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The Mathematics of
Learning: Dealing with

Data
Tomaso Poggio and Steve Smale

T
he problem of understanding intelligence
is said to be the greatest problem in sci-
ence today and “the” problem for this
century—as deciphering the genetic code
was for the second half of the last one.

Arguably, the problem of learning represents a
gateway to understanding intelligence in brains
and machines, to discovering how the human brain
works, and to making intelligent machines that
learn from experience and improve their compe-
tences as children do. In engineering, learning tech-
niques would make it possible to develop software
that can be quickly customized to deal with the in-
creasing amount of information and the flood of
data around us.

Examples abound. During the last decades, ex-
periments in particle physics have produced a very
large amount of data. Genome sequencing is doing
the same in biology. The Internet is a vast reposi-
tory of disparate information which changes rapidly
and grows at an exponential rate: it is now signif-
icantly more than 100 terabytes, while the Library
of Congress is about 20 terabytes.

We believe that a set of techniques based on a
new area of science and engineering becoming
known as “supervised learning” will become a key

technology to extract information from the ocean
of bits around us and to make sense of it.

Supervised learning, or learning from examples,
refers to systems that are trained instead of pro-
grammed with a set of examples, that is, a set of
input-output pairs. Systems that could learn from
example to perform a specific task would have
many applications. A bank may use a program to
screen loan applications and approve the “good”
ones. Such a system would be trained with a set of
data from previous loan applications and the ex-
perience with their defaults. In this example, a loan
application is a point in a multidimensional space
of variables characterizing its properties; its asso-
ciated output is a binary “good” or “bad” label.

In another example, a car manufacturer may
want to have in its models a system to detect pedes-
trians about to cross the road to alert drivers to a
possible danger while driving in downtown traffic.
Such a system could be trained with positive and
negative examples: images of pedestrians and im-
ages without pedestrians. In fact, software trained
in this way with thousands of images has been re-
cently tested in an experimental car from Daimler.
It runs on a PC in the trunk and looks at the road
in front of the car through a digital camera [1].

Algorithms have been developed that can produce
a diagnosis of the type of cancer from a set of mea-
surements of the expression level of many thousands
of human genes in a biopsy of the tumor measured
with a cDNA microarray containing probes for a
number of genes [1]. Again, the software learns the
classification rule from a set of examples, that is,
from examples of expression patterns in a number
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of patients with known diagnoses. The challenge
in this case is the high dimensionality of the input
space—on the order of 20,000 genes—and the
small number of examples available for training—
around 50. In the future, similar learning tech-
niques may be capable of some learning of a lan-
guage and, in particular, of translating information
from one language to another.

What we assume in the above examples is a ma-
chine that is trained instead of programmed to
perform a task, given data of the form (xi, yi)mi=1.
Training means synthesizing a function that best
represents the relation between the inputs xi and
the corresponding outputs yi. The central question
of learning theory is how well this function gen-
eralizes, that is, how well it estimates the outputs
for previously unseen inputs.

As we will see more formally later, learning tech-
niques are similar to fitting a multivariate function
to a certain number of measurement data. The key
point, as we just mentioned, is that the fitting
should be predictive in the same way that fitting
experimental data (see Figure 1) from an experiment
in physics can in principle uncover the underlying
physical law, which is then used in a predictive way.
In this sense, learning is also a principled method
for distilling predictive and therefore scientific
“theories” from the data.

We begin by presenting a simple “regularization”
algorithm which is important in learning theory and
its applications. We then outline briefly some of its
applications and its performance. Next we provide
a compact derivation of it. We then provide gen-
eral theoretical foundations of learning theory. In

particular, we outline the key ideas of decompos-
ing the generalization error of a solution of the
learning problem into a sample and an approxi-
mation error component. Thus both probability
theory and approximation theory play key roles in
learning theory. We apply the two theoretical
bounds to the algorithm and describe for it the
tradeoff—which is key in learning theory and its
applications—between number of examples and
complexity of the hypothesis space. We conclude with
several remarks, both with an eye to history and
to open problems for the future.

