk‖+ ‖xk − f(x∗)‖
≤ ‖x∗ − xk‖+ ρ ‖xk−1 − x∗‖
→ 0 as k →∞

Hence, ‖x∗ − f(x∗)‖ = 0 =⇒ x∗ = f(x∗).
To prove uniqueness, suppose y∗ ∈ S is another fixed point.

‖x∗ − y∗‖ = ‖f(x∗)− f(y∗)‖
≤ ρ ‖x∗ − y∗‖

But ρ < 1, so this only holds if ‖x∗ − y∗‖ = 0 =⇒ x∗ = y∗. �

Remark 5.1. If the mapping were to depend on a parameter in a continuous way, so
does the fixed point. 4
Theorem 5.2 (Continuity of a Fixed Point with respect to a Parameter)

LetW be a metric space with metric d. LetX be a Banach space and let S ⊂ X
be a closed subset, such that f : W × S → S has the following properties:

(i) Each partial map
fθ : S → S θ ∈ W

(defined by fθ(x) = f(θ, x)) is a contraction with ρ < 1, independent of θ.

(ii) For each x ∈ S, the partial map

fx : W → S x ∈ S,

(defined by fx(θ) = f(θ, x)), is continuous, (i.e. given ε > 0 there exists
δx > 0 such that d(θ, θ′) < δx =⇒ ‖fx(θ − fx(θ′)‖ < ε.)

Then, the map θ 7→ x∗θ which assigns to each θ ∈ W , the (unique) fixed point x∗θ
of fθ, is continuous.

Proof of Theorem 5.2
Let x∗θ and x∗θ′ be fixed points under fθ(·) and fθ′(·), respectively.

‖x∗θ − x∗θ′‖ = ‖fθ(x∗θ)− fθ′(x∗θ′)‖
≤ ‖fθ(x∗θ)− fθ(x∗θ′)‖+ ‖fθ(x∗θ′)− fθ′(x∗θ′)‖
≤ ρ ‖x∗θ − x∗θ′‖+

∥∥fx∗θ′ (θ)− fx∗θ′ (θ′)∥∥ (since fθ(x) = f(θ, x) = fx(θ)).

Hence, we have

‖x∗θ − x∗θ′‖ ≤
1

1− ρ
∥∥fx∗θ′ (θ)− fx∗θ′ (θ′)∥∥ .
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However, since fx(θ) is continuous in θ, we have

d(θ, θ′) < δx
∗
θ =⇒

∥∥fx∗θ′ (θ)− fx∗θ′ (θ′)∥∥ < ε.

Therefore,
d(θ, θ′) < δx

∗
θ =⇒ ‖x∗θ − x∗θ′‖ <

ε

1− ρ
.

This proves the continuity of the fixed point with respect to the parameter θ. �

Example 5.3 (Jacobi’s Algorithm). The linear equation in Rn,

Ax = b

where A is a square matrix can be identified as the fixed-point problem

x = −D−1(L+ U)x+D−1b

where A = L+D+U denotes the decomposition into strictly lower triangular,
diagonal, and strictly upper triangular parts. We assume D is invertible.
Jacobi’s algorithm to solve this problem,

xk+1 = −D−1(L+ U)xk +D−1b,

is a special case of Banach iteration. To guarantee convergence, it is sufficient
that A be diagonally dominant:

|aii| >
n∑
j 6=i
j=1

|aij| ∀i ∈ {1, 2, . . . , n}.

Then we can take ρ = maxi

(
1
|aii|
∑n

j 6=i|aij|
)

, making f(x) = −D−1(L+U)x+

D−1, a contraction on all of Rn.

Example 5.4. Consider the scalar equation

g(x) = x2 − b = 0 b > 0

Let y = 1 − x. The problem of finding the (positive) square root of b is a
fixed-point problem,

y =
1

2
[(1− b) + y2] = f(y).
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Suppose |1−b| < ρ < 1. Then f maps the closed subset S = {y : |y| ≤ ρ} ⊂ R
into itself and it is a contraction on S with parameter ρ. Thus, the algorithm

yk+1 =
1

2
[(1− b) + y2k]

converges for |1− b| ≤ ρ < 1. It is equivalent to

xk+1 = xk −
1

2
x2k +

1

2
b.

Exercise 5.2. How does this compare with Newton’s algorithm?

We are interested in (and ready for) applying Banach’s theorem to ordinary differ-
ential equations.

Let
ẋ = f(t, x) (5.1)

be a non-autonomous ordinary differential equation. A continuously differentiable
solution x(t) is,

x(t) = x0 +

∫ t

t0

f(σ, x(σ))dσ (5.2)

for t ∈ [t0, t0 + δ] for some δ > 0. We aim to show existence and uniqueness to the
above integral equation in a suitable function space, the space (X, ‖·‖X) below.

For any δ > 0, the space

X = {Ψ : [t0, t0 + δ]→ Rn|Ψ continuous}

with norm
‖Ψ‖X = max

t∈[t0,t0+δ]
‖Ψ(t)‖ (5.3)

where ‖·‖ in Rn is any norm, is a complete normed linear space (i.e. Banach space).

Exercise 5.3. Prove the completeness of space X . → See Appendix B of Khalil
3rd ed.

Theorem 5.3 (Local Existence and Uniqueness)
Consider the system in (5.1). Let f be piecewise continuous in t and satisfy the
Lipschitz condition,

‖f(t, x)− f(t, y)‖ ≤ L ‖x− y‖ (5.4)
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∀x, y ∈ Br(x0) = {x : ‖x− x0‖ ≤ r} and ∀t ∈ [t0, t1].
Then, there is some δ > 0 such that the integral equation (5.2) with t ∈

[t0, t0 + δ] has a unique solution x in X . It is differentiable with respect to t and
ẋ(t) agrees with f(t, x(t)) at all points of continuity of f .

Proof of Theorem 5.3
Define P : X → X

(Px)(t) = x0 +

∫ t

t0

f(σ, x(σ))dσ t ∈ [t0, t0 + δ].

Let x0(·) denote the constant function belonging to X , x0(t) ≡ x0 for t ∈
[t0, t0 + δ].

Figure 5.1: Solid tube

Let S , {x ∈ X : ‖x− x0‖X ≤ r}, the solid tube shown in Figure 5.1. It is
a closed ball in X . We will be choosing δ > 0 such that t0 + δ ≤ t1.

We now make a series of Observations:

(i) Since f is piecewise continuous in t, so is ‖f(t, x)‖ for every x. Thus
‖f(t, x0)‖ is bounded on [t0, t1]. We set

h = max
t∈[t0,t1]

‖f(t, x0)‖ .
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(ii) P maps S into S. To see this, let x(·) ∈ S. Then for t ≤ t0 + δ,

‖(Px)(t)− x0‖ =

∥∥∥∥∫ t

t0

f(σ, x(σ))dσ

∥∥∥∥
≤
∫ t

t0

‖f(σ, x(σ))‖ dσ

≤
∫ t

t0

‖f(σ, x(σ))− f(σ, x0)‖ dσ +

∫ t

t0

‖f(σ, x0)‖ dσ

(triangle inequality)

≤
∫ t

t0

(L ‖x(σ)− x0‖+ h)dσ

(Lipschitz condition and observation (i))

≤
∫ t

t0

(Lr + h)dσ (since x(·) ∈ S)

= (t− t0)(Lr + h)

≤ δ(Lr + h).

Hence,

‖Px− x0‖ = max
t∈[t0,t0+δ]

‖(Px)(t)− x0‖

≤ δ(Lr + h)

≤ r if δ ≤ r

Lr + h

So choosing δ ≤ r
Lr+h

ensures that P maps S into S.

(iii) P is a contraction on S. To see this, let x, y ∈ S.

‖(Px)(t)− (Py)(t)‖ =

∥∥∥∥∫ t

t0

[f(σ, x(σ))− f(σ, y(σ))]dσ

∥∥∥∥
≤
∫ t

t0

‖f(σ, x(σ))− f(σ, y(σ))‖ dσ

≤
∫ t

t0

L ‖x(σ)− y(σ)‖ dσ (Lipschitz condition)

≤ L(t− t0) ‖x(·)− y(·)‖X

Hence,

‖Px− Py‖X ≤ Lδ ‖x− y‖X
≤ ρ ‖x− y‖X if δ ≤ ρ

L
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Thus, choosing ρ < 1, and

δ ≤ min

(
t1 − t0,

r

Lr + h
,
ρ

L

)
ensures that P : S → S is a contraction mapping.

Hence, by the Contraction-Mapping Fixed-Point Theorem of Banach, there
is a unique fixed point P ∈ S, the solution to the integral equation. We can
actually show that this is the only solution in X .

Since x0 ∈ B(x0, r), any (continuous solution x(t) must lie inside B(x0, r)
for some nontrivial interval of time. Suppose x(t) leaves B(x0, r) and t0 + µ is
the first instant of time that x(t) intersects ∂B(x0, r) the boundary of B(x0, r).
Then

‖x(t0 + µ)− x0‖ = r.

On the other hand, ∀t ≤ t0 + µ,

‖x(t)− x0‖ ≤
∫ t

t0

(Lr + h)ds (see observation (ii)),

so that

r = ‖x(t0 + µ)− x0‖

≤ (Lr + h)µ =⇒ µ ≥ r

Lr + h
≥ δ.

Hence the solution starting at x0 satys in B(x0, r) and hence in S during [t, t0 +
δ]. Consequently, uniqueness of the solution in S implies uniqueness of the
solution in X . �

Remark 5.2. Here, Banach iteration = Picard-Lindelof iteration. 4

Notice that the map P in the local existence and uniqueness theorem depends on
x0 in a continuous way.

Corollary 5.1
Let W be a metric space that parametrizes a family of differential equations and
initial conditions. Suppose the parametrization is such that the conditions of the
Theorem 5.2 are satisfied. Then by Theorem 5.2, the solution obtained in the
local existence and uniqueness theorem, depends continuously on x0 and more
generally on θ ∈ W .

This corollary is a very useful result to keep in mind. The following lemma
leads to comparison of solutions, and informally provides a method to “solve” an
inequality.
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Lemma 5.1 (Gronwall-Bellman Inequality)
Let λ : [a, b] → R be continuous and µ : [a, b] → R be continuous and non-

negative. If a continuous function y : [a, b]→ R satisfies the implicit inequality

y(t) ≤ λ(t) +

∫ t

a

µ(s)y(s)ds, a ≤ t ≤ b,

then it also satisfies the explicit inequality

y(t) ≤ λ(t) +

∫ t

a

λ(s)µ(s) exp

[∫ t

s

µ(τ)dτ

]
ds, a ≤ t ≤ b. (5.5)

In particular, if λ(t) ≡ λ is a constant, then

y(t) ≤ λ exp

[∫ t

σ

µ(τ)dτ

]
.

If in addition, µ(t) ≡ µ ≥ 0 is a constant, then

y(t) ≤ λ exp [µ(t− a)] .
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Proof of Lemma 5.1
Let

z(t) =

∫ t

a

µ(s)y(s)ds

v(t) = z(t) + λ(t)− y(t) ≥ 0.

Then, z is differentiable and

ż(t) = µ(t)y(t)

= µ(t)z(t) + µ(t)λ(t)− µ(t)v(t).

This scalar equation has the solution

z(t) =

∫ t

a

φ(t, s)[µ(s)λ(s)− µ(s)v(s)]ds (since z(a) = 0),

where

φ(t, s) = exp

[∫ t

s

µ(τ)dτ

]
> 0

By hypothesis,
∫ t
a
φ(t, s)µ(s)v(s)ds ≥ 0. Therefore,

z(t) ≤
∫ t

a

exp

[∫ t

s

µ(τ)dτ

]
· λ(s)µ(s)ds
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and since y(t) ≤ λ(t) + z(t), the proof of the general case is completed.
The remaining cases amount to computing integrals—left to the reader. �

Corollary 5.2
f(t, x) is piecewise continuous in t and Lipschitz in x on [t0, t1] × W with

Lipschitz constant L, where W ⊂ Rn is an open connected set. Let y(t) and
z(t) be solutions of

ẏ = f(t, y) with y(t0) = y0,

and
ż = f(t, x) + g(t, z) with z(t0) = z0,

such that y(t), z(t) ∈ W, ∀t ∈ [t0, t1].
Suppose the perturbation is bounded:

‖g(t, x)‖ ≤ µ ∀(t, x) ∈ [t0, t1]×W

for some µ ≥ 0, and ‖y0 − z0‖ ≤ γ.
Then,

‖y(t)− z(t)‖ ≤ γ exp [L(t− t0)] +
µ

L
(exp [L(t− t0)]− 1) ∀t ∈ [t0, t1].

Proof of Corollary 5.1

y(t) = y0 +

∫ t

t0

f(s, y(s))ds

z(t) = z0 +

∫ t

t0

[f(s, z(s)) + g(s, z(s))]ds.

Then,

‖y(t)− z(t)‖ ≤ ‖y0 − z0‖+

∫ t

t0

‖f(s, y(s))− f(s, z(s))‖ ds+

∫ t

t0

‖g(s, z(s))‖ ds

≤ γ + µ(t− t0) +

∫ t

t0

L ‖y(s)− z(s)‖ ds.
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By the Gronwall-Bellman inequality,

‖y(t)− z(t)‖ ≤ γ + µ(t− t0) +

∫ t

t0

L · (γ + µ(s− t0)) exp[L(t− t0]ds

= γ + µ(t− t0)− γ − µ(t− t0) + γ exp[L(t− t0)]

+

∫ t

t0

µ · exp[L(t− s)]ds (integration by parts).

= γ exp[L(t− t0)] +
µ

L
(exp[L(t− t0)]− 1)

�

Remark 5.3. In application as in the original Gronwall-Bellman inequality, one is
turning an implicit inequality explicit—in effect “solving the inequality.” 4
Remark 5.4. Corollary 5.2 allows us to quantitatively estimate the effects of perturbations—
in initial conditions and in the dynamics. Such estimates are useful to keep in
mind—all models of physical systems display errors due to various unavoidable
approximations. 4
Theorem 5.4 (Global Existence and Uniqueness)

Suppose f(t, x) in the local existence and uniqueness theorem is

(i) piecewise continuous in t,

(ii) satisfies
‖f(t, x0)‖ ≤ h, and

(iii) satisfies the global Lipschitz condition

‖f(t, x)− f(t, y)‖ ≤ L · ‖x− y‖ ∀x, y ∈ Rn, t ∈ [t0, t1],

then
ẋ(t) = f(t, x) with x(t0) = x0,

has a unique solution on [t0, t1].

Proof of Theorem 5.4
We show how to modify the proof local existence and uniqueness as required.
We now let r be arbitrarily large (due to the global Lipschitz condition) so that

r

Lr + h
>
ρ

L
(by taking r >

ρh

(1− ρ)L
).

Thus, we only need δ ≤ min{t1− t0, ρL} for ρ < 1. If t1− t0 ≤ ρ
L

, we would let
δ = t1 − t0 and we are done.

If not, choose δ = ρ
L

, divide [t0, t1] into a finite number of subintervals of
length δ = ρ

L
and repeat that many more times, applying the arguments of the
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local existence and uniqueness theorem. This completes the proof. �

Example 5.5.
ẋ = −x3

does not satisfy the global Lipschitz condition, but there is a unique solution,

x(t) = sgn(x0)

√
x20

1 + 2x20(t− t0)
∀t ≥ t0.

The essential idea here is that if x(0) = a, the set {x : |x| ≤ a} is a
positively invariant, closed and bounded set for the dynamics ẋ = −x3. This
idea can be generalized in the following theorem.

Theorem 5.5 (Long-Time Existence and Uniqueness)
Let f : Rn → Rn be locally Lipschitz on a domain D ⊂ Rn. Suppose there is a
closed and bounded set W ⊂ D such that x(0) = x0 ∈ W and f

∣∣∣
∂W

points into

W. Then there is a unique solution x(t) to ẋ = f(x) such that x(0) = x0.

Proof of Theorem 5.5
Left as an exercise. �

Exercise 5.4. Prove the Long-Time Existence-Uniqueness Theorem.

5.1. Definitions and Properties of the Lipschitz Condition

Definition 5.9. f is locally Lipschitz on a domain (an open and connected set)
D ⊂ Rn if each point p of D has a neighborhood (i.e. ball Bε(p) surrounding p,
ε > 0) such that

‖f(x)− f(y)‖ ≤ LBε · ‖x− y‖ ∀x, y ∈ Bε for some LBε > 0. (5.6)

4

Definition 5.10. f is Lipschitz on a set W if

‖f(x)− f(y)‖ ≤ L · ‖x− y‖ ∀x, y ∈ W for some L > 0.

4

Properties
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(a) f is locally Lipschitz on a domain D implies that f is continuous on D.

(b) f is Lipschitz on domain D implies that f is uniformly continuous on D.

(c) The converse of (a) is NOT true.

(d) f is locally Lipschitz on domain D does NOT imply that f is Lipschitz on D
(due to the lack of uniformity of the Lipschitz constant).

(e) f is locally Lipschitz on domain D implies that f is Lipschitz on every closed
and bounded subset of D.

(f) f is continuously differentiable implies that f is locally Lipschitz. The converse
is em far from true.

Some of these properties can be summarized and easily remembered by recognizing
that continuous differentiability is stronger than local Lipschitz, and local Lipschitz
is in turn stronger than continuity.





Lecture 6

Mean Value Theorem

One of the basic results of single variable calculus is the classical Mean Value
Theorem (MVT). In this lecture, we derive the MVT for higher dimensions, high-
light its importance, and use it to derive a lemma (previously stated) that relates
continuous differentiability and the local Lipschitz condition.

Theorem 6.1 (MVT)
Let f : R → R be continuous on [a, b] and differentiable on interval (a, b).

There exists c, a < c < b such that the derivative

f ′(c) =
f(b)− f(a)

b− a
.

Proof of Theorem 6.1
See an elementary text on single variable calculus. �

Figure 6.1(a) gives us a picture of what is going on. The essential geometric idea
is that at c (and c′), the tangent to the graph of f is parallel to the line joining point
(a, f(a)) and (b, f(b)).

51
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(a) MVT (b) “Cork screw” curve. (No MVT).

Figure 6.1: Mean Value Theorem illustrations.

Let us see what happens in higher dimensions. Consider

f : [a, b]→ R2

x 7→ f(x) = (y, z)

If the curve defined by f is of the “cork screw” variety (see Figure 6.1(b)), then
there is no c, a < c < b at which the tangent to the curve is parallel to the line
adjoining points (a, f(a)) and (b, f(b)) in the x−y−z space. The classical MVT does
not hold. The following is a specific example.

Example 6.1.

f :
[
0,
π

2

]
→ R2

x 7→ (cos(x), sin(x))

f(b)− f(a) = (−1, 1) ∈ R2

b− a =
π

2
.

There does not exist a c ∈ [0, π
2
] such that π

2
(− sin(c), cos(c)) = (−1, 1) since

it would require

sin2(c) + cos2(c) =
8

π
6= 1.

The correct form of the mean value theorem in higher dimensions is actually an
inequality. We need some preliminary results first though.

Lemma 6.1
Let f : [a, b] → V for a < b where V is a normed linear space and g :

[a, b] → R, with f and g continuous on [a, b] and differentiable on (a, b). Sup-
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pose, ‖f ′(t)‖ ≤ g′(t) for a < t < b. Then,

‖f(b)− f(a)‖ ≤ g(b)− g(a).

Proof of Lemma 6.1

‖f(b)− f(a)‖ =

∥∥∥∥∫ b

a

f ′(σ)dσ

∥∥∥∥
≤
∫ b

a

‖f ′(σ)‖ dσ

≤
∫ b

a

g′(σ)dσ

= g(b)− g(a)

�

Lemma 6.2
Same hypotheses as in Lemma 6.1, except that the condition on existence and
inequality of derivatives holds for all t ∈ [a, b], except for a countable set of
points. Same conclusion as Lemma 6.1.

Proof of Lemma 6.2
Essentially the same argument as Lemma 6.1 since the integrals are unaffected.

�

Corollary 6.1
Same hypotheses on f as in Lemma 6.1, and g(t) = kt, k > 0.

(Thus, ‖f ′(x)‖ ≤ k ∀t ∈ (a, b)).
Then,

‖f(b)− f(a)‖ ≤ k(b− a).

Proof of Corollary 6.1
Substitute g(a) = ka and g(b) = kb. �

We need the definition of derivative for maps.

Definition 6.1. Let E,F be normed linear spaces over R. Let U
open
⊂ E. Suppose

f : U → F . We say that f is differentiable at a ∈ U if there is a continuous linear
map L : E → F such that

lim
h→0

‖f(a+ h)− f(a)− Lh‖F
‖h‖E

= 0.
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Here h is such that h+ a ∈ U . Clearly, if L exists it is unique and given by,

L(k) = lim
t→0

f(a+ kt)− f(a)

t

=
d

dt
f(a+ kt)

∣∣∣
t=0

We call L the derivative of f at a and denote it by (Df)a and sometimes by Df(a).
4

Exercise 6.1 (Chain rule). Prove

D(g ◦ f)(a) = Dg(f(a)) ◦Df(a),

where the left-hand side composition denotes the composition of two nonlinear
maps and the right-hand side composition denotes the composition of two linear
maps.

Exercise 6.2 (Jacobian). Prove that if E = Rn and F = Rm,

(Df)(a) · h =

[
∂f i

∂xj

]
h,

where
[
∂f i

∂xj

]
is the Jacobian matrix.

