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Keywords: Gradient descent, persistent excitation, expo-with u(t) an-vector. For such a systegi (¢)y(t) is clearly
nential stability, stability non-increasing but because the quadratic form that defines its
derivative is only negative semidefinite, some further hypoth-
esis is needed to insure exponential stability. The additional
assumptions usually include the specification of a timeve

In this paper we investigate the question of convergence folill call it the conditioning time which is intended to char-
degenerate descent procedures. The results focus attenti@terize a time interval such that the condition number (the
on the role of a property of symmetric matrices analogous'argeSt elgenvlaue_dlwded.by thg smallest [5]) of the inte-
to, but different from, the usual condition number used in gral of H over that interval is relatively smtall. For example,
numerical linear algebra. The main result is a bound whichif # is independent of and if w(t) = [ Hdt then one
establishes a specific rate of exponential decay for time varyoften sees the hypothesis that for @l 0 the inequalities

ing linear systems with singulat matrices. nl > W(t+T)—W(t) > el are valid.
The relationship

Abstract

l IntFOdUCtion %yT(t)y(t) — —<y(t), u(t)>2
The question of interest here is a particular case of that of}, s that|y (1)
determining the rate of convergence associated with desceq}(t) )
algorithms of the form

|| does not decreaseq{t) is orthogonal to
. The following example describes some situations in
which ||y(t)|| decays very slowly becausgt) is nearly or-
8e(x) thogonal tou(t) at all times.
o7 Example: Let b be a constant vector and 18tbe a con-
stant real skew-symmetric matrix. Assume thaatisfies

i(t) = —eSHobT e M (1)

&= —H(t,x)

whenH = HT is positive semidefinite but not positive def-
inite. Such equations arise when only partial information
about the gradient of the function to be minimized is avail- |n this case
able at any specific time, but over time different projections T
of it become available, making it possible to construct an ef- W(T)) = / S ppT o= gy
fective descent procedure. The most frequently studied situ- 0
ation seems to be one that arises in adaptive control of lineagg
systems. In this case an assumption of persistent excitation z(t) = e 2(t)
is used to prove convergence-these results are well known.
Early contributions by Sondhi and Mitra [1] and Anderson WN€'€ , .
[2] give sufficient conditions for exponential stability. These 1) = (02 —-bb")z
resultls are reviewed in [3]. More recently Aeyles and Peute-Because:‘** is orthogonal, the rate of decay ofs the same
man [4] have formulated a number of specific open questionss that ofr and is determined by the eigenvaluegof bb’'.
in this area. In this note we examine the persistently excitingln the special case
hypothesis with a view toward providing tight inequalities
translating directly into explicit bounds on the a rate of con- 0= { 0 w } : bl = [ m 0 ]
vergence to be copmpared with those of [1] and [3]. —w 0 00
The simplest problem of interest here concerns the studyrpe eigenvalues of-Q — bb are given by
of the equation

9(t) = —u(t)u” ({)y(t) A=y o



Form? >> w? we have —2y" ()u(t) -y ()W (t)u(t)

w? w? Integrating this from 0 t@ we see that
A~ —m+ — and — —
mn mn T T
In this case it is natural to take the conditioning time to be y (W ()y(t) - 2 (1—-y" (1) =
7 /w because over the intervil ¢ + 7 /w] the matrixW (t) .
increases by a multiple of the identity, _2/ yT (0)u(o) -y~ (o)W (0)u(o)do
0

W(t +m/w) = W(t) = (mn/2w)] The Cauchy-Schwartz inequality implies

Thus the condition number is one. Even in this ideal situa- t
tion, however, the rate of decay of the least damped mode is ‘ / y (o)u(o) - y* (o)W (o)u(o)do| <
only about 0

z(t) ~ e Mg (0)

t t
2 2
We call attention to the fact that for a fixed valuewfin- \//0 (y" (o)u(a))" do - \//0 (Y ()W (o)u(0))” do

creasingm actually slows down the rate of decay, a rather
counterintuitive fact. To facilitate comparison with what fol-
lows we re-express?/m in terms of the conditioning time

We consider the two factors on the right-hand side separately.
Firtst, observe that from the differential equation fomwe

T = 7w, a term that is homogeneous of degree minus ond'2V€ d )
in W, and a term which is homogenous of degree zero. Let %yT(f)y(t) =2y (H)u(t))
r =(triw?3)1/3 and letT be as given. Then in terms of
and so
w? 272\ 1
Am,ar N = 1—/3 = t 2 t d
m ~ a7 )T | wr@uonds = [ =30 @) do
0 0o 2do
we have
~ _Arnamt 1
v e mrelo) = V1= Oy
In the next section we state and prove a theorem giving a
bound for a general class of systems in a form that is compaWe turn now to the second factor. Using the fact faf0) |
rable with this computation. is one and|y(t)|| is monotone decreasing, we see that

2 Exponential Stability with Persistent Exci- \//t (T ()W (0)u(0))? do < \//tHW(U)U(J)szU
tation 0 0

Notice that
To begin with we establish the following lemma. I
Lemma 1: Suppose that W ()ut)]? = uT () W2(t)u(t) = teW2(t)uTu(t)
y(t) = —u(t)u’ (t)y(t) so that L
DefineW as uT (W2 (t)u(t) = gEtYW?’(t)