A Key Algorithm

The Algorithm
How can we fit the “training” set of data
Sm = (xi, yi)mi=1 with a function f : X → Y (where X
is a closed subset of Rn and Y ⊂ R) that general-
izes, i.e., is predictive? Here is an algorithm which
does just that and which is almost magical for its
simplicity and effectiveness:
1. Start with data (xi, yi)mi=1.
2. Choose a symmetric, positive-definite function
Kx(x′) = K(x, x′) , continuous on X ×X. A kernel
K(t, s) is positive definite if 

∑n
i,j=1 cicjK(ti , tj ) ≥ 0

for any n ∈ N and any choice of t1, . . . , tn ∈ X
and c1, . . . , cn ∈ R . An example of such a Mercer
kernel is the Gaussian

(1) K(x, x′) = e−‖x−x′‖2/2σ2

restricted to X ×X.
3. Define f : X → Y by

(2) f (x) =
m∑
i=1

ciKxi (x)

where c = (c1, . . . , cm) and

(3) (mγI+K)c = y,

where I is the identity matrix, K is the square
positive-definite matrix with elements
Ki,j = K(xi, xj ) , and y is the vector with coordi-
nates yi. The parameter γ is a positive, real num-
ber.
The linear system of equations (3) in m variables

is well-posed, since K is positive and (mγI+K) is
strictly positive. The condition number is good if
mγ is large. This type of system of equations has
been studied since Gauss, and the algorithms for
solving it efficiently represent one of the most de-
veloped areas in numerical and computational
analysis.

What does equation (2) say? In the case of a
Gaussian kernel, the equation approximates the un-
known function by a weighted superposition of
Gaussian “blobs”, each centered at the location xi
of one of the m examples. The weight ci of each
Gaussian is such as to minimize a regularized em-
pirical error, that is, the error on the training set.

Figure 1. How can we learn a function which is
capable of generalization—among the many

functions which fit the examples equally well
(here m = 7)?
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The σ of the Gaussian (together with γ, see later)
controls the degree of smoothing, of noise toler-
ance, and of generalization. Notice that for Gaus-
sians with σ → 0 the representation of equation (2)
effectively becomes a “look-up” table that cannot
generalize (it provides the correct y = yi only when
x = xi and otherwise outputs 0).
Performance and Examples
The algorithm performs well in a number of ap-
plications involving regression as well as binary
classification. In the latter case the yi of the train-
ing set (xi, yi)mi=1 take the values {−1,+1}; the pre-
dicted label is then {−1,+1}, depending on the sign
of the function f of equation (2).

Regression applications are the oldest. Typi-
cally they involved fitting data in a small number
of dimensions [1]. More recently, they also included
typical learning applications, sometimes with a
very high dimensionality. One example is the use
of an algorithm in computer graphics for synthe-
sizing new images [1]. The inverse problem of 
estimating facial expression and object pose from
an image is another successful application [1]. Still
another case is the control of mechanical arms.
There are also applications in finance, as, for 
instance, the estimation of the price of derivative
securities, such as stock options. In this case the
algorithm replaces the classical Black-Scholes 
equation (derived from first principles) by learn-
ing the map from an input space (volatility, 
underlying stock price, time to expiration of the 
option, etc.) to the output space (the price of the
option) from historical data [1].

Binary classification applications abound. The 
algorithm was used to perform binary classifica-
tion on a number of problems [1]. It was also used
to perform visual object recognition in a 
view-independent way and in particular face recog-
nition and sex categorization from face images [1].
Other applications span bioinformatics for classi-
fication of human cancer from microarray data, 
text summarization, and sound classification.1

Surprisingly, it has been realized quite recently
that the same linear algorithm not only works well
but is fully comparable in binary classification
problems to the most popular classifiers of today
(that turn out to be of the same family; see later).
Derivation
The algorithm described can be derived from
Tikhonov regularization. To find the minimizer of
the error, we may try to solve the problem—called
Empirical Risk Minimization (ERM)—of finding the
function in H that minimizes

1
m

m∑
i=1

(f (xi)− yi)2,

which is in general ill-posed, depending on the
choice of the hypothesis space H . Following
Tikhonov (see for instance [8]), we minimize instead
over the hypothesis space HK, for a fixed positive
parameter γ, the regularized functional 

(4)
1
m

m∑
i=1

(yi − f (xi))2 + γ‖f‖2
K,

where ‖f‖2
K is the norm in HK, the Reproducing Ker-

nel Hilbert Space (RKHS) defined by the kernel K.
The last term in equation (4)—called regularizer—
forces, as we will see, smoothness and uniqueness
of the solution.