Theorem 6.2 (Mean Value Theorem for Maps)

Let f : U
open
⊂ E → F be a map of normed linear spaces. Let [a, b] denote the

line segment {(1 − t)a + tb : 0 ≤ t ≤ 1}, with end-points a, b contained in U .
Then,

‖f(b)− f(a)‖ ≤ sup
0≤t≤1

‖Df [(1− t)a+ tb]‖ · ‖b− a‖ . (6.1)

Figure 6.2: MVT for maps illustration.
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Proof of Theorem 6.2
Simply restrict f to the line segment [a, b] and then apply Corollary 6.1 above.

�

Another useful result from calculus is the Fundamental Theorem of Integral Calcu-
lus
Theorem 6.3 (Fundamental Theorem of Integral Calculus)

Let X, Y be Banach spaces. Let U
open
⊂ X and f : U → Y be a differentiable

map everywhere in U , or a C1 map. Suppose x+ ty ∈ U ∀t ∈ [0, 1]. Then

f(x+ y) = f(x) +

∫ 1

0

Df(x+ ty)ydt. (6.2)

Proof of Theorem 6.3
The completeness / Banach property is used in the proper definition of the inte-
gral with all attendant properties, as in single variable calculus. We take this for
granted. Now, set

g(t) = f(x+ ty) 0 ≤ t ≤ 1.

By the chain rule, for 0 < t < 1,

g′(t) = Df(x+ ty)y

Let

h(t) = f(x) +

∫ t

0

Df(x+ sy)yds 0 ≤ t ≤ 1.

Then,
h′(t) = Df(x+ ty)y 0 < t < 1.

Hence, g′(t) = h′(t), which implies that g(t) = h(t) + constant, for 0 < t < 1.
By continuity of g and h (they are integrals), g(t) = h(t) + constant, for

0 ≤ t ≤ 1.
But

g(0) = h(0) = f(x),

and
g(1) = h(1) = f(x+ y).

So

f(x+ y) = f(x) +

∫ 1

0

Df(x+ ty)ydt.

�
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Lemma 6.3 (Continuous Differentiability implies Locally Lipschitz)

Let f : [a, b] ×D → Rn, for domain D ⊂ Rn, continuous in t and
(
∂f
∂x

)
exists

and is continuous on [a, b]×D. Then f is locally Lipschitz on [a, b]×D.

Proof of Lemma 6.3
For x0 ∈ D, let r > 0 be such that

Br = {x : ‖x− x0‖ ≤ r} ⊂ D.

Br is closed and bounded. Br is convex, since for x1, x2 ∈ Br and 0 ≤ α ≤ 1,

‖αx1 + (1− α)x2 − x0‖ = ‖αx1 + (1− α)x2 − αx0 − (1− α)x0)‖
= ‖α(x1 − x0) + (1− α)(x2 − x0)‖
≤ α ‖x1 − x0‖+ (1− α) ‖x2 − x0‖
≤ αr + (1− α)r

= r.

Then, by the MVT for maps, ∀x, y ∈ Br

‖f(t, x)− f(t, y)‖ ≤ sup
0≤s≤1

‖Df [(1− s)x+ sy]‖ · ‖x− y‖

≤ sup
t∈[a,b]

sup
0≤s≤1

‖Df [(1− s)x+ sy]‖ · ‖x− y‖

= L ‖x− y‖ ,

where we used continuity with respect to both t and x of Df in the sup norms.
�

Even though we have shown that the proper MVT in higher dimensions is an
inequality, the following theorem is special case in which the MVT has a familiar
form.
Theorem 6.4

Suppose f : Rn → R is C1 at each point x of an open set S ⊂ Rn. Suppose
x∗, y∗ ∈ S are such that the line segment L(x∗, y∗) joining x∗, y∗ lies entirely in
S. Then there exists a point x ∈ L(x∗, y∗) such that

f(y∗)− f(x∗) =

(
∂f

∂x

)
x=z

(y∗ − x∗) (6.3)

Proof of Theorem 6.4
Let

g(t) = f((1− t)x∗ + ty∗)

g(0) = f(x∗)

g(1) = f(y∗)

g′(t) =

(
∂f

∂x

)∣∣∣
x=(1−t)x∗+ty∗

d

dt
((1− t)x∗ + ty∗)

=

(
∂f

∂x

)∣∣∣
x=(1−t)x∗+ty∗

(y∗ − x∗)
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By the scalar MVT (Theorem 6.1),

g(1)− g(0) = g′(t)
∣∣∣
t=t∗

(1− 0)

which is the same as saying

f(y∗)− f(x∗) =

(
∂f

∂x

)
x=z

(y∗ − x∗)

where z = (1− t∗)x∗ + t∗y∗ ∈ L(x∗, y∗). �





Lecture 7

Planar Systems

7.1. Linear Planar Setting

The study of planar systems is best explored by the study of planar linear systems.
Consider the system in R2,

ẋ = Ax (7.1)

where A is a 2× 2 real constant matrix. From linear algebra, there is a real, nonsin-
gular matrix P such that

J = PAP−1 (7.2)

is one of the following three forms:

(i)

J =

[
λ1 0
0 λ2

]
(7.3)

(ii)

J =

[
λ 1
0 λ

]
(7.4)

(iii)

J =

[
α β
−β α

]
. (7.5)

These are the possible real Jordan forms.

The change of variables y = Px defines the system

ẏ = Py (7.6)

59
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with solutions related by the formulas

x(t) = P−1y(t)

= P−1 exp(Jt)y(0)

= P−1 exp(Jt)Px(0).

Everything about the behavior of x can be determined from that of y(·).
In case (i),

yi(t) = exp(λit)yi(0) i = 1, 2.

In case (ii),

y1(t) = exp(λt)(y1(0) + ty2(0))

y2(t) = exp(λt)y2(0)

In case (iii), letting r =
√
y21 + y22 and φ = arctan(y2/y1), we get

ṙ = αr

φ̇ = −β

Thus, in this last case, r spirals in or out of 0 accordingly if α < 0 or α > 0.

The behavior of the linear system around the origin is thus captured by the clas-
sification in Figure 7.1, up to a nonsingular transformation P . In the figure, we
represent the behavior of (y1, y2).
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Figure 7.1: Classifications of Planar/Linear Systems.

It is clear that a small perturbation of A would alter the phase portraits of the
center and the improper node to one of the five remaining possibilities. These latter
five are the generic phase portraits near zero. The generic picture in the linear case
carries over to the nonlinear setting.

7.2. Nonlinear Planar Setting

Consider the nonlinear planar system,

ẋ = f(x). (7.7)

Definition 7.1. Denote a solution starting at x by φft (x). The superscript here
keeps track of the system in question. The map φft (x) : R2 → R2 is called the flow
map and {φft (x) : t ∈ R} the flow of the system (7.7). 4

Thus,
d

dt
(φft (x)) = f(φft (x))

φf0(x) = x (initial condition).
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Let xe be an equilibrium point, i.e.

f(xe) = 0.

Thus,
φft (xe) = xe ∀t ∈ R,

(Aside: We recognize that xe is a fixed point of the flow map.) Let us denote the
linearization of the f at xe by A;

A =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
x=xe

.

The solution to the linearization
ẋ = Ax

is given by
φAt (x) = exp(tA)x.

Definition 7.2. If xe is an equilibrium such thatA has no eigenvalues on the imag-
inary axis, then we call xe an hyperbolic equilbrium point. 4

We now are ready for the connection between the linearization and the nonlinear
system.
Theorem 7.1 (Hartman-Grobman)

Consider the nonlinear system

ẋ = f(x) x ∈ Rn

with hyberbolic equilibrium xe. Let A = (∂f
∂x

)xe denote the linearization of f .
Let {φft } denote the flow of the nonlinear system. Then, there exists a map

F : Bδ ⊂ Rn → Rn

where Bδ = {x : ‖x− xe‖ < δ} is a ball defining a sufficiently small neigh-
borhood of xe, such that F (xe) = 0, F is one-to-one and onto F (Bδ), and
the map F as well as its inverse F−1 are continuous (We call such an F a
homeomorphism—see Figure 7.2.), such that,

F (φft (x)) = exp(tA)F (x) x ∈ Bδ

or more succinctly,
φft = F−1 ◦ exp(tA) ◦ F (7.8)

Remark 7.1. We say that the flow φft is conjugate to the flow exp(tA). 4
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Remark 7.2. We have tacitly assumed that the nonlinear system has a well-defined
solution for all time. This is not necessarily for the statement of this theorem. We
only need existence for |t| < T , some T > 0. 4

Figure 7.2: Homeomorphism.

As shown in Figure 7.2, the phase portrait of the nonlinear system near an equilib-
rium xe is a distorted version (by F−1) of the linearization near zero.

Remark 7.3. The hyperbolicity assumption of the Hartman-Grobman Theorem en-
sures that the linearization fits into one of the Jordan forms. This assumption is
important as the following example illustrates. 4

Example 7.1. Consider the system

ẋ1 = −x2 − µx1(x21 + x22)

ẋ2 = x1 − µx2(x21 + x22).

The linearization at (0, 0) is just the harmonic oscillator with center (0, 0). But,
from the polar coordinate representation of the system,

ṙ = −µr3

θ̇ = 1,

so the solutions to the nonlinear system spiral in (out) towards (away from) zero
for µ > 0 (µ < 0). The eigenvalues of the linearization at (0, 0) lie on the
imaginary axis and the equilibrium point is not hyperbolic.

7.3. Closed orbits of a dynamical system

Definition 7.3. Consider the nonlinear system with flow φft . We say that x is a
nontrivial periodic point of period T if φfT (x) = x for some T > 0, where T is the
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smallest such time. The trajectory γ through the periodic point is called a periodic
orbit:

γ = {φft (x) : t ≥ 0}.

4

Such orbits are closed curves.

Finding periodic orbits is hard. However, in R2 we have a sufficient condition
which we will see in the following theorem (after a brief definition).

Definition 7.4. A region M ⊂ Rn is positively (negatively) invariant for flow φft ,
if for each x ∈M ,

φft (x) ∈M t ≥ 0 (t ≤ 0).

4
Theorem 7.2 (Poincaré-Bendixson)

Consider the continuous time dynamical system in the plane

ẋ = f(x).

Let M be a closed and bounded, positively invariant set for the flow {φft : t ≥
0}. Suppose M does not contain any equilibria of the given system. Then M
contains a closed orbit.

The following example of a fundamental biochemical process called glycolysis,
taken from S. H. Strogatz (Nonlinear Dynamics and Chaos), is a nice illustration of
the Poincaré-Bendixson Theorem.

Example 7.2. Glycolysis in living cells generates energy through breaking
down sugar. In intact yeast cells, as well as in yeast or muscle extracts, gly-
colysis proceeds under suitable conditions in an oscillatory fashion with the
periodic rise and fall of the concentrations of various intermediates. A simple
kinetic model due to Sel’kov (1968) (Eur. J. Biochem. 4: 79), in dimensionless
form is given by,

ẋ = −x+ ay + x2y

ẏ = b− ay − x2y

where x and y are, respectively, the concentration of ADP (adenosine diphos-
phate) and F6P (frustose-6-phosphate), a, b > 0 are kinetic parameters.

To show that this system has a periodic solution via the Poincaré-Bendixson
Theorem, one needs to find a positively invariant set for the system, that contains
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no equilibria, that is closed and bounded. Such a set would also be called a
trapping region for the system. There will be conditions on a and b as a result.
We construct a trapping region in Figure 7.3.

Figure 7.3: Glycolysis Model.

In the figure, the solid curves ẋ = 0 (equivalently y = x/(a+x2)), and ẏ = 0
(equivalently y = b/(a+ x2)) are the null-clines. On these curves, the direction
of the vector fields are marked by vertical and horizontal arrows, respectively.
Ignore the dotted circle for the moment. The intersection of the null-clines gives
the unique equilibrium point (b, b/(a + b2)). The five-sided figure bounded by
the horizontal and vertical axes and the three dotted, straight line segments is
a trapping region, in the sense that once a trajectory enters the region, it never
leaves it. To see this, convince yourself that the arrows are drawn correctly on
the boundaries of the region. (Hint: Verify that in the region above the null-cline
ẋ = 0, we obtain ẋ > 0 and below it, we obtain ẋ < 0; in the region to the left
of the null-cline ẏ = 0, but to the right of x = 0, ẏ > 0, and to the right of the
null-cline ẏ = 0 and above y = 0, we obtain ẏ < 0. On the diagonal dotted line
of slope −1,

ẋ− (−ẏ) = −x+ ay + x2y + b− ay − x2y
= b− x,

implying −ẏ > ẋ if x > b which is the above case.)

We cannot conclude from this analysis that there is a periodic solution in the
trapping region. This is because we have an equilibrium point in this region—
violating one of the hypotheses of the theorem. What should we do?

Well, if the equilibrium (b, b/(a + b2)) is an unstable node or focus, then
on a small dotted circle surrounding the equilibrium, all arrows will be pointing
outward. Then one can conclude that the trapping region minus the open disk
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bounded by the dotted circle, is a closed and bounded, positively invariant set
(i.e. a smaller trapping region) containing no equilibria. Hence, it must contain
a periodic orbit by Poincaré-Bendixson Theorem.

So, what are the conditions for the equilibrium to be an unstable node or
focus?

Linearize the dynamics at the equilibrium to get

A = (Df)xe =

[
−1 + 2xy a+ x2

−2xy −(a+ x2)

]∣∣∣
x=b,y=b/(a+b2)

Note that the determinant and trace of A give:

det(A) = a+ b2

tr(A) = −b
4 + (2a− 1)b2 + (a+ a2)

a+ b2

Thus, the equilibrium is unstable if tr(A) > 0 and stable if tr(A) < 0. The
stability regions in parameter space are represented by the curve

b2 =
1

2
(1− 2a±

√
1− 8a)

as shown in Figure 7.4.

Figure 7.4: Stability Region in Parameter Space.

7.4. Classification of planar linear systems
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Recall the classification diagram in parameter space for a planar linear system as
shown in Figure 7.5. For the 2× 2 matrix A = [aij], the characteristic polynomial

χA(s) = det

[
s− a11 −a12
−a21 s− a22

]
= (s− a11)(s− a22)− a12a21
= s2 − s(a11 + a22) + (a11a22 − a12a21)
= s2 − τs+ ∆

where τ = tr(A) and ∆ = det(A). The discriminant for the characteristic equation
is τ 2 − 4∆. Thus, from Figure 7.5, we see that the determinant, trace, and dis-
criminant provide useful information for classifying the linear dynamical systems
or equilibrium of linearized systems.

Figure 7.5: Classification diagram for planar linear systems

Remark 7.4. Based on the characteristic polynomial, we see that we cannot have
a hyperbolic equilibrium when either ∆ = 0 or (τ = 0 and ∆ > 0). Review the
outcome of exercise 7.2 in light of this claim. 4





Lecture 8

Index Theory and Introduction to Bifurcations

8.1. Index Theory

We continue our study of ways to recognize the existence (or nonexistence) of pe-
riodic solutions to planar nonlinear systems. (Note: All systems we study here are
C1 smooth.)

Remark 8.1. f is C1 smooth if f1 and f2 have continuous first partials. More gener-
ally, Ck smooth means f1 and f2 have continuous kth partials. 4

Definition 8.1. Given a vector field f in the plane and a closed, simple curve γ
not passing through an equilibrium point of

ẋ = f(x),

then the index Ifγ is simply the total rotation of the vector field as we proceed
counterclockwise once around the closed curve γ (see Figure 8.1), measured by

Ifγ =
1

2π

∮
γ

dθf (8.1)

where θf = arctan(f2
f1

). 4

The index made its (first) appearance in (H. Poincaré, “Sur les dı́ finie par les
équations différentielles,” J. Math. Pures Appl. 4 (1): 167-244, 1885).
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Figure 8.1: Convention for index calculation.

Since d
dz

arctan(z) = 1
1+z2

, it follows that,

Ifγ =
1

2π

∮
γ

f1df2 − f2df1
f 2
1 + f 2

2

. (8.2)

Property 3 (Homotopy invariance). A key property of the index is that given two
curves γ and γ′ in the plane such that γ can be continuously deformed in γ′ (or
homotoped into γ′), without passing through any equilibria, then

Ifγ = Ifγ′ .

(Proof: Since Ifγ is an integer and it varies continuously as γ is being varied contin-
uously, it does not vary at all as long as we do not cross an equilibrium point.) 4

Property 4 (Zero index). If γ does not enclose any equilibrium points, Ifγ = 0.
(Proof: By Property 1, we can shrink γ to a tiny circle without changing the index.
But θf is essentially constant on such a circle, thanks to the assumed smoothness of
the vector field (see Figure 8.2). So, Ifγ = Ifγ′ = 0.) 4

Figure 8.2: Shrinking a simple closed curve not enclosing equilibria.

Property 5.
Ifγ = I−fγ

(Proof: Use the formula for index.) 4

Property 6. If γ is a closed orbit of ẋ = f(x), then

Ifγ = +1.

(Proof: By the assumption that γ is a closed orbit, the vector field is tangential to
γ everywhere on γ as in Figure 8.3. Pick a parameterization with respect to t of γ,
then use the index formula.) 4
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Figure 8.3: Vector field along a periodic trajectory.

From the definition of index, the index of a curve γ when it encloses a single
node or focus is +1, and it is −1 when it encloses a single saddle. Examine the
vector fields in Figure 8.4 to convince yourself.

Exercise 8.1. The index of a center is also +1. Why?

Figure 8.4: Vector fields near a node and a saddle.

Definition 8.2. The index If (x∗) of an isolated equilibrium point x∗ is defined to
be Ifγ , where γ is any closed, simple curve enclosing x∗ and no other equilibria. (By
Property 1 above, this is well-defined, i.e. it is dependent on only x∗ and not the
particular γ.) 4

Under this definition, we can safely say,

If (node) = If (focus) = +1

If (saddle) = −1

Theorem 8.1
If a simple closed curve γ encloses n isolated equilibria x∗1, . . . , x

∗
n then

Ifγ =
n∑
i=1

If (x∗i ). (8.3)
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Proof of Theorem 8.1
Left as an exercise. �

Exercise 8.2. Prove this theorem by making use of the property of Homotopy
invariance.

Corollary 8.1
A periodic orbit must enclose an equilibrium point.

Exercise 8.3. Does this corollary allow one to rule out oscillation in the glycolysis
example when a, b are such that they lie in the unshaded region of the parameter
space stability plot?

Example 8.1. Closed orbits are impossible in the population biology model

ẋ = x(3− x− 2y)

ẏ = y(2− x− y)

where x, y ≥ 0. This can be shown by the following argument.

Equilibria are (0, 0) (unstable node); (0, 2), (3, 0) (unstable nodes); and
(1, 1) (saddle) marked by X’s in Figure 8.5.

Figure 8.5: Population biology example.

There are three qualitatively distinct possibilities Ci for closed orbits. C1

and C2 are ruled out by the theorem. C3 is also ruled out because the y axis is a
stable manifold and trajectories cannot cross.

Another useful result that gives us conditions to exclude periodic orbits from
certain regions in the plane is attributed to Bendixson.
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Theorem 8.2 (Bendixson’s Criterion)

Let D be a simply connected region in the plane such that div(f) , ∂f1
∂x1

+ ∂f2
∂x2

is not identically zero in any subregion of D and also does not change sign in D.
Then D does not contain any closed orbits of ẋ = f(x).

Proof of Theorem 8.2
Assume towards contradiction, that γ is a closed orbit in D.

Figure 8.6: Closed orbit in D.

On γ, ẋ1 = f1(x1, x2) and ẋ2 = f2(x1, x2) implies dx2
dx1

= f2
f1

or f1dx2 −
f2dx1 ≡ 0 on γ. Hence, ∮

γ

f1dx2 − f2dx1 = 0.

But by the theorem of Green this implies the surface integral
∫ ∫

div(f)dx1dx2 =
0, which contradicts the hypothesis that div(f) 6= 0 and does not change sign on
any subregion of D. Hence there can be no periodic orbits in D. �

Remark 8.2. We can extend this result as Dulac did—observe that we can multiply
by q(x),

qf1dx2 − qf2dx1 ≡ 0 on γ,

and hence ∮
γ

qf2dx1 − qf1dx2 = 0.

By Green, this implies,
∫ ∫

div(qf)dx1dx2 = 0 which would lead to a contradiction
if q(·) was picked such that div(qf) ≡ 0 on any subregion of D. Note,

div(qf) = ∇q · f + qdiv(f).

So, finding q(x) such that div(qf) = ∇q · f + qdiv(f) > 0 (or < 0) on D is a
problem of solving a partial differential inequality in q. In practice, one tries to
“guess” a q(x). If you can guess a q(x) such that div(qf) is sign-definite, then
periodic orbits cannot exist in the region of interest. 4

8.2. Brief Introduction to Bifurcations
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When a differential equation has a settable parameter, the study of how the phase-
portrait changes as one continuously varies the parameter is referred to as bifurcation
theory. The term originates in the branching of equilibria as in the Euler buckling
problem. We start in one dimension.

For ẋ = r + x2 the phase portrait for different values of r can be ‘stacked’ in
one figure as shown in Figure 8.7.

Figure 8.7: ‘Stacked’ phase portraits for a scalar ODE.

The filled circle indicates a stable equilibrium at xe = −
√
−r (for r < 0), while

the open circle indicates an unstable equilibrium at xe =
√
−r (for r < 0). The

half-filled circle at xe = 0 (for r = 0) is a “half-stable” equilibrium as the arrows
suggest.

