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Abstract

In this paper we investigate the question of convergence for
degenerate descent procedures. The results focus attention
on the role of a property of symmetric matrices analogous
to, but different from, the usual condition number used in
numerical linear algebra. The main result is a bound which
establishes a specific rate of exponential decay for time vary-
ing linear systems with singularA matrices.

1 Introduction

The question of interest here is a particular case of that of
determining the rate of convergence associated with descent
algorithms of the form

ẋ = −H(t, x)
∂φ(x)
∂x

whenH = HT is positive semidefinite but not positive def-
inite. Such equations arise when only partial information
about the gradient of the function to be minimized is avail-
able at any specific time, but over time different projections
of it become available, making it possible to construct an ef-
fective descent procedure. The most frequently studied situ-
ation seems to be one that arises in adaptive control of linear
systems. In this case an assumption of persistent excitation
is used to prove convergence–these results are well known.
Early contributions by Sondhi and MItra [1] and Anderson
[2] give sufficient conditions for exponential stability. These
resultls are reviewed in [3]. More recently Aeyles and Peute-
man [4] have formulated a number of specific open questions
in this area. In this note we examine the persistently exciting
hypothesis with a view toward providing tight inequalities
translating directly into explicit bounds on the a rate of con-
vergence to be copmpared with those of [1] and [3].

The simplest problem of interest here concerns the study
of the equation

ẏ(t) = −u(t)uT (t)y(t)

with u(t) an-vector. For such a systemyT (t)y(t) is clearly
non-increasing but because the quadratic form that defines its
derivative is only negative semidefinite, some further hypoth-
esis is needed to insure exponential stability. The additional
assumptions usually include the specification of a timeT , we
will call it the conditioning time, which is intended to char-
acterize a time interval such that the condition number (the
largest eigenvlaue divided by the smallest [5]) of the inte-
gral ofH over that interval is relatively small. For example,
if H is independent ofx and if W (t) =

∫ t
0
Hdt then one

often sees the hypothesis that for allt ≥ 0 the inequalities
ηI ≥W (t+ T )−W (t) ≥ εI are valid.

The relationship

d

dt
yT (t)y(t) = −〈y(t), u(t)〉2

shows that||y(t)|| does not decrease ify(t) is orthogonal to
u(t). The following example describes some situations in
which ||y(t)|| decays very slowly becausey(t) is nearly or-
thogonal tou(t) at all times.

Example: Let b be a constant vector and letΩ be a con-
stant real skew-symmetric matrix. Assume thatx satisfies

ẋ(t) = −eΩtbbT e−Ωtx(t)

In this case

W (T )) =
∫ T

0

eΩtbbT e−Ωtdt

and
x(t) = eΩtz(t)

where
ż(t) = (−Ω− bbT )z

BecauseeΩt is orthogonal, the rate of decay ofz is the same
as that ofx and is determined by the eigenvalues ofΩ + bbT .
In the special case

Ω =
[

0 ω
−ω 0

]
; bbT =

[
m 0
0 0

]
The eigenvalues of−Ω− bbT are given by

λi = −m
2
±
√
m2

4
− ω2



Form2 >> ω2 we have

λi ≈ −m+
ω2

m
and − ω2

m

In this case it is natural to take the conditioning time to be
π/ω because over the interval[t, t + π/ω] the matrixW (t)
increases by a multiple of the identity,

W (t+ π/ω)−W (t) = (mπ/2ω)I

Thus the condition number is one. Even in this ideal situa-
tion, however, the rate of decay of the least damped mode is
only about

x(t) ≈ e−ω2t/mx(0)

We call attention to the fact that for a fixed value ofω, in-
creasingm actually slows down the rate of decay, a rather
counterintuitive fact. To facilitate comparison with what fol-
lows we re-expressω2/m in terms of the conditioning time
T = π/ω, a term that is homogeneous of degree minus one
in W , and a term which is homogenous of degree zero. Let
r =(trW 3)1/3 and letT be as given. Then in terms of

λmax ≈ −
ω2

m
=
(−2π2

41/3

)
1
rT

we have
x(t) ≈ e−λmaxtx(0)

In the next section we state and prove a theorem giving a
bound for a general class of systems in a form that is compa-
rable with this computation.