Let us first define the norm ‖f‖2
K. Consider the

space of the linear span of Kxj. We use xj to em-
phasize that the elements of X used in this con-
struction do not have anything to do in general with
the training set (xi)mi=1. Define an inner product in
this space by setting 〈Kx,Kxj 〉 = K(x, xj ) and ex-
tending linearly to 

∑r
j=1 ajKxj. The completion of

the space in the associated norm is the RKHS, that
is, a Hilbert space HK with the norm ‖f‖2

K (see [4]).
Note that 〈f , Kx〉 = f (x) for f ∈HK (just let f = Kxj
and extend linearly).

To minimize the functional in equation (4), we
take the functional derivative with respect to f,
apply it to an element f of the RKHS, and set it equal
to 0. We obtain

(5)
1
m

m∑
i=1

(yi − f (xi))f (xi)− γ〈f , f 〉 = 0.

Equation (5) must be valid for any f . In particu-
lar, setting f = Kx gives

(6) f (x) =
m∑
i=1

ciKxi (x)

where

(7) ci =
yi − f (xi)
mγ

since 〈f , Kx〉 = f (x) . Equation (3) then follows by
substituting equation (6) into equation (7).

Notice also that essentially the same derivation
for a generic loss function V (y, f (x)) , instead of
(f (x)− y)2, yields the same equation (6), but equa-
tion (3) is now different and, in general, nonlinear,
depending on the form of V . In particular, the 
popular Support Vector Machine (SVM) regression
and SVM classification algorithms correspond 
to special choices of nonquadratic V : one to pro-
vide a “robust” measure of error and the other to
approximate the ideal loss function corresponding 
to binary (mis)classification. In both cases the 
solution is still of the same form as equation (6) for

1The very closely related Support Vector Machine (SVM)
classifier was used for the same family of applications and
in particular for bioinformatics and for face recognition
and car and pedestrian detection [1].
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any choice of the kernel K. The coefficients ci are
no longer given by equation (7) but must be found
by solving a quadratic programming problem.

Theory
We give some further justification of the algorithm
by sketching very briefly its foundations in some
basic ideas of learning theory.

Here the data (xi, yi)mi=1 is supposed random so
that there is an unknown probability measure ρ on
the product space X × Y from which the data is
drawn.

This measure ρ defines a function

(8) fρ : X → Y

satisfying fρ(x) =
∫
y dρx, where ρx is the condi-

tional measure on x× Y .
From this construction fρ can be said to be 

the true input-output function reflecting the 
environment which produces the data. Thus a 
measurement of the error of f is

(9)
∫
X
(f − fρ)2 dρX,

where ρX is the measure on X induced by ρ (some-
times called the marginal measure).

The goal of learning theory might be said to
“find” f minimizing this error. Now to search for
such an f, it is important to have a space H—the
hypothesis space—in which to work (“learning 
does not take place in a vacuum”). Thus consider
a convex space of continuous functions f : X → Y
(remember Y ⊂ R ) that as a subset of C(X) is 
compact, where C(X) is the Banach space of 
continuous functions with ‖f‖ =maxX |f (x)|.

A basic example is

(10) H = IK(BR)

where IK : HK → C(X) is the inclusion and BR is the
ball of radius R in HK.

Starting from the data (xi, yi)mi=1 = z , one may
minimize 1

m

∑m
i=1(f (xi)− yi)2 over f ∈H to obtain

a unique hypothesis fz : X → Y. This fz is called 
the empirical optimum, and we may focus on the
problem of estimating

(11)
∫
X
(fz − fρ)2 dρX.

It is useful towards this end to break the problem
into steps by defining a “true optimum” fH relative
to H by taking the minimum over H of 

∫
X (f − fρ)2.

Thus we may exhibit

(12)

∫
X
(fz − fρ)2 = S(z,H )+

∫
X
(fH − fρ)2

= S(z,H )+A(H ),

where

(13) S(z,H ) =
∫
X
(fz − fρ)2 −

∫
X
(fH − fρ)2.

The first term, (S ) on the right-hand side in
equation (12), must be estimated in probability
over z , and the estimate is called the sample error
(sometimes also the estimation error). It is naturally
studied in the theory of probability and of empir-
ical processes [7]. The second term, (A), is dealt with
via approximation theory (for a review see [6] and
also [10], [1]) and is called the approximation error.
The decomposition of equation (12) is indirectly re-
lated to the well-known bias and variance decom-
position in statistics.
Sample Error
First consider an estimate for the sample error,
which will have the form

(14) S(z,H ) ≤ ε
with high confidence, this confidence depending
on ε and on the sample size m.