Rotating Figure 8.7 90◦ degrees clockwise and flipping the x axis, we get the
bifurcation diagram shown in Figure 8.8.

Figure 8.8: Bifurcation diagram for ẋ = r + x2.

The dotted line indicates an unstable branch (of equilibria) and the solid line, a
stable branch. This type of bifurcation is referred to as a saddle-node (turning point
/ fold / or blue sky) bifurcation.

If we had used the form ẋ = r − x2, the picture would look like Figure 8.9.
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Figure 8.9: Bifurcation diagram for ẋ = r − x2.

As r increases beyond zero, two branches of equilibria appear (“out of the blue
sky”). The appearance or disappearance of branches has to do with occurrence of a
singularity in (∂f

∂x
)
∣∣∣
xe

for a critical value of r.

One can also write down forms that are transcritical (i.e. no change in the num-
ber of branches). Consider ẋ = rx− x2. Then xe = 0 is always an equilibrium, so
is xe = r. The bifurcation diagram is shown in Figure 8.10.

Figure 8.10: Bifurcation diagram for ẋ = rx− x2.

Figure 8.10 illustrates that in a transcritical bifurcation there is an exchange of
stability, as shown with the exchange of stability between the two branches.

When the order of the right-hand side increases, additional branches appear. For
example, ẋ = rx−x3 (invariant under x→ −x) yields the aptly named supercritical
pitchfork bifurcation.
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Figure 8.11: Bifurcation diagram for ẋ = rx− x3.

Consider ẋ = rx + x3 − x5 with bifurcation diagram (subcritical pitchfork)
shown in Figure 8.12. This suggests possibilities of hysteretic jumps between the
xe = 0 stable branch and the nontrivial stable branches.

Figure 8.12: Bifurcation diagram for ẋ = rx+ x3 − x5.

One can embed all these normal forms in two dimensions. As we see illustrated
by the system

ẋ = r + x2

ẏ = −λy

Suppose λ > 0. Then for r < 0, the branch (xe = −
√
−r, ye = 0) is a branch of

(stable) nodes, while the branch (xe =
√
−r, ye = 0) is a branch of saddles. This is

the origin of the term saddle-node bifurcation.

We postpone for now the discussion of dynamic bifurcations such as the Hopf
bifurcation. This is the setting in which stable limit cycles emerge when an equilib-
rium at zero loses stability.



Lecture 9

Stability Theory: Autonomous Systems - Part I

The principles of mechanics as developed in the works of Laplace, Lagrange, and
Dirichlet lead to tools for understanding the stability properties of solutions of non-
linear systems. The modern period in this direction begins with the classical memoir
of A. M. Lyapunov (also, Liapunov and Liapounoff) (Probleme générale de la sta-
bilité de mouvement, Ann. Fac. Sci. Toulose, 9: 203:474 (1907)—translation of a
paper published in Russian in Comm. Soc. Math., Kharkov 1892, facsimile repro-
duction as Annals of Mathematics Study No. 17 (Princeton Univ. Press), 1947). The
key ingredients are: (a) a definition of stability, and (b) an “energy” method to assess
stability. We introduce these in the setting of autonomous differential equations.

An equilibrium point xe of a system

ẋ = f(x) x ∈ Rn (9.1)

satisfies f(xe) = 0. Let y = x − xe and define g(y) = f(y + xe). Then the
equilibrium point y = 0 of the system

ẏ = g(y) (9.2)

corresponds to the equilibrium point xe of the system (9.1). Thus the shift of the
origin in Rn allows one to refer to an equilibrium at zero. This is a standard device
in most treatments—we don’t use it below.

Definition 9.1 (Lyapunov Stability).

(i) The equilibrium xe of (9.1) is said to be stable in the sense of Lyapunov, if
given ε > 0, there exists δ > 0 such that

x0 ∈ Bδ(xe)

77
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implies that the solution starting at x0, denoted x(t), is trapped in Bε(xe):

x(t) ∈ Bε(xe) ∀t ≥ 0.

Here Br(z) stands for the open ball of radius r centered at z: Br(z) = {x :
‖x− z‖ < r} with respect to a choice of norm ‖·‖ in Rn.

(ii) xe is unstable if it is not stable.

(iii) xe is asymptotically stable if it is stable as in (i), and δ > 0 can be chosen such
that lim

t→∞
x(t) = xe for every initial condition x0 ∈ Bδ(xe) (This is attractivity

of xe).

(a) Figure for stability in the sense of Lyapunov. (b) Figure for asymptotic sta-
bility.

Figure 9.1: Illustrations for Lyapunov stability theory.

4

The basic theorem of the subject, due to Lyapunov, gives a sufficient condition
for stability (or asymptotic stability) of an equilibrium point xe.
Theorem 9.1 (Lyapunov)

Let xe be an equilibrium point of the system (9.1) satisfying the local Lipschitz
condition. Let D be a domain (open, connected region) of Rn, containing xe.
Suppose V : D → R is a C1 function and

V (xe) = 0

V (x) > 0 in D − {xe}
V̇ (x) ≤ 0 in D.

Then, xe is stable. Moreover, if V̇ < 0 in D − {xe}, then xe is asymptotically
stable.

Proof of Theorem 9.1
Refer to Figure 9.2 for illustrations of the nested sets used throughout this proof.
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Figure 9.2: Nested sets.

Given ε > 0, choose r ∈ (0, ε] such that we have closed ball B̄r(xe) =
{x : ‖x− xe‖ ≤ r} ⊂ D. Let α = min‖x−xe‖=r V (x). Note that α > 0 by
hypothesis. Take β such that 0 < β < α, and let

Ωβ = {x ∈ B̄r(xe) : V (x) ≤ β}.

Then Ωβ ⊂ Br(xe) (Proof: Suppose not. Let p ∈ Ωβ be such that ‖p− xe‖ = r.
Then V (p) ≥ α > β, a contradiction).
Let x(t) be a solution with x(0) ∈ Ωβ . Since V̇ (x(t)) ≤ 0, V (x(t)) ≤ V (x(0))
and hence xe ∈ Ωβ , ∀t ≥ 0. Since Ωβ is a closed and bounded set, we conclude
(by the Long Time Existence Uniqueness Theorem previously discussed) that
we have a unique solution within Ωβ , a positively invariant set, for all time.
V is continuous at xe and V (xe) = 0 implies there is a δ > 0 such that

‖x− xe‖ ≤ δ =⇒ V (x) < β.

Thus,
Bδ(xe) ⊂ Ωβ ⊂ Br(xe),

and

x(0) ∈ Bδ(xe) =⇒ x(0) ∈ Ωβ

=⇒ x(t) ∈ Ωβ ∀t ≥ 0

=⇒ x(t) ∈ Br(xe) ∀t ≥ 0

=⇒ x(t) ∈ Bε(xe) ∀t, r ≥ 0 (since ε ≥ r).

Under the extra assumption V̇ < 0 in D − {xe}, one can show that the
monotone decreasing function V (x(t)) has a limit c = 0. (Here we are appealing
to the ‘well-ordering’ of R.) The existence of a limit c ≥ 0 is assured by the
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lower bound on V . Suppose c > 0. By continuity of V there exists d > 0 such
that

Bd(xe) ⊂ Ωc = {x ∈ B̄r(xe) : V (x) ≤ c}.

Since limt→∞ V (x(t)) = c > 0 by hypothesis, x(t) never enters Bd(xe). Let

−γ = max
d≤‖x−xe‖<r

V̇ (x).

By hypothesis, γ > 0. By the fundamental theorem of integral calculus,

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ))dτ

≤ V (x(0))− γt

Since the right-hand side eventually becomes negative, we get a contradiction
from assuming c > 0. So, c = 0. Hence,

lim
t→∞

V (x(t)) = 0.

By hypothesis on V ,
lim
t→∞

x(t) = xe.

�

Remark 9.1. The above result is a prototype stability theorem in the spirit of the
energy method in mechanics (more on this later). In the abstract setting of ordi-
nary differential equations (not necessarily hamiltonian or dissipative) the Lyapunov
function V is a stand-in for energy functions from mechanics. 4

Note that for the system ẋ = f(x), the time derivative of a Lyapunov function
along trajectories of the system may be written

V̇ (x) = ∇V (x) · f (9.3)

=
∂V

∂x
· f. (9.4)

Suppose the state space can be factored into position and momentum variables, x =
(q, p) ∈ Rn × Rn, and

q̇ =
∂H

∂p

ṗ = −∂H
∂q

(9.5)

Then,
dH

dt
=
∂H

∂q
· ∂H
∂p

+
∂H

∂p
·
(
−∂H
∂q

)
= 0
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If we further assume that xe = (qe, pe) is an equilibrium with H(x) > H(xe) for all
x ∈ D a neighborhood of xe, then

V (x) = H(x)−H(xe) and V̇ (x) =
dH

dt
= 0

satisfies the hypotheses of Lyapunov’s theorem allowing one to conclude that xe is
a stable equilibrium.

Suppose H(x) is of the form kinetic-plus-potential energy,

H(q, p) =
1

2
p ·M−1p+ V (q),

whereM = MT > 0 is a constant mass matrix and V (q) is a potential. Then (qe, pe)
is an equilibrium of the dynamics

q̇ = M−1p

ṗ = −∂V
∂q

(9.6)

if and only if pe = 0 and qe is a critical point of V . If further qe is an isolated/strict
local minimum of V , then (qe, pe) is a strict local minimum of H and hence a stable
equilibrium.

The result just derived is known as the Lagrange-Dirichlet theorem and is a guid-
ing principle in much of mechanics. It asserts the proper role of (potential) energy
minimization in stability in the correct dynamical sense of Lyapunov, superseding
earlier quasi-static notions (e.g. due to Torricelli).
Corollary 9.1

If xe is a (stable) equilibrium of a nontrivial hamiltonian system (9.5), it can
never be asymptotically stable.

Proof of Corollary 9.1
There exists x0 ∈ D, H(x0) 6= H(xe). For any trajectory beginning at x0,
H(x(t)) = H(x(0)) 6= H(xe). Hence, by continuity of H , limt→∞ x(t) 6= xe,
even if such a limit exists. �

Hamiltonian systems of the form of (9.6) are said to be natural mechanical systems.
A vast array of systems in classical physics, molecular dynamics, and engineering
take this form, or its dissipative modification

q̇ = M−1p

ṗ = −∂V
∂q
−R(q)q̇ (9.7)
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where R(q) = RT (q) > 0 defines the Rayleigh dissipation function

R(q, q̇) =
1

2
q̇ ·R(q)q̇.

Along trajectories of (9.7),

dH

dt
= −M−1p · (R(q)M−1p)

≤ 0 (by hypothesis).

Suppose D is such that (qe, 0) is the only equilibrium in D (thus qe is a critical
point of V ), and qe is a strict local minimum of V . Then, can we prove asymptotic
stability of (qe, 0)? While stability is assured by the Lagrange-Dirichlet theorem,
one cannot use H as the Lyapunov function for the asymptotic stability argument.
This is because,

dH

dt

∣∣∣
(q,0)

= 0.

Figure 9.3 illustrates this problem.

Figure 9.3: dH
dt

= 0 along (q, 0).

None of the points on the line segment is an equilibrium (except for (qe, 0)) by
hypothesis on D. Does this means that we get convergence to (qe, 0) anyway? One
needs a new idea—the invariance principle of LaSalle, if one insists on working with
H as a possible Lyapunov function. Another alternate is to “fix up” the Lyapunov
function, i.e. add suitable extra terms to H . Both of these approaches are important
in solving a range of problems and we will discuss both.

Example 9.1 (Fixing up a Lyapunov function for a damped pendulum). In
equation (9.7), consider n = 1, M = 1 constant, V (q) = g

l
(1−cos(q)), R(q) =



83

b > 0. Then,

q̇ = p

ṗ =
−g
l

sin(q)− bp

H(q, p) =
p2

2
+ gl(1− cos(q))

dH

dt
= −bp2 (where (q, p) = (0, 0) is an equilibrium).

Define

H̃ =
1

2
[q, p]

[
a11 a12
a12 a22

] [
q
p

]
+
g

l
(1− cos(q)).

Note: we require a12 = a21 so this matrix is symmetric. We seek [aij] > 0 such
that

dH̃

dt
= (a11q + a12p+

g

l
sin(q))p+ (a12q + a22p)(−

g

l
sin(q)− bp)

=
g

l
(1− a22)p sin(q)− g

l
a12q sin(q) + (a11 − a12b)pq + (a12 − a22b)p2

< 0 (on a suitable D).

Pick a22 = 1, a11 = a12b, and 0 < a12 < b. Then,[
a11 a12
a12 a22

]
=

[
a12b a12
a12 1

]
> 0.

Further, we have

dH̃

dt
= −g

l
a12q sin(q)− (b− a12)p2

< 0 on D = {(q, p) : |q| < π} − {(0, 0)}.

Thus, H̃ is a Lyapunov function asserting asymptotic stability of (0, 0).

H̃ = H +
a12b

2
q2 + a12pq

= H + “fixup term”.

Example 9.2 (Gradient dynamics). Let V : Rn → R and

ẋ = −∇V (x) x ∈ Rn. (9.8)
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xe is an equilibrium if and only if it is a critical point of V . Suppose it is an
isolated local minimum of V . From

dV

dt
= −∇V · ∇V < 0

for all x ∈ Bε(xe) − {xe} for ε > 0 small enough, we conclude asymptotic
stability of xe.

9.1. The Invariance Principle

The Invariance Principle of LaSalle is based on a fundamental result of G. D. Birkhoff
(1884-1944), an American mathematician of the first half of the 20th century and a
founder of the modern theory of dynamical systems.
Theorem 9.2 (Birkhoff )

If a trajectory x(t) of a dynamical system is bounded then

L+ = ω-limit set of {x(t) : t ≥ 0}

is a nonempty, compact, invariant set. (Note: on Rn with metric d(·, ·), compact
⇐⇒ closed and bounded).

Moreover, x(t)→ L+ as t→∞ in the sense that

lim
t→∞

d(x(t), L+) = lim
t→∞

min
p∈L+

d(x(t), p)

= 0.

Proof of Theorem 9.2
We omit the proof of Birkhoff’s theorem (see for instance Khalil Appendix A.2).

�

Theorem 9.3 (LaSalle)
Let Ω be compact (closed and bounded) set with the property that x(t) ∈ Ω,
∀t ≥ 0, whenever x(0) ∈ Ω.

Let V : Ω → R be a C1 function such that V̇ ≤ 0 in Ω. Let E be the set of
all points in Ω where V̇ (x) = 0. Let M be the largest invariant set in E. Then
every solution starting in Ω tends to M at t→∞.

Remark 9.2. We call such a V a LaSalle function. 4
Proof of Theorem 9.3

Let x(t) be a solution such that x(t) ∈ Ω, ∀t ≥ 0. Since V̇ ≤ 0 in Ω, V (x(t)) is a
monotone decreasing function of t. Since V (x(t)) is continuous in the compact
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set Ω, it is bounded below on Ω. Therefore V (x(t)) → a as t → ∞. L+ ⊂ Ω
since Ω closed. For any p ∈ L+ there is a sequence t1 ≤ t2 ≤ . . . ≤ tn ≤ . . .
with tn →∞ as n→∞, such that limn→∞ x(tn) = p.

By continuity of V ,

V (p) = lim
n→∞

V (x(tn)) = a.

Hence, V (x) = a on L+. Since L+ is invariant (Birkhoff), V̇ (x) = 0 on L+.
Since M is the largest invariant set ⊂ E, we get

L+ ⊂M ⊂ E ⊂ Ω.

Since {x(t)}t≥0 is bounded, x(t)→ L+ as t→∞.
Hence, x(t)→M as t→∞. �

Remark 9.3. In many problems M is much easier to determine than L+. 4

In some problems, one can pick Ω and V such that, xe = equilibrium ∈ Ω and
in fact M = {xe}. If further xe is stable, it is asymptotically stable by LaSalle’s
theorem.

Revisiting equation (9.7) we can take H as the LaSalle function and use invari-
ance to prove asymptotic stability instead of fixing up the Lyapunov function, as
previously done. We take

Ωc = {(q, p) : H(q, p) ≤ c}.

If we choose c > 0 such that H(qe, 0) ≤ c, and c is small enough, Ωc is closed and
bounded. Then we also have that

E = {(q, p) : −M−1p ·R(q)M−1p = 0} ⊂ Ωc

= {(q, p) ∈ Ωc : p = 0}

We now derive the condition for membership in M , the largest invariant set in E.
From the dynamics, we have

q̇ ≡ 0 =⇒ q(t) ≡ qe (a constant)

and
ṗ ≡ 0 ≡ −∂V

∂q

∣∣∣
qe
−R(q)(0) =⇒ ∂V

∂q

∣∣∣
qe

= 0.

Thus, we have shown that (q, p) ∈ M implies p = 0 and qe is a critical point of
V . Choosing c small enough, we can ensure {(qe, 0)} = M where qe is a local
minimum of V . Then, we have shown that all trajectories starting in Ωc → (qe, 0).





Lecture 10

Stability Theory: Autonomous Systems - Part II

10.1. Region of Attraction

Definition 10.1. For the nonlinear system ẋ = f(x), with equilibrium xe, we
define the region of attraction of xe denotedRA(xe) to be the set

RA(xe) = {x0 : φft (x0)→ xe as t→∞}. (10.1)

4

If xe is an asymptotically stable equilibrium, then one can prove RA(xe) is an
open, invariant set containing xe. When is RA(xe) the whole state space? Clearly,
if RA(xe) = Rn, then xe is the unique equilibrium. Additionally, one can rule out
all other invariant sets (e.g. periodic orbits). The following theorem provides the set
of sufficient conditions.
Theorem 10.1 (Barabashin-Krasovskii)

Let x = 0 be an equilibrium point of the system ẋ = f(x). Let V : Rn → R be
a C1 function such that

(i) V (0) = 0, V (x) > 0 x 6= 0,

(ii) V (x)→∞ as ‖x‖ → ∞ (radial unboundedness),

(iii) V̇ (x) < 0 ∀x 6= 0.

Then, x = 0 is globally asymptotically stable ( =⇒ RA(0) = Rn).

Remark 10.1. There is no loss of generality in picking xe = 0 here—recall the
change of coordinates trick. 4

87
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Proof of Theorem 10.1
Let p ∈ Rn, V (q) = c > 0. From (ii), there exists r > 0 such that

{x ∈ Rn : V (x) ≤ c} = Ωc ⊂ Br.

Thus Ωc is closed and bounded. By LaSalle’s invariance principle, x(t) a trajec-
tory beginning in Ωc goes to M , the largest invariant set of E = {x : V̇ (x) = 0}
as t→∞.

By (iii), M = {0}. Thus, 0 is asymptotically stable and globally attractive.
�

10.2. Instability

The idea of using “energy-like” functions to prove instability and a fundamental re-
sult based on this idea can be attributed to Nikolai Gueryevich Chetaev (also Cetaev
or Chetayev), a Soviet mechanician, who held the chair of Theoretical Mechanics at
Moscow State University.
Theorem 10.2 (Chetaev’s Instability Theorem)

Let x = 0 be an equilibrium point of ẋ = f(x). Let V : D → R be a C1

function defined on an open, connected subset D of Rn which contains 0 with
V (0) = 0. Choose r such that Br = {x ∈ Rn : ‖x‖ ≤ r} ⊂ D. If,

(i) for every ε > 0, there exists x0 ∈ Bε(0) such that V (x0) > 0, and

(ii) for U = {x ∈ Br(0) : V (x) > 0} and V̇ (x) ≥ φ(‖x‖) > 0 on U , where
φ : [0,∞)→ [0,∞) is continuous, strictly increasing with φ(0) = 0,

then, x = 0 is an unstable equilibrium.

Remark 10.2. Such a function φ is called a Class K function. 4
Proof of Theorem 10.2

(a) (b)

Figure 10.1: Illustrations for proof of Chetaev’s instability theorem.
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Let x0 ∈ int(U) and V (x0) = a > 0. Suppose ‖x0‖ = r0. Consider the
annulus {x : ε ≤ ‖x‖ ≤ r} where ε > 0 is such that V (x) ≤ a

2
for ‖x‖ ≤ ε.

Such an ε exists by continuity of V at the origin. Then, since V̇ (x(t)) > 0 and
V (x0) = a, it follows that a trajectory cannot enter Bε.

The annulus {x : ε ≤ ‖x‖ ≤ r} is a closed and bounded set and V̇ (x) > 0
in U . Since V̇ ≥ φ(‖x‖), a Class K function, V̇ ≥ γ > 0 for some γ. We can
take

γ = inf{φ(λ) : λ ∈ [ε, r]}.

Then,

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(s))ds

≥ a+

∫ t

0

γds

= a+ γt.

But V (·) is bounded in U . Thus, x(t) cannot remain forever in U . In fact it
leaves U at the latest by

T =
1

γ

(
sup
U
V − a

)
.

Now x(t) cannot leave U through the surface {x : V (x) = 0}. since V (x(t)) ≥
a > 0. Hence it must leave through the sphere at ‖x‖ = r. Since this can happen
for arbitrarily small ‖x0‖, the origin is unstable. �

Remark 10.3. We call such a V a Chetaev function. 4

Example 10.1. Consider the planar system

ẋ1 = x1 + g1(x)

ẋ2 = −x2 + g2(x)

where |gi(x)| ≤ k ‖x‖22 in a neighborhood D of zero ( =⇒ gi(0) = 0 and thus
zero is an equilibrium point). Let V (x) = 1

2
(x21 − x22). On the line x2 = 0, i.e.

the x1 axis, V (x) > 0 at points arbitrarily close to the origin. Pick

U = {(x1, x2) ∈ Br(0) : V (x1, x2) > 0},

i.e. the shaded area in Figure 10.2.
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Figure 10.2: Illustration for region U .

