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Abstract

Degenerate gradient flows arise in the context of adap-
tive control of linear systems when the usual gradient
algorithm is used for the parameter update law. It
is well known that in general parameter convergence is
not guaranteed without further assumptions. The stan-
dard approach utilizes the notien of a persistently ex-
citing input.and different authors have derived different
convergence rate estimates. In a recent paper Brockett
re-examined this issue and developed a rate estimate
using a property of symmetric matrices related to the
condition number. In this paper we compare two well-
known convergence rate estimates from the persistently
exciting point of view with Brockett’s estimate through
a semianalytical numerical study. We establish a com-
mon footing by relating the assumptions of each theo-
rem to the parameters specified under the persistently
exciting condition. Our analysis shows that for all pa-
rameter values Anderson’s result yields a tighter bound
than the other two estimates. In each case the mag-
nitude of the difference depends on the time it takes
for the uniform observability condition to hold in the
persistently exciting assumption. The shorter the time
is, the larger the difference is.

1 Introduction
Degenerate gradient flows are equations of the form

. OV (z)
&=—-H(t,x) o (1)
where H is a symmetric, positive semidefinite but not
positive definite matrix. Equations of this type arise
when we wish to minimize a particular function but
have only partial knowledge about its gradient at any
given instant. Qver time, however, different projections
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become available and it is thus possible to construct an
effective descent procedure. In this paper we consider
convergence rates to the zero equilibrium for degener-
ate flows that arise in the adaptive control of a linear
system when the standard gradient algorithm is used
as the parameter update law. This equation has the
form

(1) = —w(tyw’ ()e(t) (2)

where ¢(t) is the parameter error and w(t) is the state
of an appropriate filter. Since w(t)w? (t) is positive
semidefinite it is clear that ¢7 (£)é(t) is non-increasing
but in general we cannot conclude that {2) is exponen-
tially stable. It is well known that under an assumption
of persistent excitation the equilibrium is exponentially
asymptotically stable. Two convergence rate estimates,
one by Sondhi and Mitra in 1976 {1] and one by An-
derson in 1977 [2], are based on this assumption. A
recent paper by Brockett [3j re-examined the persis-
tently exciting hypothesis, proceeding from the notion
of the conditioning time of the matrix w(t)w” (t) which
characterizes the time interval over which the condition
number (the largest eigenvalue divided by the small-
est, see, e.g. [4]) of the integral of that matrix is rela-
tively small. It is the purpose of this paper to compare
the rate estimates of Anderson, Sondhi and Mitra, and
Brockett. We begin in the following section by giving
some useful definitions and a pair of well known lem-
mas that will be used in the proof of Anderson’s rate
estimate. Insection 3 we present the three estimates we
will compare. To establish the use of the persistently
exciting condition we review the proof of the Ander-
son result but for the sake of brevity we present the
other two theorems without proof, referring the reader
instead to the original papers. In section 4 we turn
to the comparison analysis and then conclude with a
discussion of the results,

2 Background

In this section we present a few standard results for
easy reference. First we need a theorem on the expo-
nential stability of a non-autonomous system.
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Theorem 2.1 (Exponential Stability) Censider
the system
i=flt.z), =R’ (3)

Let ¢ = O be en equilibrium point for (3) at t = Q.
If 3 a function v{t,x) ond strictly posilive constants
oy, 09,03, and & with ag < a3 such thal V z in the
open ball of radius v centered af the origin for some
r>0and Vi >0 we have

ozl < v(t,@) < aflzf?

d
St n(t < 0
pridCEi0) o
t+68 d
f Zu(ra(n)| dr < -ogla(f?
¢ (3)
then
Nz(@®))? < me™*|z{0)]? (4)
where

an 1 1
m_l:——'—al(l_ﬁi)] azzlnlil_'%%] (5)

Proof See [5], Theorem 1.5.2. Note that there is an
error in the theoremn statement in that reference; specif-
ically we additionally require az < az. An analogous
result is given as Theorem 8.5 in [0]. [ ]

Next we give a standard result on the uniform complete
observability of a linear system under output feedback,
usually known as Anderson’s Lemma.

Lemma 2.2 (Anderson’s Lemma) Assume that ¥
d>03 ks >0 such that Vig >0

to+4
[ il <k (6)

to
Let |C, A) be the system

#(1) = A(Dz()
#(t) = C(0)a(t) @

and let [C, A+ KC| be the system with culput feedback

(1) = (A() + K()C()Z) @
it = GOV

Let N1{tg, ta+6) and Na(tq. ta+8) be the corresponding
observability grammians. That is

Ni(to,t0 + 6)

A w+6T -

= c B4 (1, t0)C YO (T )P (7, 1g)dT (9)
Naltg, to + 6)

A t0+6T r

2 [ 0% ke to)CT (IO e te)ir(10)

0

Let T be the identily matriz and suppose that

Bl > Nilto,tg +9) > 51 (11)
Jor some constants B3 > B > 0. Then
,851[ > Nz(to, to + 5) > ,5;]1 (12)
where
=P et (1)
1+ VEsB )2 2
Proof See [5], Lemma 2.5.2. For & brief discussion
and additional references see [7], Section 13.4. -

Finally we give the definition of a persistently exciting
input.