2 Exponential Stability with Persistent Exci-
tation

To begin with we establish the following lemma.
Lemma 1: Suppose that

ẏ(t) = −u(t)uT (t)y(t)

DefineW as

W (t) =
∫ t

0

u(σ)uT (σ)dσ

Let ε(t) be the smallest eigenvalue of the symmetric, non-
negative matrixW (t). Then fort > 0 we have√

yT (0)y(0)− yT (t)y(t)
yT (0)y(0)

≥

√
2trW 3(t)

3(1 + 2ε(t))2
+

2ε(t)
(1 + 2ε(t))

−
√

2trW 3(t)
3(1 + 2ε(t))2

Proof: Without loss of generality we will assume that
||y(0)|| = 1. The general case simply involves a rescaling.
We begin with the observation that

d

dt

(
yT (t)W (t)y(t) +

1
2
yT (t)y(t)

)
=

−2yT (t)u(t) · yT (t)W (t)u(t)

Integrating this from 0 tot we see that

yT (t)W (t)y(t)− 1
2
(
1− yT (t)y(t)

)
=

−2
∫ t

0

yT (σ)u(σ) · yT (σ)W (σ)u(σ)dσ

The Cauchy-Schwartz inequality implies∣∣∣ ∫ t

0

yT (σ)u(σ) · yT (σ)W (σ)u(σ)dσ
∣∣∣ ≤

√∫ t

0

(yT (σ)u(σ))2
dσ ·

√∫ t

0

(yT (σ)W (σ)u(σ))2
dσ

We consider the two factors on the right-hand side separately.
Firtst, observe that from the differential equation fory we
have

d

dt
yT (t)y(t) = −2

(
yT (t)u(t)

)2
and so√∫ t

0

(yT (σ)u(σ))2
dσ =

√∫ t

0

− d

2dσ
(yT (σ)y(σ)) dσ

=
1√
2

√
1− yT (t)y(t)

We turn now to the second factor. Using the fact that||y(0)||
is one and||y(t)|| is monotone decreasing, we see that√∫ t

0

(yT (σ)W (σ)u(σ))2
dσ ≤

√∫ t

0

||W (σ)u(σ)||2dσ

Notice that

||W (t)u(t)||2 = uT (t)W 2(t)u(t) = trW 2(t)uTu(t)

so that

uT (t)W 2(t)u(t) =
1
3
d

dt
trW 3(t)

Using this in the above inequality we see that√∫ t

0

(yT (σ)W (σ)u(σ))2
dσ ≤

√
1
3

trW 3(t)

Putting these two inequalities together

yT (t)W (t)y(t)− 1
2
(
1− yT (t)y(t)

)
≤√

2
3

√
1− yT (t)y(t) ·

√
trW 3(t)

We can use this to get an explicit bound onyT (t)y(t) in
the following way. Letf(t) =

√
1− yT (t)y(t), multiply

the inequality by -2 and rearrange terms to get

f2(t) + f(t)
√

8√
3

√
trW 3(t) ≥ 2yT (t)W (t)y(t)



Denoting the smallest eigenvalue ofW (t) by ε(t), we can
say that

yT (t)W (t)y(t) ≥ ε(t)yT (t)y(t) = ε(t)(1− f2(t))

and thus that

(1 + 2ε)f2(t) + f(t)

√
8
3

√
trW 3(t) ≥ 2ε

dividing through by1 + 2ε we get

f2(t) + f(t)

√
8
3

√
trW 3(t)

(1 + 2ε)
≥ 2ε

(1 + 2ε)

Completing the square on the left we see that(
f(t) +

√
2
3

√
trW 3(t)

(1 + 2ε)

)2

≥ 2ε
(1 + 2ε)

+
2trW 3(t)
3(1 + 2ε)2

Taking the square root of both sides we get

f(t) ≥
√

2trW 3(t)
3(1 + 2ε)2

+
2ε

(1 + 2ε)
−
√

2trW 3(t)
3(1 + 2ε)2

which establishes the lemma.
In the cases of particular interest here,ε is small compared

wth
√

trW 3. Consider the Taylor series expansion

−a+
√
a2 + b = −a

(
1−

√
1 +

b

a2

)
=
a

2
b

a2
−a

4

(
b

a2

)2

+. . .