V̇ (x) = x21 + x22 + x1g1(x)− x2g2(x).

But

|x1g1(x)− x2g2(x)| ≤
2∑
i=1

|xi||gi(x)|

≤ 2k ‖x‖32 (by hypothesis).

Hence,

V̇ (x) ≥ x21 + x22 − |x1g1(x)− x2g2(x)|
≥ x21 + x22 − 2k ‖x‖32
= ‖x‖22 (1− 2k ‖x‖2).

Choose r > 0 such that Br(0) ⊂ D and r < 1
2k

. Then V̇ (x) > 0 on U .

By Chetaev’s theorem the origin is unstable. (Question: What is φ here?)

Remark 10.4. Note in the previous example how the Chetaev function V (x) =
1
2
(x21 − x22) creates a convenient sector for which V (x) > 0. 4

Example 10.2.
Mẍ+ (S + εR)ẋ+Kx = 0

M = MT > 0, S = −ST , R = RT > 0, K = KT indefinite, and ε > 0. Let
p = Mẋ. Then

ẋ = M−1p

ṗ = −(S + εR)M−1p−Kx
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The hamiltonian is given by

H =
1

2
pTM−1p+

1

2
xTKx.

dH

dt
=
∂H

∂x
· ẋ+

∂H

∂p
· ṗ

= Kx ·M−1x+M−1p · ((−S − εR)M−1p−Kx)

= −εp ·M−1RM−1p (since S = −ST ).

Pick the Chetaev function to be V = −H . Convince yourself by arguing as in
the previous example (that is, by picking U properly), that (0, 0) is unstable in
Rn × Rn.

There are instability results due to Lyapunov that precede the work of Chetaev
and were motivating influences on Chetaev’s work.
Theorem 10.3 (Lyapunov - Instability I)

If V in C1 in a domain D ⊂ Rn with 0 ∈ D, f(0) = 0 and V (0) = 0. Also,
V̇ > 0 when x 6= 0 inD, and V (x) assumes positive values arbitrarily near zero,
then zero is an unstable equilibrium.

Proof of Theorem 10.3
Without loss of generality, let D be a bounded domain. V is bounded in D. Let
r ≤ R, Br(0) ⊂ D. Then ∃x0 ∈ Br(0) such that V (x0) > 0.

Since V̇ > 0, V (x(t)) can only increase, x(t) does not go to zero. In fact,
since V̇ ≥ m > 0, x(t) does not even go to a fixed point in BR(0). V (x(t))
must increase indefinitely and hence x(t) must eventually leave BR(0) via some
point in the boundary ∂BR(0). �

Theorem 10.4 (Lyapunov - Instability II)

Same hypothesis on V as in the previous theorem above, and let V̇ = λV + V ∗

where V ∗ > 0 in D and λ > 0. Then zero is an instable equilibrium.

Proof of Theorem 10.4
Let x0 ∈ Br(x0) as in previous proof. V (x0) > 0.

V̇ = λV + V ∗ =⇒
d

dt
(exp(−λt)V ) = exp(−λt)V ∗ ≥ 0.

Hence, along x(t), V ≥ exp(λt)V (x0). V increases indefinitely along x(t),
which implies instability. �
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10.3. Some special Lyapunov functions

Let V = Vp(x) + Vp+1(x) + . . . be defined in a neighborhood of zero, where Vk is
a homogeneous polynomial of degree k. Then, the sign of V in a suitable neighbor-
hood Ω of the origin is the same as the sign of Vp.

Lemma 10.1
If p is odd, V cannot be a Lyapunov function.

Proof of Lemma 10.1
Let ui denote the ratio of xi

xn
. Then each xi can be expressed as

x1 = xnu1

x2 = xnu2
...

xn−1 = xnun−1

xn = xn · 1.

This implies that
Vp = xpnVp(u1, u2, . . . , un−1, 1).

Keeping the ui fixed, the sign of Vp will be the sign of xpn or−xpn (one of the two,
but not both). Since p is odd, xpn, −xpn may assume both positive and negative
values near zero, so V is not positive definite. We are tacitly assuming that we
have chosen ui such that Vp(u1, u2, . . . , un−1, 1) 6= 0. This is always possible
since Vp 6= 0. �

Remark 10.5. Such power series expansions as in V above may not be defined, but
we might still have a positive definite C1 Lyapunov function. E.g.

V (x) =

{
x2 x ≥ 0
x4 x < 0

4
Lemma 10.2 (Invariant Sets)

If x = 0 is an asymptotically stable equilibrium point, then its region of attrac-
tionRA(0) is an open, invariant set. Moreover, ∂RA(0) the boundary ofRA(0),
is formed by trajectories.

Proof of Lemma 10.2

Let φfs (x) denote the solution to ẏ = f(y), with initial condition y(0) = x,
s ∈ R. We wish to show that φfs (x) ∈ RA(0) whenever x ∈ RA(0),∀s ∈ R.
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By the semi-group property of solutions to ODEs,

φft (x(s)) = φft (φ
f
s (x))

= φft+s(x)

lim
t→∞

φft (x(s)) = lim
t→∞

φft+s(x)

∈ RA(0) (by definition).

Thus, φfs (x) ∈ RA(0) ∀s ∈ R, whenever x ∈ RA(0). (Invariance).
To prove openness ofRA(0), let p ∈ RA(0). Let T > 0 be sufficiently large

that ∥∥∥φfT (p)
∥∥∥ < a

2

where a > 0 is such that {x : ‖x‖ < a} ⊂ RA(0). We can choose b small
enough such that ∀q ∈ {x : ‖x− p‖ < b}, the solution

∥∥∥φfT (p)− φfT (q)
∥∥∥ < a

2
.

Hence, ∥∥∥φfT (q)
∥∥∥ ≤ ∥∥∥φfT (p)− φfT (q)

∥∥∥+
∥∥∥φfT (p)

∥∥∥
< a.

=⇒ φfT (q) ∈ RA(0)

=⇒ lim
t→∞

φft (q) = 0

=⇒ q ∈ RA(0).

For any open invariant setM , x ∈ ∂M =⇒ {xn} ⊂M such that limn→∞ xn =
x.

Hence,

{φft (xn) : t ∈ R} ⊂M

lim
t→∞

φft (xn) = φft (x)

=⇒ φft (x) is an accumulation point of M ∀t ∈ R.

But φft (x) /∈ M , since x ∈ ∂M and M is open. Therefore, φft (x) ∈
∂M ∀t ∈ R. Thus, ∂M is made up of trajectories. �





Lecture 11

Stability Theory: Time-Varying Systems

The discussion of stability properties in time-varying systems is made complicated
by the fact that dependence on initial conditions (specifically initial time) has an
effect on how perturbations evolve. We limit ourselves to the study of stability of
equilibria.

11.1. A Change of Variables

Suppose τ 7→ ȳ(τ) is a solution to the differential equation

dy

dτ
= g(τ, y) τ ≥ a. (11.1)

Consider the change of variables,

x(t) = y(t)− ȳ(τ) (11.2)
t = τ − a (11.3)

Then,

ẋ ,
dx

dt
=
dx

dτ
· dτ
dt

=

(
dy

dτ
− dȳ

dτ

)
· 1

= g(τ, y)− dȳ

dτ
= g(t+ a, x+ ȳ(t+ a))− ˙̄y(t+ a)

, f(t, x)

95
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The zero solution to this equation is given by

f(t, 0) = g(t+ a, ȳ(t+ a))− ˙̄y(t+ a)

= 0 t ≥ a (by equation (11.1))

Thus, examining the stability properties of the zero solution of ẋ = f(t, x) is equiv-
alent to examining the stability properties of the solution ȳ of equation (11.1).
Remark 11.1. If g is not explicitly dependent on time and the solution ȳ is noncon-
stant, this approach still leads to a necessarily non-autononmous transformed system
ẋ = f(t, x), due to the term ˙̄y(t+ a). 4

We are now ready for the basic definitions.

11.2. δ−ε Notions of Stability

Definition 11.1 (Stability). The origin x = 0 is a stable equilibrium for the system
ẋ = f(t, x) if

(i) f(t, 0) ≡ 0 ∀t ≥ 0

(ii) given ε > 0 and any t0 ≥ 0, there exists δ = δ(ε, t0) > 0 such that

‖x(t0)‖ < δ =⇒
∥∥∥φft (t0, x(t0))

∥∥∥ < ε ∀t ≥ t0

(Here φft (t0, x) is the solution starting at t0 at x).

4

The constant δ in general will depend on t0. This means that if you wish to
“trap” the solution in a ball of size ε, starting later might mean you are perhaps
restricted to even smaller ball of perturbations about zero. To see this, consider the
next example.

Example 11.1.
ẋ = (6t sin t− 2t)x

This has the following solution passing through x(t0):

x(t) = x(t0) exp

(∫ t

t0

(6σ sinσ − 2σ)dσ

)
= x(t0) exp

(
6 sin t− 6t cos t− t2 − 6 sin t0 + 6t0 cos t0 + t20

)
=⇒ |x(t)| ≤ |x(t0)|c(t0) t ≥ t0
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Thus, for ε > 0 choose δ = ε
c(t0)

. Then

|x(t0)| < δ =⇒ |x(t)| < ε

=⇒ Stability

BUT: c(t0) = exp(−6 sin t0+6t0 cos t0+t20+K), whereK is a constant, grows
with t0, so δ shrinks as t0 increases!

We need a stronger notion of stability.

Definition 11.2 (Uniform stability). The equilibrium point 0 of ẋ = f(t, x) is
uniformly stable if given ε > 0 there exists δ = δ(ε) > 0 independent of t0 such that

‖x(t0)‖ < δ =⇒
∥∥∥φft (t0, x(t0))

∥∥∥ < ε ∀t ≥ t0.

4

The corresponding asymptotic definition is given next.

Definition 11.3 (Uniform asymptotic stability). The equilibrium point 0 of ẋ =
f(t, x) is uniformly asymptotically stable if

(i) it is uniformly stable, and

(ii) there exists c > 0 independent of t0 such that for x(t) (the solution starting at
x(t0)), x(t)→ 0 as t→∞ uniformly in t0, ∀ ‖x(t0)‖ < c.

4

11.3. Class K,K∞,KL Notions of Stability

The devices of class K, class K∞, and class KL functions (associated with Kamke,
an Austrian mathematician), provide another path to defining notions of stability for
time-varying systems. We first provide background on these functions.

Definition 11.4 (Class K). α : [0, a)→ [0,∞) is class K if

(i) α is continuous,

(ii) α(0) = 0, and

(iii) α is strictly increasing.
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4

Definition 11.5 (Class K∞). α : [0,∞)→ [0,∞) is class K∞ if

(i) it is class K, and

(ii) α(x)→∞ as x→∞ (no leveling off).

4

Definition 11.6 (Class KL). β : [0, a)× [0,∞)→ [0,∞) is class KL if

(i) β is continuous jointly in the arguments

(ii) β(·, s) is of class K for each fixed s

(iii) β(r, ·) is decreasing for each fixed r

(iv) β(r, s)→ 0 as s→∞.

4

Example 11.2. • α(r) = arctan(r) is class K but not K∞.

• α(r) = rc, c > 0 is class K∞.

• β(r, s) = rc exp(−s) is class KL for c > 0.

Properties 1. Let α1, α2 be class K, let α3, α4 be class K∞, and let β(·, ·) be class
KL. Then

(i) α−11 : [0, α1(a))→ [0,∞) is of class K

(ii) α−13 is of class K∞

(iii) α1 ◦ α2 is of class K

(iv) α3 ◦ α4 is of class K∞

(v) σ(r, s) = α1(β(α2(r), s)) is of class KL.

4
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Definition 11.7 (Uniform stability). The equilibrium point 0 of the time-varying
system ẋ = f(t, x) is uniformly stable if there exists a class K function α(·) and a
positive constant c, independent of t0, such that

‖x(t)‖ ≤ α(‖x(t0)‖) t ≥ t0 ≥ 0, ∀ ‖x(t0)‖ < c.

4

Definition 11.8 (Uniform asymptotic stability). The equilibrium point 0 of the
time-varying system ẋ = f(t, x) is uniformly asymptotically stable if there exists
a class KL function β(·, ·) and a positive constant c, independent of t0, such that

‖x(t)‖ ≤ β(‖x(t0)‖ , t− t0) t ≥ t0 ≥ 0, ∀ ‖x(t0)‖ < c.

4

Remark 11.2. We can append the term global if the requirements of either definition
11.7 or 11.8 hold ∀x(t0) ∈ Rn. 4
Remark 11.3. We can call the uniform asymptotic stability exponential stability if
the requirements of definition 11.8 hold with

β(r, s) = kr exp(−γs), k, γ > 0.

4
Lemma 11.1 (Equivalence of definitions)

Definitions 11.2 and 11.7 are equivalent. Definitions 11.3 and 11.8 are equiva-
lent.

Proof of Lemma 11.1
Left as an exercise. �

Exercise 11.1. Prove Lemma 11.1. (Hint: for the part of showing that 11.2 and
11.7 are equivalent, given ε > 0 take δ = α−1(ε)).

11.4. Time-Varying Lyapunov Theory

Theorem 11.1 (Time-Varying Lyapunov Theorem)
Consider the system ẋ = f(t, x), satisfying f(t, 0) ≡ 0 ∀t ≥ 0, where f :

[0,∞) × D → Rn is piecewise continuous in t and locally Lipschitz in x. Let
D = {x ∈ Rn : ‖x‖ < r} = Br(0). Let V : [0,∞)×D → R be a continuously
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differentiable function such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (11.4)
(positive definite) (decrescent)

and
∂V

∂t
+
∂V

∂x
· f ≤ −α3(‖x‖) (11.5)

∀t ≥ 0, ∀x ∈ D, for three class K functions α1, α2, α3 defined on [0, r).
Then x = 0 is uniformly asymptotically stable.

Proof of Theorem 11.1
Let ρ < r. Define,

Ωt,ρ , {x ∈ Br(0) : V (t, x) ≤ α1(ρ)}

Define ρ̃ , α−12 (α1(ρ)).
Now, ‖x‖ ≤ α−12 (α1(ρ)) =⇒ α2(‖x‖) ≤ α1(ρ). But, by the decresence
property of V ,

V (t, x) ≤ α2(‖x‖).

Thus,

‖x‖ ≤ α−12 (α1(ρ)) =⇒ V (t, x) ≤ α1(ρ)

=⇒ x ∈ Ωt,ρ

We have shown,

Bρ̃(0) , Bα−1
2 (α1(ρ))

(0) ⊆ Ωt,ρ

Further, x ∈ Ωt,ρ, i.e., V (t, x) ≤ α1(ρ),

=⇒ α1(‖x‖) ≤ α1(ρ) (by the positive definiteness of V )

=⇒ ‖x‖ ≤ ρ.

We have shown

Ωt,ρ ⊆ Bρ

Taken together,

=⇒ Bρ̃ ⊆ Ωt,ρ ⊆ Bρ ∀t ≥ 0.

We have therefore verified the picture in Figure 11.1.
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Figure 11.1: Illustration for set inclusions in UAS proof.

Since
V̇ =

∂V

∂t
+
∂V

∂x
· f(t, x) < 0

on Br(0) − {0}, by hypothesis, if for x0 ∈ Ωt,ρ, the solution starting at (t0, x0)
stays in Ωt,ρ ∀t ≥ t0.

Assume x0 ∈ Bρ̃(0). By the picture, x0 ∈ Ωt,ρ. This implies,

V̇ ≤ −α3(‖x‖) ≤ −α3(α
−1
2 (V )) (since V (t, x) ≤ α2(‖x‖) by hypothesis)

, −α(V ).

The function α(·) is class K on [0, α1(ρ)).
Inspired by the above differential inequality, V̇ ≤ −α(V ), we consider the

differential equation
ẏ = −α(y).

(We will assume α is locally Lipschitz. If not, there exists α̃ locally Lipschitz,
such that α ≥ α̃ and we will use α̃ instead of α.)

One can prove (using a technical Lemma based on scalar differential inequalities—
see supplemental material) that there is class KL function σ(r, s) defined on
[0, α1(ρ))× [0,∞)→ [0,∞) such that

V (t, x(t)) ≤ σ(V (t0, x(t0)), t− t0) ∀V (t0, x(t0)) ∈ [0, α1(ρ)).

Thus, for any solution starting at t0 , in Bρ̃ ⊂ Ωt0,ρ,

‖x(t)‖ ≤ α−11 (V (t, x(t)))

≤ α−11 (σ(V (t0, x(t0)), t− t0))
≤ α−11 (σ(α2(‖x(t0)‖), t− t0))
, β(‖x(t0)‖ , t− t0),

and β is class KL. �
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Remark 11.4. In Theorem 11.1, Bρ̃(0) is an estimate of the domain of attraction.
4

Corollary 11.1
Let all hypotheses in Theorem 11.1 be global (r →∞), and α1, α2 ∈ K∞. Then,
0 is globally uniformly asymptotically stable.

Proof of Corollary 11.1

α−12 ◦ α1 ∈ K∞ =⇒ α−12 (α1(ρ))→∞ as ρ→∞

This property is a substitute for radial unboundness. For any x0, ∃ρ > 0 such
that ‖x0‖ ≤ α−12 (α1(ρ)). Then, the rest of the argument follows as in Theorem
11.1. �

Corollary 11.2
If αi(r) = kir

c with ki > 0 and c > 0, then 0 is (uniformly) exponentially
stable.

Proof of Corollary 11.2
Track the manipulation of the class K functions in the proof of Theorem 11.1.

α(r) = α3(α
−1
2 (r))

= k3

((
r

k2

)1/c
)c

=
k3
k2
r locally Lipschitz.

Then,

=⇒ σ(r, s) = r exp

(
−k3
k2
s

)
=⇒ β(r, s) = α−11 (σ(α2(r, s), s))

=

(
k2
k1
rc exp

(
−k3
k2
s

))1/c

=

(
k2
k1

)1/c

r exp

(
− k3
ck2

s

)

Therefore, we take

k =

(
k2
k1

)1/c

and r =
k3
ck2

.

�



Lecture 12

Stability Theory: Time-Varying Systems (Linear Case)

For this lecture, we first specialize our study to linear time-varying (LTV) systems.
We also study linear T -periodic systems. However, we will later return (next lecture)
to nonlinear (time-varying) systems, making use of their linearization and the results
we develop in the linear case.

12.1. Linear Time-Varying Systems

In the setting of linear time-varying systems, some of the ideas concerning uniform
stability coalesce, as in the following theorem.

Theorem 12.1 (LTV UAS/UES Theorem)
Let ẋ = A(t)x(t) be a linear system with piecewise continuous coefficient

matrix A(t). Then, the origin is uniformly asymptotically stable if and only if

‖Φ(t, t0)‖ ≤ k exp (−γ(t− t0)) (12.1)

for some k > 0 and γ > 0. (That is, uniform asymptotic stability is equivalent
to exponential stability in linear systems.)

Proof of Theorem 12.1
Sufficiency: trivial.
Necessity: there exists β(·, ·) of class KL such that

‖x(t)‖ ≤ β(‖x(t0)‖ , t− t0) ∀t ≥ t0, ∀x(t0) ∈ Rn

103
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‖Φ(t, t0)‖ , max
‖y‖=1

‖Φ(t, t0)y‖

≤ max
‖y‖=1

β(‖y‖ , t− t0) (since y starting at t0 is Φ(t, t0)y)

= β(1, t− t0).

Since β(1, s) → 0 as s → ∞, there exists T > 0 such that β(1, t) ≤ 1
e
,

∀t ≥ T . For every t ≥ t0, let N be the smallest positive integer such that
t ≤ t0 + NT . Divide the interval [t0, t0 + (N − 1)T ] into (N − 1) equal
subintervals of width T each. Using the transition property of Φ(t, t0), we can
write

Φ(t, t0) = Φ(t, t0 + (N − 1)T )Φ(t0 + (N − 1)T, t0 + (N − 2)T ) · · ·Φ(t0 + T, t0)

Then,

‖Φ(t, t0)‖ ≤ ‖Φ(t, t0 + (N − 1)T )‖ ·
N−1∏
k=1

‖Φ(t0 +KT, t0 + (k − 1)T )‖

≤ β(1, 0)

(
1

e

)N−1
≤ eβ(1, 0) exp

(
−t− t0

T

)
= k exp(−γ(t− t0)),

where k , eβ(1, 0) and γ , 1
T

. �

Remark 12.1. For time-varying linear systems, there are no simple tests based on
eigenvalues to ascertain stability. One needs to use this theorem. However, in the
case that A(t) is periodic in t, the Floquet-Lyapunov Theorem does give a test for
uniform asymptotic stability. We will discuss this in more detail later in the lecture.

4

12.2. A Converse Theorem for LTV Systems

In this section, we discuss the existence of Lyapunov functions for systems that
demonstrate asymptotic stability properties (a theorem in the class of so-called con-
verse Lyapunov theorems)
Theorem 12.2 (Converse Lyapunov Theorem for LTV Systems)

Let x = 0 be an uniformly asymptotically stable equilibrium of ẋ = A(t)x(t).
Let A(t) be continuous, ‖A(t)‖2 ≤ L, ∀t ≥ 0. Let Q(t) be continuous, sym-
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metric positive definite such that, for suitable constants c3 and c4

0 < c3I ≤ Q(t) ≤ c4I ∀t ≥ 0.

then, there exists a unique, symmetric positive definite P (t) satisfying

−Ṗ = ATP + PA+Q

and P > 0 is bounded above and below, such that for suitable constants c1, c2,

0 < c1I ≤ P (t) ≤ c2I ∀t ≥ 0.