Definition 2.3 A function w : R — R” is said to be
persistently exciting if 3 ay.a2,8 > 0 such that

t+&
0l > / w(e)w (o) > ol W >0 (14)
t

3 Convergence Rate Estimates

In this section we present the three convergence rate
estimates we will compare. We begin with a result
based on Anderson’s Lemma. The following theorem
can be found in [5]. We give the proof here to illustrate
the use of the persistently exciting condition.

Theorem 3.1 Consider equation (2). If w(t) is per-
sistently exeiting then

Hot)® < metflotto)(? (15)
where
m = T:l? (16}
1
a = gln(l—/iz) (17)
with
o

Proof Let v(¢) = %q’)Td). Then along trajectories of
system (2) we have
v=¢Tg=~-¢Twul¢p=-(wTe)! <0 (19)

Since w is persistently exciting the system [w7,0] is
uniformly completely observable. Let K(t) = ~w.
The corresponding output feedback system is then
[wT, —uwwT). Notice that

to+d tg+&
ft IK(D2ar = ft o (Pwlr)dr (20)

. ( / o w(r)wT(T)dT) < nas (21)

ty
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where T'r(-} is the trace operator and n is the dimension

of w. Thus by Lemma 2.2 the system (w7, —ww7] is
uniformly completely observable with constants
o) = & ah = age"? (22)

(1+ vnaz)?
So

to+8
ayllalto)|? > [ T (P (r)Pdr 2 ol o(toll? (23)

From this we have

to+6 to+8
]t i = = [ )0 < e 5o
- T et (24

Using the fact that ||¢{¢}|| is non-increasing yields

tn+5
[ r < 0 = -l (@)

Then by Theorem 2.1 we have

1 —}n
(=) =) oo
me||¢(to)]* (26)

where in the last step we used the definitions given in
the statement of the theorem. n

(e

IA

We turn now to a result of Sondhi and Mitra (1]

Theorem 3.2 Consider equation (2) and assume w(t)
satisfies both the mizing condition

48
%/H w(rwT (+}dr = a1 (27)
¢
where gy > 0 and
1 ]
3/ wl {(T)w(r)dr < L* (28)
t
Then
e I? < ae™||p(0)]]? (29)
where
a=e% b= max(b,bs) (30)
with

b = %En(}, — 3(2)) by = %—ln(l - p) (31)

where gy 18 the unigue positive root of

(1+80m+ = 52 21—ty =(1+2 (6L2) ) (32)

and
26,0

— 3
1+ L25 + $ 1482 (33)

p:

Proof See [1], Theorem 1. ]
Finally we give the recent result of Brockett (3].

Theorem 3.3 Consider equation (2). Let
t
W) = / w(o )T (0)do (34)
to

If 3 positive constants r, €, and § such that ¥i > 0 we
have
W(t+8) - W(t) > el (35)

and
Tr(W(t+48) ~ w3y < * (36)

then for

. 2r3 . 2e 2r3 (37)
PTAIBT 202 T T+ 2 BT+ 2e02

(with + necessarily between 0 and 1) and for

A= %In(l — ) (38)

3 a constant d such that

le@i? < de*llo(0)]® (39)
Proof See [3]. |

4 Estimate Comparisons

4.1 Comparison of the Anderson and Brockett
estimates

We compare the estimate of Theorem 3.1 to that of
Brockett by first relating the assumptions used by
Brockett to the persistently exciting condition. As-
sume that the conditions for both theorems are met.
We have

t+8
Wit +8) - W(t) = f wie)wT (o)do > oy (40)

where the inequality comes from the persistently excit-
ing condition. Comparing this to the assumption used
by Brockett in equation {35) we take

e=m {41)
For the next step we need the following lemma.
Lemma 4.1 Let M be a positive semidefinite n x n

matriz. Then

Tr(M?) < [Tr(M)PP (42)
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Proof Let the eigenvalues of M be {A1,A2,...,Aq}
Since M is positive semidefinite we have A; > 0 for
every i. Then

n n 8
_ i1 =1

where the first equality follows from the spectral map-
ping theorem and the inequality follows from the fact
that the eigenvalues are nonnegative. |

Applying Lemma 4.1 we have

t+§

Tr(W(t+8)-W(H)]®) = Tr [j; w(a)w/r(cr)dajl

¢+ 8
< (Tr [/ w(a)wT(a)da]) < naj(44)

where the inequality again follows from the persistently
exciting condition and n is the dimension of w. Com-
paring this to the assumption used by Brockett in equa-
tion (36) gives us