Identifyingbwith 2ε/(1+2ε), etc. we can use this to approx-
imate the right-hand side of the previous inequality. After
squaring both sides we get

f2(t) ≥ k(t) ≈ 3ε2(t)
2trW 3(t)

This, in turn, can be factored as the product of a term that
is homogeneous of degree zero inW (t) and a term which is
homogeneous of degree minus one inW (t),

f2(t) =
3ε2(t)

2(trW 3(t))2/3

1
(trW 3(t))1/3

We can interpret the first factor as being analogous to the
square of the reciprocal of the condition number ofW (t).
Specifically, it is the square of the smallest eigenvalue of
W (t) divided by the sum of the cubes of all the eigenval-
ues ofW (t), raised to the power 2/3. The second factor is
the reciprocal of a measure of the size ofW (t). Taking into
account the fact thatf measures the decay over a period, if
we take that period to beT then

λmax ≈ −
(

6ε2(T )
(trW 3T (T ))2/3

)(
1

(trW (T ))1/3T

)
The second factor can be identified with the factor1/rT ap-
pearing in the example in the introduction.

The lemma just proven provides the basic inequality re-
quired to prove the following result.

Theorem: Let y satisfy the equation

ẏ(t) = −u(t)uT (t)y(t)

DefineW as

W (t) =
∫ t

0

u(σ)uT (σ)dσ

Assume that there exist constantsε, r andT such that for all
t ≥ 0

W (t+ T )−W (t) ≥ ε · I
and

tr(W (t+ T )−W (t))3 ≤ r3

Then for

γ =

√
2r3

3(1 + 2ε)2
+

2ε
(1 + 2ε)

−
√

2r3

3(1 + 2ε)2

(necessarily between zero and one) and for

λ =
1
T

ln(1− γ2)

there is a constantd such that

||y(t)||2 ≤ d||y(0)||2eλt

Proof: From the lemma we see that

yT (0)y(0)− yT (T )y(T )
yT (0)y(0)

≥ γ2

which implies

yT (T )y(T ) ≤ (1− γ2)yT (0)y(0)

Thus over an interval of lengthT , the square of the norm
||y(t)||2 shrinks by the factor1− γ2. Solving

eλT = 1− γ2

we getλ = ln(1− γ2)/T .

3 A Generalization

Consider now the more general situation

ẏ(t) = −U(t)UT (t)y(t)

with U(t) ann by p matrix. In this case we have

d

dt
yT (t)y(t) = −2〈U(t)y(t), U(t)y(t)〉

As above,

d

dt

(
yT (t)W (t)y(t) +

1
2
yT (t)y(t)

)
=



−2yT (t)(UT (t)U(t)W (t) +W (t)U(t)UT (t))y(t)

Because we still have

d

dt
trW 3(t) = trW 2(t)U(t)UT (t)+

trW (t)U(t)UT (t)W (t) + tr(t)U(t)UT (t)W 2

the above argument goes through without change. We state
without further comment the following lemma.

Lemma 2: Suppose that

ẏ(t) = −U(t)UT (t)y(t)

DefineW as

W (t) =
∫ t

0

U(σ)UT (σ)dσ

Let ε(t) be the smallest eigenvalue of the symmetric, non-
negative matrixW (t). Then fort > 0 we have√

yT (0)y(0)− yT (t)y(t)
yT (0)y(0)

≥

√
2trW 3(t)

3(1 + 2ε(t))2
+

2ε(t)
(1 + 2ε(t))

−
√

2trW 3(t)
3(1 + 2ε(t))2
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