Hence, V (t, x) = xTP (t)x is a time-varying Lyapunov function for the given
linear system, in the sense of the Time-Varying Lyapunov Theorem.

Proof of Theorem 12.2
First recall that the notation

aI ≤M ≤ bI

means

ayTy ≤ yTMy ≤ byTy ∀y ∈ Rn

⇐⇒ a ≤ yTMy

yTy
≤ b

⇐⇒ a ≤ λmin(M) ≤ λmax(M) ≤ b.

Now define

P (t) =

∫ ∞
t

ΦT (τ, t)Q(τ)Φ(τ, t)dτ (where Φ is the state transition matrix).

It is easy to check that P (t) is the only solution of

−Ṗ = ATP + PA+Q.

(Note: A,P,Q all depend on time t).
Let φAτ (t, x) denote the solution at time τ of the linear system starting at x at

time t. Then, by linearity,

φAτ (t, x) = Φ(τ, t)x.
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Then,

V (t, x) = xTP (t)x

= xT
(∫ ∞

t

ΦT (τ, t)Q(τ)Φ(τ, t)dτ

)
x

=

∫ ∞
t

φAτ (t, x)TQ(τ)φAτ (t, x)dτ

≤
∫ ∞
t

c4
∥∥φAτ (t, x)

∥∥2
2
dτ

≤
∫ ∞
t

c4 ‖Φ(τ, t)‖22 · ‖x‖
2
2 dτ

≤
∫ ∞
t

c4k
2 exp(−2γ(τ − t)) ‖x‖22 dτ

≤ k2c4
2γ
‖x‖22

, c2 ‖x‖22

On the other hand, since ‖A(t)‖2 ≤ L ∀t ≥ 0, by hypothesis, one can show
that

d

dt

∥∥φAτ (t, x)
∥∥2
2
≥ −2L

∥∥φAτ (t, x)
∥∥2
2
.

This implies that ∥∥φAτ (t, x)
∥∥2
2
≥ ‖x‖22 exp(−2L(τ − t)).

Hence,

V (t, x) =

∫ ∞
t

φAτ (t, x)TQ(τ)φAτ (t, x)dτ

≥
∫ ∞
t

c3
∥∥φAτ (t, x)

∥∥2
2
dτ

≥
∫ ∞
t

c3 exp(−2L(τ − t)) ‖x‖22 dτ

=
c3
2L
‖x‖22

, c1 ‖x‖22

Thus, we have

c1 ‖x‖22 ≤ V (t, x) = xTP (t)x ≤ c2 ‖x‖22

with c1 = c3
2L

and c2 = k2c4
2γ

.
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Furthermore,

V̇ =
∂V (t, x)

∂t
+
∂V

∂x
· A(t)x

= xT (Ṗ + ATP + PA)x

= −xTQ(t)x

≤ −c3 ‖x‖22

Thus, V (t, x) = xTP (t)x is a time-dependent Lyapunov function satisfying

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖)
V̇ (t, x) ≤ −α3(‖x‖)

where the class K functions αi are given by

αi(y) = ci · y2,

with the ci constants defined above. �

Remark 12.2. The formula

V (t, x) =

∫ ∞
t

φAτ (t, x)TQ(τ)φAτ (t, x)dτ

suggests a possible path to converse Lyapunov theorems for nonlinear systems—let
φfτ (t, x) be the solution starting at x at t for the nonlinear system. 4

12.3. T -Periodic LTV systems

Theorem 12.3 (Periodic Linear Systems - Floquet)
Consider ẋ = A(t)x(t), with A(t) piecewise continuous, x(t0) = x0, and
A(t+ T ) = A(t),∀t. Let Φ denote the state transition matrix.

Then

(i) Φ(t+ T, t0 + T ) = Φ(t, t0)

(ii) There is a constant matrix R and a T -periodic nonsingular matrix function
P (t) such that

Φ(t, t0) = P−1(t) exp(R(t− t0))P (t0).

(iii) 0 is uniformly (asymptotically) stable for the given system if and only if it
is uniformly (asymptotically) stable for the system

ż = Rz.
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Proof of Theorem 12.3

(i) Recall the Peano-Baker series, and express it for a time period T ,

Φ(t+ T, t0 + T ) = I+

∫ t+T

t0+T

A(σ1)dσ1+

∫ t+T

t0+T

∫ σ1

t0+T

A(σ1)A(σ2)dσ2dσ1 + · · ·

= I+

∫ t+T

t0+T

A(σ1+T )dσ1

+

∫ t+T

t0+T

∫ σ1

t0+T

A(σ1+T )A(σ2+T )dσ2dσ1 + · · ·

(by T -periodicity of A)

= I+

∫ t

t0

A(σ̂1)dσ̂1+

∫ t

t0

∫ σ̂1

t0

A(σ̂1)A(σ̂2)dσ̂2dσ̂1 + · · ·

(by change of variables)
= Φ(t, t0)

(ii) Φ(T, 0) is nonsingular and hence has a (possibly complex matrix) loga-
rithm RT , i.e.,

Φ(T, 0) = exp(RT ) (12.2)

Let

P−1(t) , Φ(t, 0) exp(−RT ) (Note: P (0) = I)
P−1(t+ T ) = Φ(t+ T, 0) exp(−R(t+ T ))

= Φ(t+ T, T )Φ(T, 0) exp(−RT ) exp(−Rt)
= Φ(t, 0) exp(−Rt)
= P−1(t)

Hence, P−1 is T -periodic.
Thus,

Φ(t, t0) = Φ(t, 0)Φ(0, t0)

= Φ(t, 0)(Φ(t0, 0))−1

= P−1(t) exp(Rt)(P−1(t0) exp(Rt0))
−1

= P−1(t) exp(Rt) exp(−Rt0)P (t0)

= P−1(t) exp(R(t− t0))P (t0)
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(iii) Let

z(t) = P (t)x(t)

ż = Ṗ x+ Pẋ

=
d

dt
((P−1)−1)x+ Pẋ

= −P d

dt
(P−1)Px+ Pẋ(

matrix-scalar differentiation:
∂U−1

∂t
= −U−1∂U

∂t
U−1

)
= −P d

dt
(Φ(t, 0) exp(−Rt))Px+ Pẋ

= −
(
P
d

dt
(Φ(t, 0)) exp(−Rt)P + PΦ(t, 0)

d

dt
(exp(−Rt))P

)
x+ PAx

= − (PAΦ(t, 0) exp(−Rt)P + PΦ(t, 0) exp(−Rt)(−R)P )x+ PAx

= −
(
PAP−1P + PP−1(−R)P

)
x+ PAx

= −PAx+RPx+ PAx

= Rz

P has piecewise continuous derivatives on (−∞,∞); Ṗ = RP − PA; P
and Ṗ are bounded on (−∞,∞) because they are piecewise continuous
and T -periodic; Furthermore, by these properties, there exist m1,m2 > 0
such that

0 < m1 ≤ |detP (t)| ≤ m2.

Hence,

‖z(t)‖ < c1 ‖x(t)‖

and

‖x(t)‖ < c2 ‖z(t)‖

where

c1 = max
[t,t+T ]

‖P (t)‖

c2 = max
[t,t+T ]

∥∥P−1(t)∥∥
From these inequalities, it follows that all the stability properties of z carry over
to those of x and vice versa. �
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Corollary 12.1 (Converse Lyapunov Theorem for T-Periodic LTV Systems)
Consider ẋ = A(t)x(t), with A(t + T ) = A(t) be piecewise continuous and
T -periodic. Let x = 0 be uniformly, asymptotically stable equilibrium of ẋ(t) =
A(t)x(t). Then there is a T -periodic Lyapunov function

V = V (t, x) = V (t+ T, x) = xTP (t)x

satisfying
−Ṗ = ATP + PA+Q

for each T -periodic Q and

0 < c3I < Q(t) ≤ c4I.

Proof of Corollary 12.1
Essentially the same construction as in Theorem 12.2. �

Corollary 12.2 (Floquet-Lyapunov)
Consider ẋ = A(t)x(t), with A(t+ T ) = A(t) be piecewise continuous and T -
periodic. If all eigenvalues of Φ(T, 0) are inside the open unit disk {z : |z| < 1}
in the complex plane, then the system is uniformly asymptotically stable.

Example 12.1. Consider the system ẋ = A(t)x(t) with following 2π-periodic
A(t) matrix,

A(t) =

[
−1 + cos t 0

0 −2 + cos t

]
.

Recall from linear systems theory for

d

dt
Φ(t, 0) = A(t)Φ(t, 0) with Φ(0, 0) = I,

that if A(t) commutes with its integral,

A(t)

∫ t

τ

A(σ)dσ =

[∫ t

τ

A(σ)dσ

]
A(t)

then the transition matrix is given by

Φ(t, 0) = exp

(∫ t

0

A(σ)dσ

)
.
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Thus, for this problem we have

Φ(2π, 0) =

 exp
(∫ 2π

0
(−1 + cos t)dt

)
0

0 exp
(∫ 2π

0
(−2 + cos t)dt

) 
=

[
exp(−2π) 0

0 exp(−4π)

]
.

Both eigenvalues are in the open unit disk, which implies that zero is uniformly
asymptotically stable by the Floquet-Lyapunov Theorem.

Alternately, since
Φ(T, 0) = exp(RT )

in the proof of Theorem 12.3, we see that for this problem

R =

[
−1 0
0 −2

]
,

which has all eigenvalues in the open left-half plane. By Theorem 12.3, ż = Rz
is uniformly asymptotically stable and so is ẋ(t) = A(t)x(t).





Lecture 13

Stability Theory: Assessing via Linearization

Here we wish to state and prove a theorem on assessing stability of nonlinear sys-
tems via linearization. We need some background first.

13.1. Mathematical Background

The fundamental theorem of integral calculus was already stated in a previous lec-
ture note, however it is so fundamental it is repeated here for reference. Proof is
omitted.
Theorem 13.1 (Fundamental Theorem of Integral Calculus)

Let X and Y be two finite dimensional vector spaces. Let U
open
⊂ X and let

f : U → Y be C1.
If x+ ty ∈ U,∀t ∈ [0, 1] (e.g. if U = Br(x)),

then

f(x+ y) = f(x) +

∫ 1

0

Df(x+ ty)ydt (13.1)

(Note: Df(z)h = d
ds

(z + sh)
∣∣∣
s=0

is the Fréchet derivative.)

Proof of Theorem 13.1
See previous lecture notes. �

Remark 13.1. The theorem is true as stated when X, Y are general Banach spaces.
However, we have to have a suitable theory of the integral. In finite dimensions, we
are content with the Riemann integral. 4
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Taking equation (13.1), we can write

f(x) = f(0) +

∫ 1

0

Df(tx)xdt

= f(0) +M(x)x,

where

M(x) ,
∫ 1

0

Df(tx)dt

an x-dependent, matrix-valued function.

Consider a C1 vector field f(x) with f(0) = 0. Let

A ,

(
∂f

∂x

)∣∣∣
0

= (Df)(0). (13.2)

Now let us rewrite f as

f(x) = Ax+ (f(x)− Ax)

= Ax+ g(x),

where g(x) , f(x) − Ax. In this way, g(x) represents the deviation of the f field
from its linearization at x. We note that g(·) is C1, since f is C1. Applying the
fundamental theorem of integral calculus, one can write,

g(x) = g(0) +N(x)x

where

g(0) = f(0)− A(0) = 0, and

N(x) =

∫ 1

0

Dg(tx)dt

=

∫ 1

0

(Df(tx)− A)dt

lim
x→0

N(x) =

∫ 1

0

(lim
x→0

Df(tx)− A)dt

=

∫ 1

0

(Df(0)− A)dt

=

∫ 1

0

(A− A)dt

= 0

Thus ‖g(x)‖‖x‖ ≤ ‖N(x)‖ → 0 as ‖x‖ → 0, in any norm.
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Then, for any γ > 0 (arbitrarily small), there exists an r > 0 such that

‖g(x)‖2 < γ ‖x‖2 ∀ ‖x‖2 < r (13.3)

This key property will be used below. We will also use the notation above (for
f(x), g(x), N(x), etc.) throughout the lecture.

Remark 13.2. In the non-autonomous case, with f = f(t, x) and f(t, 0) ≡ 0, then
g(t, x) = f(t, x)− A(t)x where

A(t) ,

(
∂f(t, x)

∂x

)∣∣∣
x=0

has the property that

‖g(t, x)‖2
‖x‖2

→ 0 as ‖x‖2 → 0

for each t ≥ 0. However, this property does NOT hold uniformly in general. That
is, one cannot take for granted the following condition:

lim
‖x‖2→0

(
sup
t≥0

‖g(t, x)‖2
‖x‖2

)
= 0.

This is known as the uniform order condition. Such a uniform hypothesis is needed
for a linearization-based stability theorem for non-autonomous nonlinear systems.
See Sastry pages 214-215 for further discussion.

Exercise 13.1. Evaluate the system ẋ = f(t, x) = −x + tx2 with respect to the
uniform order condition.

4
Theorem 13.2 (Indirect Method of Lyapunov - Time-Invariant Case)

Let x = 0 be an equilibrium point of ẋ = f(x). Assume f is C1 on a neighbor-
hood Bρ(0) of 0. Let A = ∂f

∂x

∣∣∣
0
. If the spec(A) ⊆ C−, the open left-half plane,

then the origin is an asymptotically stable equilibrium point of the nonlinear
system.

Proof of Theorem 13.2

Let Q = QT > 0. Then there exists a unique P > 0 such that

ATP + PA = −Q
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Since A is Hurwitz,

P =

∫ ∞
0

exp(ATσ)Q exp(Aσ)dσ

is a convergent integral that is positive definite and solves this equation.
Let V (x) = xTPx and compute the derivative along trajectories of ẋ =

f(x),

V̇ = ẋTPx+ xTPẋ

= (Ax+ g(x))TPx+ xTP (Ax+ g(x))

= xt(ATP + PA)x+ 2xTPg(x)

= −xTQx+ 2xTPg(x)

But

xTPg(x) ≤ ‖x‖2 · ‖Pg(x)‖2 (Cauchy-Schwarz)
≤ ‖x‖2 · ‖P‖2 · ‖g(x)‖2
< γ ‖x‖2 · ‖P‖2 · ‖x‖2 (if ‖x‖2 < r < ρ). (13.4)

On the other hand (by Rayleigh),

0 < λmin(Q) ‖x‖22 < xTQx < λmax(Q) ‖x‖22 .

This implies
−xTQx < λmin(Q) ‖x‖22 . (13.5)

Taken together, inequalities (13.4) and (13.5) imply that

V̇ < λmin(Q) ‖x‖22 + 2γ ‖P‖2 · ‖x‖
2
2

= (−λmin(Q) + 2γ ‖P‖2) ‖x‖
2
2 .

Picking Q, determines λmin(Q) and ‖P‖2. We can pick r sufficiently small so
that γ is sufficiently small, yielding

−λmin(Q) + 2γ ‖P‖2 < 0.

By Lyapunov, we have asymptotic stability. (Note: of course a smaller r means
the estimate of the domain of attraction Br(0) is smaller.) �

Theorem 13.3 (Lyapunov’s Indirect Instability Theorem)
Let x = 0 be an equilibrium point of ẋ = f(x). Assume f is C1 and a neigh-

borhood Bρ(0) of 0. Let A =
(
∂f
∂x

)∣∣∣
0
.
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If spec(A) ⊆ C+, the open right-half plane, then the origin is an unstable
equilibrium point of the nonlinear system.

Proof of Theorem 13.3

By hypothesis, spec(−A) ⊆ C−. So for Q = QT > 0 there exists a unique
P > 0 such that

(−A)TP + P (−A) = −Q. (13.6)

Along trajectories of ẋ = f(x) = Ax + g(x), the derivative of V (x) = xTPx
satisfies

V̇ = ẋTPx+ xTPẋ

= xT (ATP + PA)x+ 2xTPg(x)

= xTQx+ 2xTPg(x)

≥ λmin(Q) ‖x‖22 − 2|x · Pg(x)|
≥ λmin(Q) ‖x‖22 − 2 ‖x‖2 · ‖P‖2 · ‖g(x)‖2
> λmin(Q) ‖x‖22 − 2γ ‖x‖22 · ‖P‖2 ,

(for ‖x‖2 < r < ρ, r sufficiently small).
Pick Q. This determines P and ‖P‖2. Pick r sufficiently small so that γ is

sufficiently small, yielding

V̇ > (λmin(Q)− 2γ ‖P‖2) ‖x‖
2
2

> 0 ∀x ∈ Br(0)− {0}.

By Lyapunov’s Instability I Theorem, it follows that 0 is unstable for the nonlin-
ear system. �

The hypotheses of Theorem 13.3 are rather strong. We can do better.
Theorem 13.4

In the statement of Theorem 13.3, assume that at least one of the eigenvalues of
A is in C+. Then 0 is unstable.

Proof of Theorem 13.4
In general A has a splitting of spectrum

spec(A) = σ− ∪ σ0 ∪ σ+

where σ− ⊆ C−, σ0 ⊆ jω axis, and σ+ ⊆ C+. We have assumed that σ+ 6= ∅.
Then there exists ε > 0 such that

spec
(
A− ε

2
I
)

= σε− ∪ σε+,
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where σε+ 6= ∅. (We got rid of the pure imaginary eigenvalues by a right shift of
the imaginary axis.)

Let Aε , A− ε
2
I .

There is a nonsingular, real matrix T (recall the real Jordan form) such that

TAεT−1 = TAT−1 − ε

2
I

=

[
A1 0
0 A2

]
− ε

2

[
I 0
0 I

]
=

[
A1 − ε

2
I 0

0 A2 − ε
2
I

]

where spec(A1 − ε
2
I) ⊆ C− and spec(A2 − ε

2
I) ⊆ C+. Let Qi = QT

i > 0 and
let Pi = P T

i > 0 be the unique matrices satisfying

(
A1 −

ε

2
I
)T

P1 + P1

(
A1 −

ε

2
I
)

= −Q1

−
(
A2 −

ε

2

)T
P2 − P2

(
A2 −

ε

2

)
= −Q2

(We have used the fact that spec(−(A2 − ε
2
)) ⊆ C−).

Consider z = Tx. Then

ż = T (Ax+ g(x))

where g(x) , f(x)− Ax. This implies

ż = TAT−1z + Tg(T−1z)

=

[
A1 0
0 A2

] [
z1
z2

]
+

[
h1(z)
h2(z)

]

By hypothesis and the definition of g(·), it follows that h(0) = 0. Given γ > 0,
there exists r > 0 such that

‖h(z)‖2 < γ ‖z‖2 ∀ ‖z‖2 < r.

Define

V (z) = −zT1 P1z1 + zT2 P2z2.
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Then

V̇ (z) = −żT1 P1z1 − zT1 P1ż1 + żT2 P2z2 + zT2 P2ż2

= −zT1 (AT1 P1 + P1A1)z1 − 2zT1 P1h1(z) + zT2 (AT2 P2 + P2A2)z2

+ 2zT2 P2h2(z)

= −zT1
((
A1 −

ε

2
I
)T

P1 + P1

(
A1 −

ε

2
I
))
z1 − εzT1 P1z1 − 2zT1 P1h1(z)

+ zT2

((
A2 −

ε

2
I
)T
P2 + P2

(
A2 −

ε

2
I
))
z2 + εzT2 P2z2 + 2zT2 P2h2(z)

= zT1 Q1z1 + zT2 Q2z2 + εV (z)− 2zT1 P1h1 + 2zT2 P2h2

= zT1 Q1z1 + zT2 Q2z2 + εV (z)− 2zT
[

P1h1
−P2h2

]
≥ λmin(Q1) ‖z1‖22 + λmin(Q2) ‖z2‖22 + εV (z)

− 2 ‖z‖2 ·max(‖P1‖2 , ‖P2‖2) · ‖h(z)‖22
≥
(
α− 2

√
2γβ

)
‖z‖22 + εV (z),

where α = min(λ(Q1), λ2(Q2)) and β = max(‖P1‖2 , ‖P2‖2), ∀ ‖z‖2 < r and
γ > 0.

Let U = {z ∈ Br(0) : V (z) > 0}. Then, V̇ > 0 on U . In fact, there is a
quadratic class K function bounding V̇ below– provided γ < α

2
√
2β

.
By Chetaev’s Instability Theorem, 0 is unstable. �

Remark 13.3. The cases where there are no eigenvalues on the open right half plane,
but there are eigenvalues on the imaginary axis are called critical cases. For these
cases, one cannot say anything about stability via linearization. 4





Lecture 14

Feedback Stabilization and Feedback Linearization

14.1. Feedback Stabilization

Consider the system

ẋ = f(x, u) (14.1)

where x ∈ Rn, u ∈ Rm. Suppose f(0, 0) = 0 and f is C1. Let A =
(
∂f
∂x

)∣∣∣
(0,0)

and

let B =
(
∂f
∂u

)∣∣∣
(0,0)

.

Hypothesis: Let K be such that spec(A+BK) ⊆ C−. (Typically, we choose K
such that this is true.)

Consider the closed loop system

ẋ = f(x, u)

u = Kx.