Let us be more precise. Recall that the covering
number Cov#(H , η) is the number of balls in H
of radius η needed to cover H .

Theorem 1. Suppose |f (x)− y| ≤M for all f ∈H
for almost all (x, y) ∈ X × Y. Then

Probz∈(X×Y )m{S(z,H ) ≤ ε} ≤ 1− δ

where δ = Cov#(H , ε/24M)e−mε/288M2
.

The result is Theorem C∗ of [4], but earlier ver-
sions (usually without a topology on H ) have been
proved by others, especially Vapnik, who formu-
lated the notion of VC dimension to measure the
complexity of the hypothesis space for the case of
{0,1} functions.

In a typical case of Theorem 1 the hypothesis
space H is taken to be as in equation (10), where
BR is the ball of radius R in an RKHS with a smooth
K (or in a Sobolev space). In this context R plays
an analogous role to VC dimension [16]. Estimates
for the covering numbers in these cases were pro-
vided by Cucker, Smale, and Zhou [1].

The proof of Theorem 1 starts from the 
Hoeffding inequality (which can be regarded as 
an exponential version of Chebyshev’s inequality
of probability theory). One applies this estimate 
to the function X × Y → R which takes (x, y) to
(f (x)− y)2. Then extending the estimate to the set
of f ∈H introduces the covering number into 
the picture. With a little more work, Theorem 1 is
obtained.
Approximation Error
The approximation error 

∫
X (fH − fρ)2 may be 

studied as follows.
Suppose B : L2 → L2 is a compact, strictly posi-

tive (selfadjoint) operator. Then let E be the Hilbert
space
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between A and S for a given m. In our case, this
bias-variance problem is to minimize S(γ)+A(γ)
over γ > 0. There is a unique solution—a best γ—
for the choice in equation (4). For this result and
its consequences see [5].

Remarks

The Tradeoff between Sample Complexity and
Hypothesis Space Complexity
For a given fixed hypothesis space H , only the
sample error component of the error of fz can be
controlled (in equation (12) only S(z,H ) depends
on the data). In this view, convergence of S to zero
as the number of data points increases (Theorem 1)
is then the central problem in learning. Vapnik
called consistency of ERM (i.e., convergence of the
empirical error to the true error) the key problem
in learning theory, and in fact much modern 
work has focused on refining the necessary and 
sufficient conditions for consistency of ERM (the 
uniform Glivenko-Cantelli property of H , finite Vγ
dimension for γ > 0, etc.; see [8]). More generally,
however, there is a tradeoff between minimizing 
the sample error and minimizing the approxima-
tion error—what we referred to as the bias-variance
problem. Increasing the number m of data points
decreases the sample error. The effect of increas-
ing the complexity of the hypothesis space is 
trickier. Usually the approximation error decreases
but the sample error increases. This means that
there is an optimal complexity of the hypothesis
space for a given number of training data. In the 
case of the regularization algorithm described in 
this paper, this tradeoff corresponds to an optimum
value for γ as studied in [3], [5], [11]. In empirical
work, the optimum value is often found through
cross-validation techniques [18].

This tradeoff between approximation error and
sample error is probably the most critical issue in
determining good performance on a given problem.
The class of regularization algorithms, such as 
equation (4), shows clearly that it is also a tradeoff—
quoting Girosi—between the curse of dimensionality
(not enough examples) and the blessing of smoothness
(which decreases the effective “dimensionality”, i.e.,
the complexity of the hypothesis space) through the
parameter γ.
The Regularization Algorithm and Support
Vector Machines
There is nothing to stop us from using the algo-
rithm we described in this paper—that is, square
loss regularization—for binary classification.
Whereas SVM classification arose from using—with
binary y—the loss function

V (f (x, y)) = (1− yf (x))+,

we can perform least-squares regularized classifi-
cation via the loss function

{g ∈ L2, ‖B−sg‖ <∞}
with inner product 〈g, h〉E = 〈B−sg, B−sh〉L2 . Sup-
pose moreover that E→ L2 factors as
E→ C(X) → L2 with the inclusion JE : E↩ C(X) well
defined and compact.