7= nog (45}

Rewriting v in terms of ¢y, o, n yields

_ 2n3a3 N 20 ndad (46)
TEVII ¥ 2002 " (T +2a) 31+ 20,02

and thus

1
2 = ————— [4nfad + 6oy + 1207
~ RS [4n3ad + 60y + 1207

~4y/nPad + 3wPared 4 snsoffag] (17)

We can now compare A, the estimate due to Brockett,
to a, the estimate due to Anderson, Starting from
equation (38)

A= %In(l~72) (48)
A2
= sin (%:%5(1-,32)) (49)
1 1 1 -2
= i1 -84+ sin (1—_7) {50)
= ot g (Ky(nm,00)) (51)

where the last step follows from equation (17) and de-
fines the function Ki(n,a;1,02). Ki(n.apaz) < 1
would imply A < « and thus Brockett’s result would
give a faster rate estimate since it is more negative. As
this expression is somewhat complicated we turn to a
numerical study. In Figures 1, 2, 3, and 4 we show
plots of K versus a; for different values of a2 and for
different system dimensions n. Only even values of n

}

" e

iafriigziiad

~.

Figure 2: K; for n = 4 and select valuecs of oy

are considered since in the adaptive control context w
is a filter vector with dimension twice that of the orig-
inal state. Since a; < ag, each curve extends only to
a1=ag. From the plots we see that Anderson’s result
gives a tighter estimate in all cases with the difference
being greater for small ap. As the dimension of the
system increases the difference decreases but remains
qualitatively the same. From equation (51} we see that
the actual magnitude of the difference depends on 4.

4.2 Comparison of the Sondhi-Mitra and
Brockett estimates
To compare these two results we first express the pa-
rameters in Sondhi-Mitra's result in terms of the per-
sistently exciting parameters ¢, ;. Comparing the
mixing condition, equation (27), to the persistently ex-
citing condition we have

O = %1 (52)

Now

t+6 8
/wT(r)w(r)dr=Tr ([ 'w(T)wT(T)dT) Snaz (53)
¢ t

with the inequality coming from the persistently ex-
citing condition. Comparing this to equation [28) we
take

0

non = 6L% = L% = -”—6— (54)

Plugging these into equation (32) we have that sp is
the unique positive square root of

(1 ‘g + %a?)z (1-s% = (1 + i(nag)g)z (55)
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Figure 4: K, for n = 10 and select valies of a,

and inte equation (33) we have

20:’1
= ————— 56
G in2ad (56)
Define
? = min(sg, p) (57)
Using this and starting from equation (38)
! 2
A = Sln(l -9 (58)
— L, 1- 72 2 r
- i (iSha-) (59)
! 2y, 1, f1-7+°
= 6ln(1 )+ 6'[”(1'—&2) (60)
1
= b+ Eln (Kz(n-, 01,(12)) (61)

which defines the function Kj(n,on,as2). As before,
if Ka(n,aq1,02) < 1 then A < b and Brockett’s result
gives a faster estimate than Sondhi-Mitra’s, In Figures
5, 6, 7, and 8 we show plots of K5 for the same range
of parameters as we used for X;.  These plots show
Brockett’s result gives a tighter bound than Sondhi-
Mitra’s for all parameter values with the difference be-
ing greater for small ay. As the dimension of the system
grows the difference decreases. From equation {61) we
see the magnitude of the difference again depends on §
and so can be quite large even if Ky is close to one.
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Figure 6: K3 for n = 4 and select values of a2

4.3 Comparison of the Anderson and Sondhi-
Mitra results

For the sake of completeness we compare the remaining
combination. Starting from equation (17) we have

o = (=) (62)
_ L (1=
= pn(fEe-a) (©3)
1 1 1 -2
= gtn(1—52)+3m(-—1_'§2) (64)
- b+%ln(](3(n,a-1,az)) (65)

which defines the function K3(n, a1, as) Here, if K3 <
1 Anderson’s result gives a tighter estimate than
Sondhi-Mitra’s. In Figures 9, 10, 11, and 12 we plot K3
over the same range of parameters as in the previous
two cases. As expected we see that for all parameters
the Anderson estimate gives a faster convergence rate
than the Sondhi-Mitra result with the difference larger
for smaller o and a magnitude depending on 4.

5 Conclusions

In this paper we have presented a comparative study of
three different convergence rate estimates for a degen-
erate gradient flow equation common in adaptive con-
trol. We considered two well-known results, one due
to Anderson and one due to Sondhi and Mitra, and a



Figure T: K, for n = 8 and select values of a»
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Figure 8: K3 for n = 10 and select values of a,

recent result by Brockett. Our analysis shows that An-
derson’s result yields a tighter estimate than the other
two and that Brockett’s estimate is tighter than Sondhi
and Mitra’s. For small § the difference can be quite
large; that is as the input becomes more strongly ex-
citing (mixing) the Anderson result indicates a much
faster rate of convergence than would be expected from
either Brockett’s or Sondhi and Mitra's result.
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