Using this in the above inequality we see that

t
2 1
Let ¢(t) be the smallest eigenvalue of the symmetric, non- \// (YT (@)W (o)u(0))"do < 4/ strW3(t)
negative matri¥¥ (¢). Then for¢ > 0 we have 0

\/yT<o>y<0> —yT(Oy() |

Putting these two inequalities together

1
yT(0)y(0) v OWBy() - 5 1=y (By(t)) <
2trT73(1) 2¢(t) 26r W3 (1) 2 - .
\/3(1 o2 T2y T\ 30+ 240))2 VI Oy VIR
Proof: Without loss of generality we will assume that  We can use this to get an explicit bound gh(t)y(t) in
|ly(0)|| = 1. The general case simply involves a rescaling. the following way. Letf(t) = /1 —y"(t)y(t), multiply
We begin with the observation that the inequality by -2 and rearrange terms to get

d

& (oW + 307 0u0) - P20+ 50) Y20 = 2 W 00

2



Denoting the smallest eigenvalue Bf(t) by (t), we can The lemma just proven provides the basic inequality re-
say that quired to prove the following result.

Theorem: Let y satisfy the equation
yE W ()y(t) > e(t)y” (y(t) = e(t)(1 — £2()) . ,
and thus that §(t) = ~ultu" (E(?)

3 DefineW as
(14 2€)f%(t) + f(t)\/;/trw?’(t) > 2¢ ¢
W(t) = / u(o)u” (o)do
dividing through byl + 2¢ we get 0
Assume that there exist constaats and7’ such that for all
«/tr 2¢ £>0
)+ f(t) =
+2€ 1+26) W(t+T)—W(t)>e- T
Completing the square on the left we see that and
tr(W(t+T)—W(t)> <3
3
\/tr 2¢ . 2tr W3 () Then for
1—|—26 (1—|—26) 3(1 + 2¢)?
_ _ 2r3 2¢ 2r3
Taking the square root of both sides we get V= 301+ 2¢)2 + 1+ 26 - 301+ 2¢)2
£t) > 2tr W3 (¢) 2 2uW3() (necessarily between zero and one) and for
3(1+26)2  (1+2¢) 3(1+ 2¢)?
A= Sin(1 —2)
which establishes the lemma. T
In the cases of particular interest herés small compared .
wth vtrWW3. Consider the Taylor series expansion there is a constantsuch that
S PTEIES Iy < dlly(0)] e
—at+Val+b=—a|l—/14+ = g_g(_) +...
a? 2a? 4 \a? Proof: From the lemma we see that
Identifying b with 2¢/(14-2¢), etc. we can use this to approx- y" (0)y(0) — y"(T)y(T) > A2

imate the right-hand side of the previous inequality. After y*(0)y(0) B

squaring both sides we get which implies

y (T)y(T) < (1 —~*)y" (0)y(0)

{Thus over an interval of lengtif’, the square of the norm
||y (t)||? shrinks by the factot — 2. Solving

3e2(t)

f2(t) > k(t) ~ 2673(2)

This, in turn, can be factored as the product of a term tha
is homogeneous of degree zerdin(t) and a term which is
homogeneous of degree minus onéit{t), A 12

3e2(t) 1
2(trW3(¢))2/3 (trW3(t))1/3

f2(t) = we get\ = In(1 —~?)/T.

We can interpret the first factor as being analogous to the3 A Generalization

square of the reciprocal of the condition numberls{t).

Specifically, it is the square of the smallest eigenvalue ofConsider now the more general situation

W (t) divided by the sum of the cubes of all the eigenval-

ues of W (t), raised to the power 2/3. The second factor is §(t) = =U®U" (t)y(t)

the reciprocal of a measure of the size/{t). Taking into . ) )

account the fact thaf measures the decay over a period, if With U(#) ann by p matrix. In this case we have
we take that period to b€ then d y

\ N( 6€2(T) >( 1 ) T (y(t) = =2(UBy(®), U1)y(®)
maz ~ (trW3T(T))2/3 (teW (T))1/3T As above,

The second factor can be identified with the fadtorT” ap- d ( r 1 7
pearing in the example in the introduction. at (y OWOy() + 5y (t)y(t)> -




=2y (U (OUOW () + WOUBUT (1)y(t)

Because we still have

SWA(0) = W (U U 1)+

ttW (U UT (W (t) + tr()U () UT (1) W2

the above argument goes through without change. We state
without further comment the following lemma.
Lemma 2: Suppose that

§(t) = =UUT (t)y(t)
DefineW as
W(t) = /0 U(o)UT (0)do

Let e(t) be the smallest eigenvalue of the symmetric, non-
negative matri¥¥ (t). Then fort > 0 we have

\/yT<o>y<0> —yT(Oy(t)
y"(0)y(0) -
2TV (¢) 2(t) 2rTV3(¢)
B+ 2e(0)? (1t 2e(0))  \/ 301+ 2¢(0))2
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