Let H be JE(BR) when BR is the ball of radius R
in E. A theorem on the approximation error is

Theorem 2. Let 0 < r < s and H be as above. Then

‖fρ − fH‖2 ≤ (1/R)
2r
s−r ‖B−r fρ‖

2s
s−r .

We now use ‖ · ‖ for the norm in the space of
square-integrable functions on X, with measure
ρX. For our main example of RKHS, take B = L1/2

K ,
where K is a Mercer kernel,

(15) LKf (x) =
∫
X
f (x′)K(x, x′),

and we have taken the square root of the operator
LK . In this case E is HK as above.

Details and proofs may be found in [4] and in
[15].
Sample and Approximation Error for the
Regularization Algorithm
The previous discussion depends upon a compact
hypothesis space H from which the experimental
optimum fz and the true optimum fH are taken. In 
the key algorithm of the preceding section, the 
optimization is done over all f ∈HK with a regular-
ized error function. The error analysis of the 
preceding two subsections must therefore be 
extended.

Thus let fγ,z be the empirical optimum for the
regularized problem as exhibited in equation (4):

1
m

m∑
i=1

(yi − f (xi))2 + γ‖f‖2
K.

Then

(16)
∫

(fγ,z − fρ)2 ≤ S(γ)+A(γ)

where A(γ) (the approximation error in this con-
text) is

(17) A(γ) = γ1/2‖L−
1
4

K fρ‖2

and the sample error is

(18) S(γ) = 32M2(γ + C)2

γ2
v∗(m,δ)

where v∗(m,δ) is the unique solution of

(19)
m
4
v3 − ln(

4m
δ

)v − c1 = 0.

Here C, c1 > 0 depend only on X and K. For the
proof one reduces to the case of compact H and ap-
plies Theorems 1 and 2. Thus finding the optimal
solution is equivalent to finding the best tradeoff
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800 250 100
SVM RLSC SVM RLSC SVM RLSC
0.131 0.129 0.167 0.165 0.214 0.211

52 20 10
SVM RLSC SVM RLSC SVM RLSC
0.072 0.066 0.176 0.169 0.341 0.335

Table 1. A comparison of SVM and RLSC
(Regularized Least Squares Classification)

accuracy on a multiclass classification task (the
20newsgroups dataset with 20 classes and high

dimensionality, around 50,000), performed
using the standard “one versus all” scheme

based on the use of binary classifiers. The top
row indicates the number of documents/class

used for training. Entries in the table are the
fraction of misclassified documents. From [14].

Table 2. A comparison of SVM and RLSC
accuracy on another multiclass classification

task (the sector105 dataset, consisting of 105
classes with dimensionality about 50,000). The

top row indicates the number of
documents/class used for training. Entries in

the table are the fraction of misclassified
documents. From [14].

V (f (x, y)) = (f (x)− y)2.

This classification scheme was used at least as
early as 1989 (for reviews see [13]) and then re-
discovered again by many others (see [1]), includ-
ing Mangasarian (who refers to square loss regu-
larization as “proximal vector machines”) and
Suykens (who uses the name “least square SVMs”).
Rifkin [14] has confirmed the interesting empiri-
cal results by Mangasarian and Suykens: “classical”
square loss regularization works well also for bi-
nary classification (examples are in Tables 1 and 2).

In references to supervised learning, the Support
Vector Machine method is often described (see 
for instance R. M. Karp’s article in the May 2002 
issue of the Notices) according to the “traditional” 
approach, introduced by Vapnik and followed by
almost everybody else. In this approach, one starts
with the concepts of separating hyperplanes and
margin. Given the data, one searches for the linear
hyperplane that separates the positive and the neg-
ative examples, assumed to be linearly separable,
with the largest margin (the margin is defined as
the distance from the hyperplane to the nearest 
example). Most articles and books follow this 
approach, go from the separable to the nonsepa-
rable case, and use a so-called “kernel trick” (!) to
extend it to the nonlinear case. SVM for classifica-
tion was introduced by Vapnik in the linear, sepa-
rable case in terms of maximizing the margin. In
the nonseparable case, the margin motivation 
loses most of its meaning. A more general and 
simpler framework for deriving SVM algorithms