Thus ẋ = f̃(x) = f(x,Kx). Clearly, we have f̃(0) = 0. The linearization of the
closed loop system, at the origin is ż = Ãz, where

Ã =

(
∂f̃

∂x

)∣∣∣
0
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But (
∂f̃

∂x

)∣∣∣
0

=

(
∂f(x,Kx)

∂x

)∣∣∣
0

= D1f
∣∣∣
x=0

+D2f ·K
∣∣∣
x=0

= (A+BK).

By our hypothesis and the indirect method of Lyapunov, the origin is an asymp-
totically stable equilibrium of a closed loop system.

Remark 14.1. A sufficient condition for our hypothesis to hold is that the pair [A,B]
be controllable (recall: the eignevalue/pole placement theorem). 4

We see that u = Kx, a linear feedback law, can stabilizing. The region of
attraction may be estimated by

(i) solving for P in (P +BK)TP + P (A+BK) = −Q with Q = QT > 0,

(ii) letting g(x) = f(x,Kx)− (A+ BK)x and observing that ‖g(x)‖2 ≤ γ ‖x‖2
for all ‖x‖2 < r and γ can be made arbitrarily small by choosing r small
enough.

Then, if (−λmin(Q) + 2γ ‖P‖2) < 0, Br(0) is an estimate of the region of attraction
centered at the origin. (This inequality is from an argument used in a previous
lecture in the proof of Lyapunov’s indirect method).

14.2. Feedback Linearization

The region of attraction Br(0) derived using linear feedback may be too small for
practical purposes. One approach to overcome this problem is to use feedback and
changes of coordinates in input space and state space to exactly linearize a nonlin-
ear control system in a (sufficiently large) neighborhood of any equilibrium point.
Even if linearization does not have asymptotic stability, controllability can ensure
the existence of an additional feedback to stablize the system/equilibrium.

Definition 14.1. Let
ẏ = f(y) +G(y)u

where f(0) = 0, G(y) = [g1(y), . . . , gm(y)] and gi(0) = 0. We say that this system
is exact state feedback linearizable if there exists

T : U
open
⊆ Rn → Rn
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0 ∈ U , (T is C∞, and T−1 exists and is C∞), and functions α(·) and β(·) such that
under the change of coordinates given by T ,

x = T (y)

satisfies

ẋ = Ax+Bβ−1[u− α(x)]

, Ax+Bv

where v , β−1(x)[u− α(x)] and [A,B] is controllable. 4

We thus seek β(·) such that β(T (y)) is an invertible m×m matrix at every y.

Figure 14.1: Feedback linearization diagram.

In Figure 14.1, the system outside the dotted line is linear.

By the chain rule,

ẋ =
∂T

∂y
ẏ

=
∂T

∂y
(f(y) +G(y)u)

= Ax+Bβ−1(x)[u− α(x)]

= AT (y) +Bβ−1(T (y))[u− α(T (y))] ∀y ∈ U
= AT (y) +Bβ−1(y)[u− α(y)] ∀y ∈ U
= Ax+Bv

Set u ≡ 0. This implies,

∂T

∂y
f(y) = AT (y)−Bβ−1(y)α(y). (14.2)
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Equating terms that multiply the input, we also have,

∂T

∂y
G(y) = Bβ−1(y) (14.3)

In equations 14.2 and 14.3, we have derived constraints that transformation T must
satisfy.

For the specific case of a single input (m = 1), we can further specialize these
constraints by assuming forms for the A and B matrices into which we would like
to transform our nonlinear system. Consider the canonical form A = Ac; B = Bc;
with g , G.

Ac =


0 1 0 · · · 0
0 0 1 · · · 0
...
0 0 0 · · · 1
0 0 0 · · · 0

 Bc =


0
0
...
1


This linear system corresponds to a chain of integrators with direct control over the
ẋn term with a single input. Then the conditions on T above in equations 14.2 and
14.3 take the form (assuming β 6= 0),

Equation # Equation Equation # Equation

(1a) ∂T1
∂y f(y) = T2(y) (1b) ∂T1

∂y g(y) = 0

(2a) ∂T2
∂y f(y) = T3(y) (2b) ∂T2

∂y g(y) = 0

... ... ... ...
((n− 1)a) ∂Tn−1

∂y f(y) = Tn(y) ((n− 1)b) ∂Tn−1

∂y g(y) = 0

(na) ∂Tn
∂y f(y) = −α(y)

β(y) (nb) ∂Tn
∂y g(y) = 1

β(y)

Define the operation (Lie Derivative):

Lfh =
∂h

∂x
· f (14.4)

where h is a scalar function and f is a vector field. We also define the convenient
notation

L0
f , h (14.5)

and
Lk+1
f h = Lf (L

k
fh). (14.6)
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With these definitions, from our constraints on T , we have the relations,

Tk = Lk−1f T1 k = 2, 3, . . . , n. (14.7)

and we also have

LgL
k
fT1 = 0 k = 0, 1, 2, . . . , (n− 2). (14.8)

Equations 14.8 are partial differential equations for T1, and if we can solve them for
T1, then by using the recursions above, we can define Tk for k = 2, . . . , n and

β(y) = (LgTn)−1 (14.9)

if β 6= 0. Further, we also have

α(y) = −LfTn
LgTn

. (14.10)

What about the solvability of equations 14.8 for T1?

Define

adfg ,
(
∂g

∂x

)
f −

(
∂f

∂x

)
g (14.11)

and also

ad0
fg , g (14.12)

adk+1
f g , adf (adkfg). (14.13)

Theorem 14.1
There exists (locally in a suitable neighborhood of 0) a function T1 such that

LgL
k
fT1 = 0 k = 0, 1, 2, . . . , (n− 2)

if and only if

(i) {g, adfg, ad2
fg, . . . , adn−1f g} is a set of linearly independent vector fields.

(ii) {g, adfg, ad2
fg, . . . , adn−2f g} is a set of vector fields satisfying the involutive

property, which states that for p(x), q(x) ∈ this set,

adpq =
∂q

∂x
p(x)− ∂p

∂x
q(x)

also belongs to this set.

Remark 14.2. This existence result is a consequence of Frobenius’ Theorem in dif-
ferential geometry. 4
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Example 14.1.
ẏ = f(y) + g(y)u

f(y) =


y2

−a sin(y1)− b(y1 − y3)
y4

c(y1 − y3)

 g(y) =


0
0
0
d

 for a, b, c, d > 0.

LgT1 = 0 ⇐⇒ ∂T1
∂y4

= 0 =⇒ T1 independent of y4.

T2 = LfT1

=
∂T1
∂y1

y2 +
∂T1
∂y2

(−a sin y1 − b(y1 − y3)) +
∂T1
∂y3

y4.

LgT2 = 0 ⇐⇒ ∂T2
∂y4

⇐⇒ ∂T1
∂y3

= 0 =⇒ T1 independent of y3.

T3 = LfT2

=
∂T2
∂y1

y2 +
∂T2
∂y2

(−a sin y1 − b(y1 − y3)) +
∂T2
∂y3

y4

LgT3 = 0 =⇒ ∂T3
∂y4

= 0 =⇒ ∂T2
∂y3

= 0 =⇒ b
∂T1
∂y2

= 0 =⇒ ∂T1
∂y2

= 0

So, T1 is independent of y2, and T1 = T1(y1) only. As a trial, pick T1(y1) = y1.
Then

x1 = y1

ẋ1 = ẏ1 = y2 (from model)

But

ẋ1 = x2 (linear system)

So

x2 = ẋ1 = T2(y2) = y2

x3 = ẋ2 = T3(y) = ẏ2

= −a sin y1 − b(y1 − y3) (nonlinear model)
x4 = ẋ3 = T4(y) = −aẏ1 cos y1 − b(ẏ1 − ẏ3)

= −ay2 cos(y1)− b(y2 − y4)

Finally, as an exercise, check that β and α are well-defined.



Lecture 15

Input-Output Analysis of Nonlinear Systems

15.1. Preliminaries

The understanding of systems from a stimulus-response or input-output or external
point of view has a long history, pre-dating the infusion of the state-space or inter-
nal descriptions. It is the natural thing to consider in exploring a wide variety of
complex systems (from the world of technology to even economics and biology).
In some settings, definitions and theorems in the state-space point-of-view lead to
corresponding results in the input-output point-of-view. The converse is not case,
without additional hypotheses.

To illustrate, consider a linear time-varying system

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)

Assume that

(i) the transition matrix Φ defined such that

Φ̇(t, t0) = A(t)Φ(t, t0)

Φ(t0, t0) = I

satisfies ‖Φ(t, t0)‖ ≤ m exp(−k(t− t0)), ∀t ≥ t0, and some k,m > 0. (Thus,
the system ẋ = A(t)x(t) has exponential stability of the zero solution—we
call this internal stability.)

(ii) ‖C(t)‖ ≤ c and ‖B(t)‖ ≤ b, ∀t ≥ t0.

127
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The variation of constants formula tells us that

y(t) = C(t)Φ(t, t0)x0 +

∫ t

t0

C(t)Φ(t, σ)B(σ)u(σ)dσ

This implies that

‖y(t)‖ ≤ cm exp(−k(t− t0)) ‖x0‖+
cbm

k
(1− exp(−k(t− t0))) ‖u‖

where we assume bounded inputs:

‖u(t)‖ ≤ sup
t≥t0
‖u(t)‖ , ‖u‖ <∞

(We are careful to distinguish between the norm of vector and the norm of a signal.
We have changed from ‖u(t)‖ which is a norm of the vector u given at time t, and
the norm ‖u‖ which is a norm of the entire signal u(·).)
This implies the final result that

‖y‖ ≤ β + γ ‖u‖

where β = cm ‖x0‖ and γ = cbm
k

. In other words, internal stability and the assump-
tion of bounded inputs implies bounded outputs.

The property of bounded inputs always giving rise to bounded outputs is a type
of external stability (as known as Bounded-Input-Bounded-Output (BIBO) stability
when the L∞ norm is used). However, external stability does not imply internal
stability, as we can see from the example below.

Example 15.1.

ẋ1 = −x1 + u

ẋ2 = x21 + x22
y = x1

Here, external stability does NOT imply internal stability of the zero solution.
The x2 dynamics are unstable and are not observed in the output.

We would like to state and prove certain basic notions and theorems of external
stability, connect them to interesting physical properties of systems and establish
ties to notions of internal stability. The initial steps in this direction include:

(i) proper definitions of function spaces of input and output signals

(ii) concepts of causality, feedback, well-posedness, and passivity
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(iii) various stability and finite-gain theorems.

The signals applicable in the present context cannot be of infinite energy over an
infinite time interval [0,∞), (e.g. ramp signals).

Definition 15.1. The truncation operator (·)T on functions on [0,∞) is defined by

xT (t) =

{
x(t) t ≤ T
0 t > T

for T ≥ 0 4

Definition 15.2. The space Lp is defined by

Lp[0,∞) =

{
x(·) : [0,∞)→ R :

∫ ∞
0

|x(t)|pdt <∞
}

4

Definition 15.3. The space Lpe is defined by

Lpe = {x(·) : [0,∞)→ R : xT ∈ Lp,∀T ≥ 0}

4

Example 15.2.
x(t) = t t ≥ 0

x(·) /∈ Lp for any p ∈ [1,∞). But xT (·) ∈ Lp, ∀T ≥ 0.

Lemma 15.1
For each p ∈ [1,∞], the set Lpe[0,∞] is a linear space. If p ∈ [1,∞] and
f ∈ Lpe[0,∞), then

(i) ‖fT (·)‖ is a nondecreasing function of T

(ii) f ∈ Lp[0,∞) if and only if there exists a finite constant m such that
‖fT‖ ≤ m, ∀T > 0. In that case, ‖f‖p = limT→∞ ‖fT‖p.

Exercise 15.1. Prove Lemma 15.1.

Remark 15.1. Lpe[0,∞) itself does not carry a norm. Its norm agrees with the norm
on Lp[0,∞) when restricted to that subspace. 4
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Let us denote

Lrp = Lp × Lp × . . .× Lp (r times).

That is, each function f ∈ Lrp is an Rr valued function characterized by each com-
ponent fi ∈ Lp. We define Lrpe similarly.

Definition 15.4 (Causality). F : Lmpe → Lqpe is said to be a causal map/system if

(F (u))T = (F (uT ))T ∀T ≥ 0 and ∀u ∈ Lmpe.

4
Lemma 15.2

A map/system F : Lmpe → Lqpe is causal if and only if whenever u1, u2 ∈ Lmpe and
(u1)T = (u2)T for some T <∞, we have (F (u1))T = (F (u2))T .

Proof of Lemma 15.1
(=⇒) Suppose F satisfies the condition in the statement. Let u ∈ Lmpe. Let
T <∞, be arbitrary. Then (u)T = (uT )T . By hypothesis,

(F (u))T = (F (uT ))T .

Since T is arbitrary, we have established causality.
(⇐=) Assume F is causal. Let u1, u2 ∈ Lmpe be such that for some T > 0,

(u1)T = (u2)T

Figure 15.1: Illustration for proof of Lemma.

Now,

(F (u1))T = (F (u1T ))T

= (F (u2T ))T

= (F (u2))T

�
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15.2. External Stability

Definition 15.5. A map/system F : Lmpe → Lqpe is said to be stable if there exist
finite constants α, β > 0 such that

‖(F (u))T‖ ≤ γ ‖uT‖+ β ∀u ∈ Lmpe and ∀T ≥ 0.

4

Remark 15.2. We refer to the gain as the smallest such γ. We refer to the offset as
the smallest such β. 4

Definition 15.6. A map/system F : Lmpe → Lqpe is said to be stable if

(i) F (u) ∈ Lqp whenever u ∈ Lmp and in that case,

(ii) there exist constants γ, β > 0 such that

‖F (u)‖ ≤ γ ‖u‖+ β ∀u ∈ Lmp

4

Remark 15.3. The two definitions 15.5 and 15.6 are equivalent, and truncation was
not used in definition 15.6. This type of external stability is sometimes referred to
as finite-gain L-stability. 4

15.3. Small Gain Theorem

Theorem 15.1 (Small Gain Theorem)

Figure 15.2: Small Gain Theorem illustration.

Assume
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(H1) The maps

H1 : Lmpe → Lqpe

H2 : Lqpe → Lmpe

are causal.

(H2) The Hi are stable with gains γi and offsets βi satisfying

‖Hi(u)T‖ ≤ γi ‖uT‖+ βi i = 1, 2.

(H3) For every pair of inputs u1 ∈ Lmpe and u2 ∈ Lqpe, there exist unique outputs
e1 ∈ Lmpe and e2 ∈ Lqpe (Well-posedness).

If further,
γ1γ2 < 1,

then,

(i) ∀u1 ∈ Lmpe, and u2 ∈ Lqpe,

‖e1T‖ ≤
1

1− γ1γ2
(‖u1T‖+ γ2 ‖u2T‖+ β2 + γ2β1)

‖e2T‖ ≤
1

1− γ1γ2
(‖u2T‖+ γ1 ‖u1T‖+ β1 + γ1β2) , ∀T ≥ 0, and

(ii) if u1 ∈ Lmp and u2 ∈ Lqp, then e1, y2 ∈ Lmp and e2, y1 ∈ Lqp, and the
norms of e1 and e2 are bounded above by the right-hand side in part (i)
with nontruncated functions.

Proof of Theorem 15.1
Below, we use causality freely to write ‖F (uT )T‖ = ‖F (u)T‖ as needed.

By hypothesis (H3), we can solve uniquely for e1T and e2T :

e1T = u1T − (H2(e2T ))T

e2T = u2T + (H1(e1T ))T .

Then

‖e1T‖ ≤ ‖u1T‖+ ‖H2(e2T )T‖
≤ ‖u1T‖+ γ2 ‖e2T‖+ β2

= ‖u1T‖+ γ2 ‖u2T +H1(e1T )T‖+ β2

≤ ‖u1T‖+ γ2 ‖u2T‖+ γ2γ1 ‖e1T‖+ γ2β1 + β2.
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Since γ1γ2 < 1, we can write

‖e1T‖ ≤
1

1− γ1γ2
(‖u1T‖+ γ2 ‖u2T‖+ β2 + γ2β1) ,

and similarly for ‖e2T‖. This completes the proof of part (i).
If u1 ∈ Lmp and u2 ∈ Lqp, then,

‖u1T‖ ≤ ‖u1‖ ∀T ≥ 0, and
‖u2T‖ ≤ ‖u2‖ ∀T ≥ 0.

Hence, ‖eiT‖is bounded uniformly in T . This implies e1 ∈ Lmp and e2 ∈ Lqp.

‖y1T‖ ≤ γ1 ‖e1T‖+ β1 ∀T ≥ 0

≤ γ1 ‖e1‖+ β1 uniformly in T .

This implies y1 ∈ Lqp and by similar arguments, it can be shown that y2 ∈
Lmp . �

Remark 15.4. We interpret the above result in saying that the feedback system is
stable if γ1γ2 < 1. 4

In the Small Gain Theorem, the well-posedness hypothesis (H3) appears to be
hard to verify. One would like a sufficient condition that would be strong enough
to imply this. The assumption of a stronger hypothesis can ensure that hypothesis
(H3) holds in fact.

Definition 15.7. A map F : Lmpe → Lqpe is said to be incrementally finite gain
stable if

(i) F (0) ∈ Lqp where 0 is the identically zero input.

(ii) For all T > 0, u, v ∈ Lmpe, there exists k > 0 such that

‖FT (u)− FT (v)‖ ≤ k ‖uT − vT‖

(k is independent of T, u, v, etc.)

4
Lemma 15.3

If F : Lmpe → Lmpe is causal and incrementally finite gain stable with gain k < 1,
then there is a unique u∗ ∈ Lmpe such that

F (u∗) = u∗.
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Proof of Lemma 15.2
By hypothesis,

‖FT (u)− FT (v)‖ ≤ k ‖uT − vT‖ ,

∀u, v ∈ Lmpe, ∀T > 0, and k < 1.
By causality, FT (u) = FT (uT ).

Hence,
‖FT (uT )− FT (vT )‖ ≤ k ‖uT − vT‖ , ∀T ≥ 0.

But,

‖F (u)− F (v)‖ ≤ sup
T≥0
‖FT (u)− FT (v)‖

< k sup
T≥0
‖uT − vT‖

= k ‖u− v‖ ∀u, v ∈ Lmp

Thus, F : Lmp → Lmp the restriction to Lmp , is a global contraction. Since Lmp is
a Banach space, there is a unique fixed point u∗ ∈ Lmp such that

F (u∗) = u∗.

(We can compute u∗ by the successive approximation algorithm initialized in
Lmp .) �

Exercise 15.2. Can there be a v∗ ∈ Lpe, but v∗ /∈ Lp such that F (v∗) = v∗ (and
v∗ 6= u∗ necessarily)?

Cleanup the argument in Theorem 4.17 in Sastry.

Example 15.3.

H : L∞e → L∞e

u 7→ u2

is causal but unstable.
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Example 15.4.

H1(u)(t) =

∫ t

0

exp(−a(t− τ))u(τ)dτ

H2(u)(t) = ku(t) a > 0

Then,
H1 : L∞e → L∞e

with γa = 1
a

and β1 = 0. Also,

H2 : L∞e → L∞e

with γ2 = |k| and β2 = 0.
The small gain theorem says that 1

a
|k| < 1 implies stability of the closed loop

system. This translates into the requirement that−a < k < a. This is conserva-
tive in the sense that −a < k is a necessary and sufficient condition for closed
loop stability (from the transfer function gCL(s) = 1

s+a+k
).





Lecture 16

Absolute Stability via Lyapunov Theory

This topic originates with the work of Alexander Luré, a Russian mathematician
from Leningrad/St. Petersburg. The question can be simply stated as follows.

Given a linear system with a memoryless nonlinear element in the feedback
loop, about which we know very little (say that we know it lies in a sector), when
can we know that the origin is an asymptotically stable equilibrium for the closed
loop system? (See A. I. Luré (1951): Einige nichtlineare problem aus der theorie
der automatischen reyeling. Moscow 1951 (R), transl. Berlin (1957).)

Formally, given,

ẋ = Ax+Bu

y = Cx

u = −ψ(t, y) (16.1)
(16.2)

where ψ satisfies, for each t ≥ 0,

(ψ(t, y)−Kminy)T (ψ(t, y)−Kmaxy) ≤ 0 (sector condition), (16.3)

for Kmin, Kmax such that K = Kmax −Kmin is symmetric and positive definite.

Under what conditions on G(s) = C(sI − A)−1B on Kmin and Kmax , can we
conclude that the origin is an asymptotically stable equilibrium for the closed loop
system? We will treat this problem in a two step process. First, we restrict to A
Hurwitz and Kmin = 0. Then, we return to the original question. Before we begin,
let us introduce a bit of terminology.

The following Lemma can help one to understand the sector condition.

137
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Lemma 16.1

αy2 ≤ yψ(y) ≤ βy2 α ≤ β

is equivalent to
(ψ(y)− αy)(ψ(y)− βy) ≤ 0

Proof of Lemma 16.1
(=⇒) Suppose αy2 ≤ yψ(y) ≤ βy2.
Then y(ψ(y)− βy) ≤ 0 and y(ψ(y)− αy) ≥ 0.
Multiplying these two inequalities,

y2(ψ(y)− βy)(ψ(y)− αy) ≤ 0.

But y2 ≥ 0. Hence,
(ψ(y)− βy)(ψ(y)− αy) ≤ 0.

(⇐=) Multiply the last inequality by y2 and reverse/retrace the steps. �

Remark 16.1. If we consider the scalar case, the scalar conditon

(ψ(y)− αy)(ψ(y)− βy) ≤ 0

is shown in the graphical sector condition in Figure 16.1.

Figure 16.1: Scalar sector condition.

The conditon

(ψ(t, y)−Kminy)T (ψ(t, y)−Kmaxy) ≤ 0

is just a multivariate analog of this picture. 4
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Definition 16.1. Consider the system

ẋ = Ax+Bu

y = Cx

u = −ψ(t, y)

where t ≥ 0, ∀y ∈ Γ ⊆ Rp,
◦
Γ (the interior of Γ) connected, includes 0,

(ψ(t, y)−Kminy)T (ψ(t, y)−Kmaxy) ≤ 0,

and K = Kmax − Kmin = KT > 0. This system is absolutely stable with a finite
domain Γ if for the closed-loop system, the origin is uniformly asymptotically stable
with any ψ satisfying the sector condition. 4

If Γ = Rp, absolute stability is equivalent to global asymptotic stability.

The main result in the (multivariate) circle criterion. The idea of the proof is
to show that under suitable hypotheses, one has a time-independent quadratic Lya-
punov function. The key ideas here have to do with the concept of passivity.

Recall that mechanical systems without friction can be cast in the hamiltonian
form

ẋ =
∂H

∂p

ṗ = −∂H
∂x

+ f

Here f is an external (generalized) force corresponding to the generalized coordinate
x. Now, we define the rate at which mechanical work is done to the system by the
external force f applied to the system as,

S = 〈f, ẋ〉 . (16.4)

We sometimes refer to this rate as the supply rate, S.

Then, if we look at the time rate of change of the hamiltonian, we see

dH

dt
=
∂H

∂x
· ẋ+

∂H

∂p
· ṗ

=
∂H

∂x
· ∂H
∂p

+
∂H

∂p
·
(
−∂H
∂x

+ f

)
=
∂H

∂p
· f

= ẋ · f = S
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Thus, dH
dt

gives the supply rate, also known as the rate of work (= power). The stored
energy in the system (i.e. H) increases at a rate equal to the power input.

If there is internal dissipation, then we have

dH

dt
≤ S, (16.5)

the dissipation inequality.

A passive system is one that satisfies the dissipation inequality. Treating forces
as inputs (i.e. u , f ) and (generalized) velocities as outputs (i.e. y , ẋ), we write
the dissipation inequality as

H(x(t), p(t)) ≤ H(x(0), p(0)) +

∫ t

0

yT (σ)u(σ)dσ. (16.6)

Definition 16.2. A system is passive if∫ t

0

y(σ)Tu(σ)dσ ≥ 0 ∀t ≥ 0. (16.7)

4

This definition is an abstract one for the general setting of input-output systems.
For hamiltonians that are a priori bounded below (say H(x, p) ≥ c), we see that

H(x(t), p(t))− c ≥ 0

H(x(0), p(0))− c+

∫ t

0

yT (σ)u(σ)dσ ≥

δ +

∫ t

0

yT (σ)u(σ)dσ ≥

which says that ∫ t

0

y(σ)Tu(σ)dσ

is bounded below ∀t ≥ 0 by a constant (−δ) that depends on the initial conditions.

Definition 16.3. A p× p matrix Z(s) of transfer functions is positive real if

(i) Z(s) has all matrix elements analytic in {s : Re(s) ≥ 0},

(ii) Z∗(s) = Z(s∗) for {s : Re(s) > 0}, and

(iii) ZT (s∗) + Z(s) is positive semidefinite for {s : Re(s) > 0},
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where (∗) denotes the complex conjugate and (T ) denotes the matrix transpose.

Z(s) is strictly positive real if Z(s− ε) is positive real for some ε > 0. 4

Remark 16.2. Positive real transfer functions are impedence or admittance matrices
made of linear resistors, capacitors, inductors, transformers, and gyrators. 4
Lemma 16.2 (Positive Real Lemma of Kalman-Yacubovitch-Popov)

Let Z(s) = C(sI − A)−1B +D be a p× p transfer function of the system

ẋ = Ax+Bu

y = Cx+Du,

whereA is Hurwitz, [A,B] is controllable, [A,C] is observable. Then, Z is strict
positive real if and only if there exists P = P T > 0, matricesW,L, and constant
ε > 0 such that

ATP + PA = −LTL− εP
PB = CT − LTW

W TW = D +DT

Proof of Lemma 16.2
(sufficiency)
Suppose there exist P,L,W, ε satisfying the above equations. Take µ ∈ (0, ε

2
).

(A+ µI)TP + P (A+ µI) = −LTL− (ε− 2µ)P,

P > 0 and LTL + (ε − 2µ)P > 0. Then by standard matrix Lyapunov theory
(Theorem 5.36 of Sastry), the matrix (A + µI) is Hurwitz. Hence, Z(s − µ) is
analytic in {s : Re(s) ≥ 0}.

Let Φ = (sI − A)−1.

Z(s− µ) + ZT (−s− µ) = D +DT + CΦ(s− µ)B +BTΦT (−s− µ)CT .

Substituting C = (PB + LTW )T and D +DT = W TW , we get,

Z(s− µ) + ZT (−s− µ)

= W TW + (BTP +W TL)Φ(s− µ)B +BTΦT (−s− µ)(PB + LTW )

= W TW +W TLΦ(s− µ)B +BTΦT (−s− µ)LTW

+BTΦT (−s− µ)PB +BTPΦ(s− µ)B

...

�
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Exercise 16.1. Complete the remainder of the proof of the Positive Real Lemma.

Theorem 16.1 (Multivariate Circle Criterion - Hurwitz Case)
Let [A,B,C] be a controllable and observable triple. Let A be Hurwitz. Sup-

pose ψ satisfies the sector condition,

ψT (t, y)(ψ(t, y)−Ky) ≤ 0

∀t ≥ 0, y ∈ Rm, and K = KT > 0. Then the closed-loop system

ẋ = Ax+Bu

y = Cx

u = −ψ(t, y), (16.8)

is absolutely stable provided

Z(s) = Im +KG(s)

is strict positive real.

Remark 16.3. If the sector condition is only valid for Γ ⊂ Rp, 0 ∈
◦
Γ, then the strict

positive reality of Z(s) ensures only that the closed-loop system is absolutely stable
with finite domain. 4
Proof of Theorem 16.1

Z(s) = Im +KG(s) is the transfer function of the linear system
˙̃x = Ax̃+Bũ

ỹ = KCx̃+ ũ,

where we have set D = DT = Im in the Positive Real Lemma, and we have
further replaced C in the lemma by KC. One concludes that there exists P =
P T > 0, matrices L,W and constant ε > 0 such that

ATP + PA = −LTL− εP
PB = (KC)T − LTW

W TW = D +DT = 2Im

Take W =
√

2Im =⇒ PB = CTK −
√

2LT . Now consider the function

V (x) = xTPx.

Along trajectories of the closed-loop system,

V̇ = ẋTPx+ xTPẋ

= (Ax−Bψ(t, Cx))TPx+ xTP (Ax−Bψ(t, Cx))

= xT (ATP + PA)x− 2xTPBψ(t, Cx).
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Since −2ψT (t, y)(ψ(t, y)−Ky) ≥ 0 by the sector condtiion, it follows that

V̇ ≤ xT (ATP + PA)x− 2xTPBψ − 2ψT (ψ −KCx)

= xT (ATP + PA)x+ 2xT (CTK − PB)ψ − 2ψTψ

= −εxTPx− xTLTLx+ 2
√

2xTLTψ − 2ψTψ (by KYP lemma)

= −εxTPx− (Lx−
√

2ψ)T (Lx−
√

2ψ)

≤ −εxTPx.

The function V satisfies all the hypotheses of the Time-Varying Lyapunov The-
orem with α1(r) = λmin(P )r2, α2 = λmax(P )r2, and α3(r) = ελmin(P )r2.

So the closed-loop system has the origin as an uniformly asymptotically sta-
ble (in fact exponentially stable) equilibrium point. �

Remark 16.4. We have not used the easily shown fact that [A,C] observable ⇐⇒
[A,KC] is observable for any nonsingular matrix K. 4
Remark 16.5. Suppose A is not Hurwitz. It is possible that there exists a Kmin such
that the matrix [A−BKmin] is Hurwitz (under the assumption that [A,B] is control-
lable and [A,C] is observable). (In fact, conditions for this are difficult to determine
and there is a deep problem hidden here— see the work of Byrnes, Brockett, Rosen-
thal, and others. This work involves the methods of algebraic geometry, including
the Schubert calculus. We will sweep these difficulties under the rug!) 4

Now the closed loop system of

ẋ = Ax+Bu

y = Cx

u = −ψ(t, y)

is given by

ẋ = Ax−Bψ(t, Cx)

= (A−BKminC)x−B(ψ(t, Cx)−KminCx)

which is the closed loop system of

ẋ = (A−BKminC)x+Bu

y = Cx

u = −ψ̃(t, y),

where
ψ̃ , ψ(t, y)−Kminy.
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Note that the triple [A,B,C] is controllable and observable if and only if the triple
[A − BKminC,B,C] is controllable and observable. (This is only an exercise in
linear algebra).

The transfer function G̃(s) of the system

ż = (A−BKminC)z +Bu

y = Cz

is the same as the transfer function of the closed-loop system in Figure 16.2, where
G(s) = C(sI − A)−1B as before.

Figure 16.2: Closed-loop system.

Observe that in terms of Laplace transforms of inputs and outputs,

Y (s) = G(s)E(s)

E(s) = U(s)−KminY (s)

This implies

Y (s) = (I +G(s)Kmin)−1G(s)U(s),

G̃(s) = (I +G(s)Kmin)−1G(s).

On the other hand,

E(s) = U(s)−KminY (s)

= (I +KminG(s))−1U(s).

This implies,

Y (s) = G(s)E(s)

= G(s)(I +KminG(s))−1U(S).

And so we have the equivalent formulas (can be shown with a little algebra):

G̃(s) = (I +G(s)Kmin)−1G(s) (16.9)
= G(s)(I +KminG(s))−1 (16.10)
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Now A − BKminC is Hurwitz if and only if all the poles of G̃(s) are in C−.
Applying the sector condtiion to ψ̃,

ψ̃(t, y)T (ψ̃(t, y)−Ky) ≤ 0

⇐⇒ (ψ(t, y)−Kminy)T (ψ(t, y)− (Kmin +K)y) ≤ 0

⇐⇒ (ψ(t, y)−Kminy)T (ψ(t, y)−Kmaxy) ≤ 0

for Kmax = Kmin +K. The relevant positive real transfer function is

Z̃(s) = I +KG̃(s)

= I +KG(s)(I +KminG)−1

= (I +KminG)(I +KminG)−1 +KG(s)(I +KminG)−1

= (I + (Kmin +K)G)(I +KminG)−1

= (I +KmaxG)(I +KminG)−1.

Now we are ready to state the multivariate circle criterion without the Hurwitz as-
sumption.
Theorem 16.2 (Multivariate Circle Criterion)

Let [A,B,C] be a controllable and observable triple. Suppose ψ satisfies the
sector condition,

(ψT (t, y)−Kminy)T (ψ(t, y)−Kmaxy) ≤ 0

∀t ≥ 0, y ∈ Rm, and K = Kmax −Kmin = KT > 0 given.
Then the closed-loop system

ẋ = Ax+Bu

y = Cx

u = −ψ(t, y), (16.11)

is absolutely stable provided

(i) G̃(s) = G(s)(I + KminG(s))−1 is “Hurwitz” (analytic in {s : Res ≥ 0}),
and

(ii) Z̃(s) = (I +KmaxG)(I +KminG)−1 is strict positive real.

Proof of Theorem 16.2
From the remarks preceding the above statement, it is clear that all one has to
do it to appeal to the equivalences of closed loop systems with and without loop
transformation arising from the feedback A 7→ A − BKminC and appeal to the
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Hurwitz case already proved. �

Where does the name “Circle Criterion” come from? This is an interesting story
going back to the work of Harry Nyquist1, the AT&T Mathematician who investi-
gated graphical methods for feedback amplifier stability in long-distance (transat-
lantic) telephony. This is a direct application of the principle of the argument in
complex variable theory.

First we specialize to the single input, single output case. Let

ΓG , {u+ jv = G(jω) : ω ∈ R}
= image of the imaginary axis under G(·),

be the Nyquist locus of G.
Theorem 16.3 (Nyquist)

Let ΓG be bounded (i.e. G is proper and has no poles on the jω axis), We will
say that ΓG encircles a point u0+jv0, ρ times, if u0+jv0 is not on ΓG and 2πρ =
the net increase in the argument of G(jω)− (u0 + jv0) as ω increases from −∞
to +∞. Clockwise encirclement corresponds with the direction of increasing
argument, while counterclockwise encirclement corresponds with the direction
of decreasing argument.

Suppose ΓG is bounded. If G has ν poles in the right half plane C+, then
G

1+kG
has ρ + ν poles in C+ if the point − 1

k
+ j0 is not on ΓG and ΓG encircles

it ρ times in the clockwise sense.

Proof of Theorem 16.3
See Franklin et al. listed in the reference list. �

Corollary 16.1

If ΓG is bounded and − 1
k

+ j0 is not on ΓG and G has ν poles in C+, then the
feedback u = −ky stabilizes the closed loop system if ΓG encircles (− 1

k
+ j0),

ν times in the counterclockwise direction.

Lemma 16.3

Let g(s) be a scalar transfer function. Let g(s) be proper (i.e. g(s) = q(s)
p(s)

+ d

where deg(q) < deg(p), p monic, and d a constant). Suppose poles of g(s) all
lie in C−, then g(s) is strict positive real if and only if

Re(g(jω)) > 0 ∀ω ∈ R.

1Nyquist is the same man who developed the theoretical understanding of thermal noise (Nyquist-
Johnson noise) in electrical devices, in parallel with the work of experimentalist Johnson (in 1928).
This understanding has become extremely important today, in the context of MEMS devices.
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Proof of Lemma 16.3
See H. Khalil page 404. �

Theorem 16.4
Let g(s) be a scalar transfer function c(sI − A)−1b, with the triple [A,b,c] con-
trollable and observable. Let ψ(t, y) satisfy the sector condition:

αy2 ≤ yψ(t, y) ≤ βy2

Then absolute stability of the closed loop system

ẋ = Ax+ bu

y = cx

u = −ψ(t, y)

holds provided one of the following conditions apply:

(i) If 0 < α < β, the Nyquist locus does not enter the disk D(α, β) and
encircles it ν times in the counterclockwise direction, where ν = # poles
of g(s) in C+.

Figure 16.3: Example of Nyquist locus.

(ii) If 0 = α < β, g(s) is “Hurwitz”, and the Nyquist plot Γg lies to the right
of the line Re(s) = − 1

β

(iii) If α < 0 < β, g(s) is “Hurwitz”, and the Nyquist plot of Γg lies in the
interior of the disk D(α, β).

Proof of Theorem 16.4
Specializing the multivariable circle criterion to this case, we seek conditions to
ensure that

(a) g(s)
1+αg(s)

is Hurwitz and
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(b) 1+βg(s)
1+αg(s)

is strict positive real.

For (b) it is equivalent to check

Re

(
1 + βg(jω)

1 + αg(jω)

)
> 0 ∀ω ∈ R

In case (i), for 0 < α < β, this is equivalent to checking

Re

(
1
β

+ g(jω)
1
α

+ g(jω)

)
> 0 ∀ω ∈ R.

Consider Figure 16.4.

Figure 16.4: Illustration for proof.

ψ = θ1 − θ2

θ1 = arg

(
1

β
+ g(jω)

)
θ2 = arg

(
1

α
+ g(jω)

)

Re

(
1
β

+ g(jω)
1
α

+ g(jω)

)
= r cosψ

where r > 0, cosψ > 0 if and only if ψ = θ1 − θ2 < π
2
.

By elementary geometry, q has to lie outside D(α, β) the disk with diame-
ter joining

(
− 1
α
, 0
)

and
(
− 1
β
, 0
)

. For the encirclement condition, we use the
corollary to Nyquist.

In case (ii), the condition for strict positive reality is

Re

(
1

β
+ g(jω)

)
> 0

⇐⇒ cos θ1 > 0

⇐⇒ θ1 <
π

2

⇐⇒ Γg lies to the right of the vertical line
{
s : Re(s) = − 1

β

}
.
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In case (iii), the same arguments as in (i) apply, but since α and β have
opposite sign, the strict positive reality condition is

Re

(
1
β

+ g(jω)
1
α

+ g(jω)

)
< 0,

and we seek ψ > π
2
. This occurs if and only if Γg lies in the interior of the disk

D(α, β). �

The Popov criterion for absolute stability is based on

(i) restrictions on ψ,
ψ = ψ(y) = (ψ1(y1), ψ2(y2), . . . , ψm(ym))T

ψT (y)(ψ(y)−Ky) ≤ 0
K = diag(β1, . . . , βm) βi ≥ 0,∀i,
and

(ii) use of nonquadratic Lyapunov functions,

V (x) = xTPx+ 2η

∫ y

0

m∑
i=1

ψi(σi)βidσi

, xTPx+ 2η

∫ y

0

ψT (σ)Kdσ with y = Cx.

By the sector condition, ψ(σ) ≥ 0 for σ ≥ 0 (componentwise) implies∫ y

0

m∑
i=1

ψi(σi)βidσi ≥ 0

This further implies

V (x) > 0 (as long as P = P T > 0).

Along trajectories of the (usual) closed loop system

V̇ = ẋTPx+ xTPẋ+ 2ηψTKẏ

= (AX −Bψ)TPx+ xTP (A−Bψ) + 2ηψTKC(Ax−Bψ)

= xT (ATP + PA)x− 2xTPBψ + 2ηψTKC(Ax−Bψ)

Since −2ψT (ψ −Ky) ≥ 0, we get,

V̇ ≤ xT (ATP + PA)x− 2xTPBψ + 2ηψTKC(Ax−Bψ)− 2ψT (ψ −Ky)

= xT (ATP + PA)x− 2xT (PB − ηTATCTK − CTK)ψ

− ψT (2I + ηKCB + ηBTCTK)ψ
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Choose η small enough such that

2I + ηKCB + ηBTCTK ≥ 0

if and only if we can find W such that

W TW = wI + ηKCB + ηBTCTK

= (I + ηKCB) + (I + ηKCB)T

Suppose P = P T > 0 and there exists L and ε > 0 such that

ATP + PA = −LTL− εP
PB = CTK + ηATCTK − LTW

= (C + ηCA)TK − LTW

Then,

V̇ (x) ≤ −εxTPx− xTLTLx+ 2xTLTWψ − ψTW TWψ

= −εxTPx− (Lx−Wψ)T (Lx−Wψ)

≤ εxTPx

< 0 x 6= 0.

Thus, we get absolute stability. The question of P,L, ε,W is settled by the Positive
Real Lemma.

Z(s) = (I + ηKCB) + (KC + ηKCA)(sI − A)−1B

= I + ηKC(sI − A+ A)(sI − A)−1B +KC(sI − A)−1B

= I + ηsKC(sI − A)−1B +KC(sI − A)−1B

= I + (ηs+ 1)KG(s)

Suppose η is chosen that − 1
η

is not an eignevalue of A. Then [A,K(C + ηCA)]

is observable if and only if [A,C] is observable.

Then by the Positive Real Lemma, P,L, ε,W exist if Z(s) = I+(ηs+1)KG(s)
is strict positive real, which we have proved.
Theorem 16.5 (Multivariate Popov Criterion)

For the closed-loop system,

ẋ = Ax+Bu

y = Cx

u = −ψ(y), (16.12)
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let [A,B,C] be a controllable and observable triple. Suppose A is Hurwitz, ψ =
ψ(y) = (ψ1(y1), ψ2(y2), . . . , ψm(ym))T , and K = diag(β1, . . . , βm), βi ≥ 0,∀i.
Suppose further that ψ satisfies the sector condition,

0 ≤ yiψi(yi) ≤ βiy
2
i .

Then, the closed-loop system is absolutely stable if there exists η ≥ 0 such that

(i) − 1
η
∈ spec(A), and

(ii) Z(s) = Im + (1 + ηs)KG(s) is strict positive real.

Remark 16.6. (a) With η = 0, this reduces to a special case of the circle criterion.

(b) With η > 0, we get absolute stability under weaker conditions (but for a re-
stricted class of nonlinear maps ψ).

(c) For m = 1 (SISO case), we have a graphical test:

Choose η such that Z(∞) = lims→∞ Z(s) = W 2 > 0.
Then Z(s) is strict positive real if and only if

Re[1 + (1 + ηjω)] > 0 ∀ω ∈ R (k > 0).

This holds if and only if

1

k
+ Re(g(jω))− ηωIm(g(jω)) > 0 ∀ω ∈ R.

This hold if and only if the Popov locus/plot lies to the right of the line that
intercepts the point − 1

k
+ j0 with slope η.

Here the Popov locus is given by

Pg = {u+ jv : u = Re(g(jω)), v = ωIm(g(jω)) ∀ω ∈ R}. (16.13)

See Figure 16.5 for an illustration.
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Figure 16.5: Popov locus illustration.

4
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Supplement A

An Alternate Way to Frame a Curve

A.1. The Natural Frenet Frame

A defect of the Frenet-Serret frame is the need for nondegeneracy (κ > 0). There is
an alternative way to frame a curve without requiring nondegeneracy. This frame is
known as the Natural Frenet frame or the Relatively Parallel Adapted Frame (RPAF)
and was popularized by R. L. Bishop (ref: R. L. Bishop, American Math. Monthly,
82 (3): 246-251, 1975).