for classification and regression is to regard them
as special cases of regularization and follow the
treatment of the section above on the key algo-
rithm. In the case of linear functions f (x) = w · x
and separable data, maximizing the margin is 
exactly equivalent to maximizing 1/‖w‖, which 
is in turn equivalent to minimizing ‖w‖2, which 
corresponds to minimizing the RKHS norm.
The Regularization Algorithm and Learning
Theory
The Mercer theorem was introduced in learning
theory by Vapnik; RKHS were explicitly introduced
in learning theory by Girosi and later by Vapnik [1],
[16]. Poggio and Girosi [13], [1] had introduced
Tikhonov regularization in learning theory. Earlier,
Gaussian Radial Basis Functions were proposed 
as an alternative to neural networks by Broomhead
and Loewe. Of course, RKHS had been pioneered 
by Parzen and Wahba ([12], [18]; for a review see [18])
for applications closely related to learning, in-
cluding data smoothing (for image processing and
computer vision, see [1]).
A Bayesian Interpretation
The learning algorithm equation (4) has an interest-
ing Bayesian interpretation [18]: the data term—that
is, the first term with the quadratic loss function—is
a model of (Gaussian, additive) noise, and the RKHS
norm (the stabilizer) corresponds to a prior proba-
bility on the hypothesis space H .

Let us define P [f |Sm] as the conditional probability
of the function f given the training examples
Sm = (xi, yi)mi=1, P [Sm|f ] as the conditional probabil-
ity of Sm given f, i.e., a model of the noise, and P [f ]
as the a priori probability of the random field f.
Then Bayes’s theorem provides the posterior 
distribution as

P [f |Sm] = P [Sm|f ] P [f ]
P (Sm)

.

If the noise is normally distributed with variance
σ, then the probability P [Sm|f ] is

P [Sm|f ] =
1
ZL
e−

1
2σ2

∑m
i=1(yi−f (xi ))2

where ZL is a normalization constant.
If P [f ] = 1

Zr
e−‖f‖2

K, where Zr is another normal-
ization constant, then

P [f |Sm] = 1
ZDZLZr

e−
(

1
2σ2

∑m
i=1(yi−f (xi ))2+‖f‖2

K

)
.

One of the several possible estimates of f from
P [f |Sm] is the so-called Maximum A Posteriori (MAP)
estimate, that is,

max P [f |Sm] =min
m∑
i=1

(yi − f (xi))2 + 2σ 2‖f‖2
K,

which is the same as the regularization functional 
if λ = 2σ 2/m (for details and extensions to models
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2Definition: A class F of functions f is a uniform Glivenko-
Cantelli class if for every ε > 0

lim
m→∞ sup

ρ
P{sup

f∈F
|Eρmf − Eρf | > ε} = 0,

where ρn is the empirical measure supported on a set
x1, . . . , xn.

3In [2], following [17], a necessary and sufficient condition is
proved for uniform convergence of |Iemp[f ]− Iexp[f ]| , in
terms of the finiteness for all γ > 0 of a combinatorial quan-
tity called the Vγ dimension of F (which is the set
V (x), f (x), f ∈H), under some assumptions on V. The result
is based on a necessary and sufficient (distribution indepen-
dent) condition which uses the metric entropy of F defined
as Hm(ε,F ) = supxm∈Xm logN (ε,F , xm) , where
N (ε,F , xm) is the ε-covering of Fwith respect to l∞xm (l∞xm is
the l∞ distance on the points xm):

Theorem [Dudley, Giné, and Zinn]. F is a uniform Glivenko-
Cantelli class if and only if limm→∞Hm(ε,F )/m = 0 for
all ε > 0 .

of non-Gaussian noise and different loss functions,
see [8]).
Necessary and Sufficient Conditions for
Learnability
Compactness of the hypothesis space H is suffi-
cient for consistency of ERM, that is, for bounds of
the type of Theorem 1 on the sample error. The 
necessary and sufficient condition is that H is a 
uniform Glivenko-Cantelli class of functions, in
which case no specific topology is assumed for
H .2 There are several equivalent conditions on H
such as finiteness of the Vγ dimension for all 
positive γ (which reduces to finiteness of the VC 
dimension for {0,1} functions).3

We saw earlier that the regularization algorithm
equation (4) ensures (through the resulting com-
pactness of the “effective” hypothesis space) 
well-posedness of the problem. It also yields 
convergence of the empirical error to the true error
(i.e., bounds such as Theorem 1). An open question
is whether there is a connection between well-
posedness and consistency. For well-posedness
the critical condition is usually stability of the 
solution. In the learning problem, this condition
refers to stability of the solution of ERM with 
respect to small changes of the training set Sm . In
a similar way, the condition number characterizes
the stability of the solution of equation (3). Is it 
possible that some specific form of stability may
be necessary and sufficient for consistency of ERM?
Such a result would be surprising, because, a 
priori, there is no reason why there should be a 
connection between well-posedness and consis-
tency; they are both important requirements for
ERM, but they seem quite different and indepen-
dent of each other.
Learning Theory, Sample Complexity, and Brains
The theory of supervised learning outlined in this
paper and in the references has achieved a

remarkable degree of completeness and of practi-
cal success in many applications. Within it, many
interesting problems remain open and are a fertile
ground for interesting and useful mathematics.
One may also take a broader view and ask, What
next?

One could argue that the most important aspect
of intelligence and of the amazing performance 
of real brains is the ability to learn. How then do
the learning machines we have described in the 
theory compare with brains? There are of course
many aspects of biological learning that are not 
captured by the theory and several difficulties in
making any comparison. One of the most obvious
differences, however, is the ability of people and
animals to learn from very few examples. The 
algorithms we have described can learn an object
recognition task from a few thousand labeled 
images. This is a small number compared with the
apparent dimensionality of the problem (millions
of pixels), but a child, or even a monkey, can learn
the same task from just a few examples. Of course,
evolution has probably done a part of the learning,
but so have we, when we choose for any given task
an appropriate input representation for our learn-
ing machine. From this point of view, as Donald
Geman has argued, the interesting limit is not “m
goes to infinity”, but rather “m goes to zero”. Thus
an important area for future theoretical and ex-
perimental work is learning from partially labeled
examples (and the related area of active learning).
In the first case there are only a small number 8
of labeled pairs (xi, yi)8i=1—for instance, with yi bi-
nary—and many unlabeled data (xi)m8+1, m� 8 .
Though interesting work has begun in this direc-
tion, a satisfactory theory that provides conditions
under which unlabeled data can be used is still lack-
ing.

A comparison with real brains offers another, 
and probably related, challenge to learning theory.
The “learning algorithms” we have described in 
this paper correspond to one-layer architectures. 
Are hierarchical architectures with more layers 
justifiable in terms of learning theory? It seems that
the learning theory of the type we have outlined 
does not offer any general argument in favor of 
hierarchical learning machines for regression or 
classification. This is somewhat of a puzzle, since the
organization of cortex—for instance, visual cortex—
is strongly hierarchical. At the same time, hierarchi-
cal learning systems show superior performance in
several engineering applications. For instance, a 
face categorization system in which a single SVM 
classifier combines the real-valued output of a few
classifiers, each trained to a different component of
faces (such as eye and nose), outperforms a single
classifier trained on full images of faces [1]. The 
theoretical issues surrounding hierarchical systems
of this type are wide open and likely to be of
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paramount importance for the next major develop-
ment of efficient classifiers in several application do-
mains.

Why hierarchies? There may be reasons of 
efficiency—computational speed and use of com-
putational resources. For instance, the lowest 
levels of the hierarchy may represent a dictionary
of features that can be shared across multiple 
classification tasks (see [9]). Hierarchical systems
usually decompose a task in a series of simple
computations at each level—often an advantage 
for fast implementations. There may also be the
more fundamental issue of sample complexity. We
mentioned that an obvious difference between our
best classifiers and human learning is the number
of examples required in tasks such as object 
detection. The theory described in this paper shows
that the difficulty of a learning task depends on 
the size of the required hypothesis space. This
complexity determines in turn how many training
examples are needed to achieve a given level of 
generalization error. Thus the complexity of the 
hypothesis space sets the speed limit and the 
sample complexity for learning. If a task—like a 
visual recognition task—can be decomposed into
low-complexity learning tasks, for each layer of a
hierarchical learning machine, then each layer may
require only a small number of training examples.
Of course, not all classification tasks have a hier-
archical representation. Roughly speaking, the 
issue is under which conditions a function of 
many variables can be approximated by a function
of a small number of functions of subsets of the
original variables. Neuroscience suggests that 
what humans can learn can be represented by 
hierarchies that are locally simple. Thus our 
ability of learning from just a few examples, and
its limitations, may be related to the hierarchical
architecture of cortex. This is just one of several
possible connections, still to be characterized, 
between learning theory and the ultimate problem
in natural science—the organization and the 
principles of higher brain functions.
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