Figure A.1: Propagation of a Natural Frenet frame.

Let s denote an arc-length parameter. At s = 0, let T⊥(0) denote the plane
normal to the unit tangent vector T (0); similarly, T⊥(s) is the normal plane at
s. Pick a basis {M1(0),M2(0)} for T⊥(0) such that {T (0),M1(0),M2(0)} con-
stitutes a right handed orthonormal triad. Our goal is to propagate this triad to
{T (s),M1(s),M2(s)} in such a way that certain natural conditions are satisfied:

1. Right handedness: ←→ M2(0) = T (0) ×M1(0), and M2(s) = T (s) ×
M1(s)

155



156 SUPPLEMENT A. AN ALTERNATE WAY TO FRAME A CURVE

2. Existence of natural curvatures: T (s) · T (s) = 1 =⇒ T ′(s) ∈ T⊥(s).
Hence, there must exist k1(s) and k2(s) such that T ′(s) = k1(s)M1(s) +
k2(s)M2(s). We call k1(s) and k2(s) (natural) curvatures.

3. M1(s) and M2(s) must be relatively parallel fields (see the following defini-
tion).

Definition A.1. LetM(s) be any unit normal field along γ. We sayM(s) ∈ T⊥(s)
is a relatively parallel field along γ provided
M ′(s) = f(s)T (s), i.e. the vector M(s) turns as little as possible. 4

We propagate M1(0),M2(0) along γ such that they remain relatively parallel to
each s. Thus,

M ′
1(s) = f1(s)T (s)

M ′
2(s) = f2(s)T (s)

for some as yet undetermined f1, f2.

However, by normality, M1(s) · T (s) ≡ 0. This implies

M ′
1(s) · T (s) = −M1(S) · T ′(s) (differentiation by s)

= −M1(s) · (k1(s)M1(s) + k2(s)M2(s))

= −k1(s)

Therefore, we see that f1(s) and f2(s) are given by−k1(s) and−k2(s), respectively.

Definition A.2. An orthonormal triad {T (s),M1(s),M2(s)} is a relatively parallel adapted frame
(RPAF) along γ provided there exist curvature functions k1(·) and k2(·) such that

T ′ = k1M1 + k2M2

M ′
1 = −k1T

M ′
2 = −k2T

4

We also refer to RPAF’s as natural Frenet frames.

Theorem A.1 (Unique RPAF Along a Curve)

Given aC2 curve γ ands a choiceM1(0),M2(0) in T⊥(0) such that {T (0),M1(0),M2(0)}
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is a right-handed orthonormal triad, there is a unique RPAF along γ that agrees
with the initial choice.

Proof of Theorem A.1
Integrating M ′

1(s) = −k1(s)T (s) on both sides,

M1(s) = M1(0)−
∫ s

0

k1(σ)T (σ)dσ

Taking
T ′(s) = k1(s)M1(s) + k2(s)M2(s),

and dotting both sides with M1(s), we obtain

k1(s) = T ′(s) ·M1(s)

= T ′(s) ·M1(0)−
∫ s

0

k1(σ)T ′(s) · T (σ)dσ

= γ′′(s) ·M1(0)−
∫ s

0

k1(σ)γ′′(s) · γ′(σ)dσ

Similarly,

k2(s) = γ′′(s) ·M2(0)−
∫ s

0

k2(σ)γ′′(s) · γ′(σ)dσ

Given the curve γ, we have two integral equations for k1, k2. By the standard
theory of Volterra integral equations, there exist unique k1, k2.

Now we may integrate,

d

ds

[
T (s) M1(s) M2(s)

]
=
[
T (s) M1(s) M2(s)

]  0 −k1(s) −k2(s)
k1(s) 0 0
k2(s) 0 0


Starting from

[
T (0) M1(0) M2(0)

]
∈ SO(3), to obtain a unique RPAF. �

A.2. Relation to the Frenet-Serret Frame

The normal N(s) and binormal B(s), when defined, exist in the plane T⊥(s),
spanned by M1(s) and M2(s).

N(s) =
1

κ(s)
T ′(s)

=
1

κ(s)
[k1(s)M1(s) + k2(s)M2(s)]
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Since N(s) ·N(s) ≡ 1,

N(s) ·N(s) =
k21(s) + k22(s)

κ2(s)

=⇒ κ(s) =
√
k21(s) + k22(s)

We can express the binormal as

B(s) = T (s)×N(s)

= T (s)×
(

k1
κ(s)

M1(s) +
k2(s)

κ(s)
M2(s)

)
=

1

κ(s)
[−k2(s)M1(s) + k1(s)M2(s)] ,

and use it to find the torsion (suppressing the s dependence),

τ(s) = −B′ ·N

= −
(
−k2
κ
M1 +

k1
κ
M2

)′
·
(
k1
κ
M1 +

k2
κ
M2

)
=

(
k′2
κ
M1 −

k′1
κ
M2 +

k2
κ
M ′

1 −
k1
κ
M ′

2 + k2M1

(
1

κ

)′
− k1M2

(
1

κ

)′)
·
(
k1
κ
M1 +

k2
κ
M2

)
=
k′2k1 − k′1k2

κ2

=
k′2k1 − k′1k2
k21 + k22

=

(
tan−1

(
k2
k1

))′
= θ′

where θ is a polar angle in the (k1, k2) plane (well-defined for κ > 0). The (k1, k2)
plane is referred to as the plane of normal development. Note that (κ, θ) represents
polar coordinates in the plane of normal development. Further, integrating,

θ(s) = θ(0) +

∫ s

0

τ(σ)dσ

Since

N(s) = cos θ(s)M1(s) + sin θ(s)M2(s)

B(s) = − sin θ(s)M1(s) + cos θ(s)M2(s),

it is clear that θ(s) is the accumulated rotation (phase-shift) of {N(s), B(s)} relative
to {M1(s),M2(s)}.
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Definition A.3. One gets a picture of a curve γ in R3 by looking at its normal development
s 7→ (k1(s), k2(s)), the curve traced out in the plane of normal development. 4

Example A.1. Show that the normal development of a curve γ constrained to
lie in plane µ⊥ that is perpendicular to vector µ is a line passing through the
origin. (We not assume that µ⊥ passes through the origin.)

γ(s) · µ ≡ c a constant
=⇒ T (s) · µ ≡ 0

=⇒ T ′(s) · µ ≡ 0

From the last equation,

k1(s)(M1(s) · µ) + k2(s)(M2(s) · µ) ≡ 0

On the other hand,

M ′
1(s) · µ = −k1(s)T (s) · µ

≡ 0

=⇒ M1(s) · µ ≡ constant , a1

Similarly,

=⇒ M2(s) · µ ≡ constant , a2

Thus the normal development satisfies the constraint of a line passing through
the origin,

a1k1 + a2k2 = 0.

Note that the normal development contains no information regarding c.

Example A.2. Show that the normal development of a curve s 7→ γ(s), con-
strained to lie on the surface of a sphere of radius R > 0 and center located at
p, is a line not passing through the origin.
To lie of the surface of the sphere,

(γ(s)− p) · (γ(s)− p) ≡ R2.
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Differentiating,

(γ(s)− p) · γ′(s) ≡ 0

(γ(s)− p) · T (s) ≡ 0

Differentiating again,

γ′(s) · T (s) + (γ(s)− p) · T (s) ≡ 0

(γ(s)− p) · T (s) ≡ −1

Dotting both sides of the T ′(s) equation with (γ(s)− p),

k1(γ(s)− p) ·M1 + k2(γ(s)− p) ·M2 = −1

We can also dot both sides of the M ′
i(s) equations with (γ(s)− p) for i = 1, 2,

M ′
i · (γ(s)− p) = −kiT · (γ(s)− p)

≡ 0

Now,

(Mi · (γ(s)− p))′ = M ′
i · (γ(s)− p) +Mi · γ′(s)

≡ 0

Thus,

Mi · (γ(s)− p) ≡ constant , ai i = 1, 2.

Thus, from the expression for T ′(s),

a1k1 + a2k2 ≡ −1.

So, we have shown the normal development lies on a line not passing through
the origin. To find the distance of the line from the origin, expand (γ(s)− p),

(γ(s)− p) = ((γ(s)− p) ·M1)M1 + ((γ(s)− p) ·M2)M2 + ((γ(s)− p) · T )T

= a1M1 + a2M2

Recalling the constraint,

R2 = (γ(s)− p) · (γ(s)− p)
= a21 + a22.
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Therefore, the line lies at a distance of 1/R from the origin.
The normal development, being fully Euclidean invariant, contains no informa-
tion about the center p of the sphere.

Also, note as R −→ ∞, the sphere −→ a plane, and the above line −→ a
line passing through the origin.

Remark A.1. Recall that the RPAF is determined up to a choice of initial orthonor-
mal basis {M1(0),M2(0)}. A change of basis is simply a rotation of {M1(0),M2(0)}
through an angle φ. How does this affect the curvatures k1 and k2?
Let

M̃1(0) = cosφM1 − sinφM2

M̃2(0) = sinφM1 + cosφM2

Then it can be shown by substitution into the Volterra equations for the curvatures
that

k̃1(s) = cosφk1(s)− sinφk2(s)

k̃2(s) = sinφk1(s) + cosφk2(s)

This corresponds to a rotation by φ in the plane of normal development. A curve γ
determines the normal development up to such a rotation. 4

Example A.3. Let s 7→ γ(s) be a curve confined to a sphere of radius R cen-
tered at p ∈ R3. For s = 0, pick M1(0) = γ(0)−p

R
. Find the normal development

equation.

Clearly, M1(0) ∈ T⊥(0) by hypothesis. We also recall that (γ(s) − p) ·
(γ(s)− p) = R2.
We set M2(0) = T (0)×M1(0) to make up the initial orthonormal frame

{M1(0),M2(0), T (0)}.

Now, from the previous example for a sphere,

Mi · (γ(s)− p) ≡ constant , ai i = 1, 2.
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So,

a1 = (γ(s)− p) ·M1(s)

= (γ(0)− p) ·M1(0)

= (γ(0)− p) · (γ(0)− p)
R

= R

a2 = (γ(s)− p) ·M2(s)

= (γ(0)− p) ·M2(0)

= (γ(0)− p) ·
(
T (0)× (γ(0)− p)

R

)
= 0

The normal development equation becomes,

a1k1(s) + a2k2(s) = −1

Rk1(s) + 0 = −1

=⇒ k1(s) = − 1

R

This is a vertical line in the plane of normal development.

Thus, the evolution equation of an RPAF for a curve confined to a sphere of
radius R (centered at p) can always be taken to be of the form:

d

ds

[
T (s) M1(s) M2(s)

]
=
[
T (s) M1(s) M2(s)

]  0 1/R −k2(s)
−1/R 0 0
k2(s) 0 0


with

M1(0) =
γ(0)− p

R
M2(0) = T (0)×M1(0).

Since

(γ(s)− p) ·M1(s) ≡ R,

γ(s)− p
R

·M1(s) ≡ 1.

Let

M1(s) =
γ(s)− p

R
+ δ(s).
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Then

γ(s)− p
R

· γ(s)− p
R

+
γ(s)− p

R
· δ(s) ≡ 1

1 +
γ(s)− p

R
· δ(s) ≡ 1

γ(s)− p
R

· δ(s) ≡ 0

Then

M1(s) ·M1(s) =

(
γ(s)− p

R
+ δ(s)

)
·
(
γ(s)− p

R
+ δ(s)

)
= 1 + δ(s) · δ(s).

But M1(s) is a unit vector for each s. Hence δ(s) · δ(s) ≡ 0 implies δ(s) ≡ 0. This
in turn implies that

M1(s) ≡
γ(s)− p

R
.

Thus, if

M1(0) =
γ(0)− p

R
then M1(s) =

γ(s)− p
R

, ∀s.

and M1 can be seen to be always the outward normal of the sphere, as shown in
Figure A.2.

Figure A.2: Natural Frenet frame for a curve constrained to a sphere.





Supplement B

Some Computations Pertaining to Index

1. Signed area.

Figure B.1: Triangle for finding area.

The area of a triangle with sides a, b, c is given by adding the areas of two
right triangles, BCD and BAD, as shown in Figure B.1.

Area =
1

2
h · CD +

1

2
h · AD

=
1

2
h · b

=
1

2
ab sin θ

Recall from the definition of the vector product, that

| ~CA× ~CB| = | ~CA|| ~CB| sin θ
= ba sin θ

Thus, the oriented/signed area of the triangle ABC is
1

2
~CA× ~CB.
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2. Area enclosed by a parametrized closed curve.
Define a parameterized, closed curve γ such that

γ : [0, T ]→ R2

t 7→ γ(t),

with γ(0) = γ(T ) = P . As shown in Figure B.2, the enclosed area is obtained
by adding up areas of triangles bounded by the vectors r, ∆r, and r+ ∆r and
taking the limit as ∆r → 0.

Figure B.2: Triangles within a parametrized closed curve.

Then, we have that

Area ≈
N∑
i=1

1

2
ri × (ri + ∆ri)

=
N∑
i=1

1

2
ri ×∆ri (since for any v, v × v = 0).

Taking the limit as the number of terms in the sum goes to∞, we get,

Area =

∮
1

2
r(t)× dr(t)

dt
dt

=

∫ T

0

1

2
r(t)× ṙ(t)dt

Let r(t) = x(t)̂i+ y(t)ĵ. Then,

r(t)× dr(t) = (xî+ yĵ)× (dxî+ dyĵ) (B.1)

= (xdy − ydx)k̂, (B.2)

where k̂ = î× ĵ is the unit normal to the plane spanned by orthonormal basis
vectors î, ĵ. Thus,

Area =
1

2

∮
(xdy − ydx)k̂ (B.3)
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3. Signed area of a curve in polar coordinates.
Let x = r cos θ and y = r sin θ. Then,

1

2
(xdy − ydx) =

1

2
(r cos θ(r cos θdθ + dr sin θ)

−r sin θ(−r sin θdθ + dr cos θ))

=
1

2
r2dθ

The signed area enclosed by the curve γ is then given by

Area =

∮
1

2
r2dθk̂, (B.4)

with the curved traversed in the counterclockwise manner. If we specialize a
γ curve that is the unit circle, centered at the origin,

Area =
1

2
R2

∫ 2π

0

dθk̂ (B.5)

= πk̂ (B.6)

4. Index.

dθ = d arctan
(y
x

)
=

1

1 +
(
y
x

)2d(yx)
=

1

1 +
(
y
x

)2 (1

x
dy − y

x2
dx

)
=
xdy − ydx
x2 + y2

Let f : R2 → R2 be a C1 vectorfield (i.e. the components f1 and f2 have
continuous first partial derivatives).

Figure B.3: Vector f at a point (x, y) on a closed curve.
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At any point (x, y) in the plane,

θf (x, y) = arctan

(
f2(x, y)

f1(x, y)

)
, (B.7)

if well-defined.

Let γ : [0, 2π] → R2 be a closed curve, not passing through an equilibrium
point of ẋ = f(x), i.e. a point such that f(x) = 0. We let f̂ , f

‖f‖ on γ.
Then, we have a map

γ̃ : S ′ → S ′

t 7→ arctan

(
f2
f1

)
= θf

∣∣∣
γ(t)
.

Here S ′ denotes the circle obtained by identifying 0 and 2π.

Then, the index is given by

Ifγ =
1

2π

∮
dθf

=
1

2π

∫ 2π

0

(
dθf
dt

)
dt

The index counts how many times γ̃ winds around the circle.

5. Index Ifγ for γ, a closed orbit of a vector field.
Everywhere on a closed orbit we have,

f =
dγ

dt
,

with f 6= 0 on γ.

Figure B.4: Vector field evaluated on a closed orbit.
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We may write

dθf
dt

=
d

dt
arctan

(
f2
f1

)
=

d

dt
arctan

(
γ̇2
γ̇1

)
=
γ̇1γ̈2 − γ̇2γ̈1
γ̇21 + γ̇22

.

The integral

Ifγ =
1

2π

∫ 2π

0

γ̇1γ̈2 − γ̇2γ̈1
γ̇21 + γ̇22

dt (B.8)

can be effectively computed by a change of variable (parametrization). Let

s(t) =

∫ t

0

‖γ̇(t)‖ dt

=

∫ t

0

(γ̇21 + γ̇22)1/2dt

denote the length of the arc {γ(σ) : 0 ≤ σ ≤ t}. The total length of the closed
curve is therefore s(2π). By hypothesis that γ̇ 6= 0 on γ, t 7→ s(t) is a strict
monotone increasing function. Hence, it can be inverted to obtain s 7→ s(t).
We can think of γ as parametrized by arc length by substitution, s 7→ γ(t(s)).
Denote by (′) the derivative operator d

ds
and let ν(t) =

√
γ̇21 + γ̇22 be the speed.

Then,

d

dt
=

d

ds

ds

dt

= ν
d

ds
.

Hence, γ̇ = νγ′, which implies that

γ̇1γ̈2 − γ̇2γ̈1 = νγ′1(γ
′′
2ν

2 + γ′2ν̇)− νγ′2(γ′′1ν2 + γ′1ν̇)

= ν3(γ′1γ
′′
2 − γ′2γ′′1 ),
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and we can substitute this into the index formula to yield,

Ifγ =
1

2π

∫ 2π

0

ν3

ν2
(γ′1γ

′′
2 − γ′2γ′′1 )dt

=
1

2π

∫ 2π

0

(γ′1γ
′′
2 − γ′2γ′′1 )νdt

=
1

2π

∮
(γ′1γ

′′
2 − γ′2γ′′1 )ds

=
1

2π

∮
(γ′1î+ γ′2ĵ)×

d

ds
(γ′1î+ γ′2ĵ)ds (Recall signed area)

=
1

2π
2(area enclosed by curve s 7→ γ′(s))

But, we also have

‖γ′‖ =

∥∥∥∥γ̇ 1

ν

∥∥∥∥
=
‖γ̇‖
ν

=
ν

ν
= 1

i.e. the curve s 7→ γ′(s) is the unit circle. Hence, it encloses area π, and hence

Ifγ =
1

2π
· 2 · π

= +1.

We have shown that the index of a vector field with respect to γ, a closed orbit
of f , is +1.



Supplement C

Proof of a Technical Lemma

We now consider the proof of a technical lemma used in the main theorem for sta-
bility of time-varying systems.
Lemma C.1

Let
ẏ = −α(y) y(t0) = y0,

where α(·) is a class K function. Assume further that α(·) is locally Lipschitz.
Suppose α(·) is defined on [0, a). Then, for all 0 ≤ y0 ≤ a, the dynamics have a
unique solution y(t) defined ∀t ≥ t0. Moreover,

y(t) = σ(y0, t− t0),

where σ(·, ·) is a class KL function on [0, a)× [0,∞).

Proof of Lemma C.1
α(·) is locally Lipschitz implies there exists a unique solution ∀y0 ≥ 0. Since
ẏ(t) < 0 whenever y(t) > 0, the solution y(t) ≤ y0, ∀t ≥ t0. Therefore, the
solution is bounded and can be extended ∀t ≥ t0.

By integration,

ηy0(y) , −
∫ y

y0

dx

α(x)
= t− t0

gives the sojourn time map (i.e. how long it takes to get to y from y0) defined on
(0, y0).

Let η(y) , ηb(y) for 0 < b < a. η(·) is strictly decreasing, differentiable
on (0, a). Moreover, η(y) → ∞ as y → 0. To see this, note that y(t) → 0 as
t → ∞, since ẏ(t) < 0, for y(t) > 0. This can only happen asymptotically as

171
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t→∞ (i.e. it cannot happen in finite time without violating uniqueness).
Notice that since b < a,

η(a) = −
∫ a

b

dx

α(x)
= −c

for some c > 0.
We have η : (0, a) → (−c,∞) and η−1 : (−c,∞) → (0, a) is also well-

defined, since η is a strictly decreasing function of its argument.
Since

(t−t0) = ηy0(y) = −
∫ y

y0

dx

α(x)
= −

(∫ b

y0

dx

α(x)
+

∫ y

b

dx

α(x)

)
= −η(y0)+η(y),

we can write
η(y) = η(y0) + (t− t0).

Then for y0 > 0,

y(t) = η−1(η(y0) + t− t0)

and

y(t) ≡ 0 if y0 = 0.

Now define

σ(r, s) =

{
η−1(η(r) + s) r > 0
0 r = 0

Then,
y(t) = σ(y0, t− t0),

∀t ≥ t0, y0 ≥ 0. Note that σ is continuous since both η and η−1 are continuous
and limx→∞ η

−1(x) = 0.
For fixed s,

∂σ(r, s)

∂r
=

∂

∂r

(
η−1(η(r) + s)

)
=
α(σ(r, s))

α(r)
> 0 (this formula takes a little bit of calculus).

is strictly increasing in r.
For fixed r,

∂σ(r, s)

∂r
= −α(σ(r, s)) < 0 (this formula takes a little bit of calculus)

is strictly decreasing in s.
Furthermore σ(r, s) → 0 as s → ∞ since η−1 → 0 as its argument→ ∞.

So we have shown σ is class KL. �
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Example C.1. (a) α(y) = −γy, γ > 0.

σ(r, s) = r exp(−γs).

(b) α(y) = −ky2, k > 0.

η(y) = −
∫ y

b

dx

kx2

=
1

k

(
1

y
− 1

b

)
and

σ(r, s) =
1

1
r

+ ks
.


