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Digital Adaptive F ilters: Conditions for 
Convergence, Rates of Convergence, 
Effects of Noise and Errors Arising 

from the Implementation 
ALAN WEISS AND DEBASIS M ITRA, MEMBER, IEEE 

Afmwcr-A variety of theoreticai results are der ived for a  weii-knowu 
clasp of discrete-time adapt ive fiiters. First the following ideaihd identifi- 
cation problem is considered: a  discMe.time system has  vector input x(t) 
and  scalar output z(t)=h’x(f) where h  is an  unknown time-@uiant 
coefficient vector. The  fiiter considered adjusts an  estimate vector h(1) ia a  
control loop &lcwdng to 

i(t+At)=i((t)+K[z(f)--i(t)]+), 
where i(r)- $t)‘x(t) and  K is the control loop gain. ‘Ibe effectiveness of 
tbe fik is deter@ned by the convergence propert ies of the mMignment 
vector f(f) =  h-h(r). It is shown that a  certain nondegeneracy  “mixh@ 
condit ion on  the input {x(r)} is necess~ly and  sufficient for the exponen-  
tid convqence of the misaiignment. Quaiitativeiy identical upper  and  
lower bounds  are der ived for the rate of convergence.  Situations where 
noise is present in z(r) and  x(r) and  the coefficient vector h  is t ime-varying 
are anaiyzed. Nonmixing inputs are aiso considered, and  it is shown tbat in 
tbe idealiwd model  tbe above  stability results apply with only minor 
modifications, However,  nonmixing input in conjunction with certain types 
of noise lead to bounded  input - unbounded  output, i.e., instabiiity. 

I. INTRODUCTION 

I N THIS PAPER we derive a  variety of theoretical 
results for a  well-known class of discrete-time adaptive 

filters. The  results obtained here on  the conditions for 
convergence, rates of convergence, and  the effects of noise 
equal  in scope results recently obtained for the continu- 
ous-time analog counterparts. This paper  has the addi- 
tional purpose of analyzing and  elucidating some of the 
unusual, hitherto unexplained behavior of some advanced 
realizations in digital hardware that have recently ap- 
peared and  are in the process of being evaluated. 

A. The  Adaptation Algorithm 

As an  introduction to the adaptation algorithm studied 
here, let us first consider the following idealized identifica- 
tion problem (see F ig. 1). An unknown system (or black 
box) has a  sequence of vector inputs x(t), each of known 
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Fig. 1. (a) Schematic of identification problem. In the idealized prob- 
lem the system noise s(t)=0 and  /r(r) is constant. In Section IV-B and  
IV-C these restrictions are removed.  (b) Schematic of adapt ive filter. 
The  box  indicated by  .‘. refers to the multiplications and  a  summa- 
tion involved in forming the scalar product of two vectors. Two kinds 
of errors arising from the implementation, &r(t) and  e@(t), are consid- 
ered in Section V. In the idealized problem c(‘)(t) =  e(*)(t) 3  0. The  step 
involved in normalizing the norm of x(r) to unity is not shown. 

dimension n, and  a  sequence of scalar outputs z(t). Both 
sequences are known, or observed, at times t = to, to + At, to 
+2At; -. , and  it is assumed that 

z(t)=b’x(t), (1) 
where L  is a  constant n-vector and  the prime denotes 
matrix transposition. The  problem is to estimate h. 

The  adaptive procedure starts with an  initial estimate 
l$t,) and recursively adjusts the estimates k(t) according 
to the difference equation 

A&t) f k(t+At)--(t)=K{z(t)-i(t)}x(t), (2) 
where 

2(t)=t;(t)‘x(t) (3) 
and  K, the control loop gain, is a  parameter. It is assumed 
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throughout that 
llx(t)f g x’(t)x(t)=l. (4) 

Thus a normalization procedure which consists of divid- 
ing the right side of (2) by llx(t)l]2 is tacitly assumed. This 
normalization procedure is not undertaken in all im- 
plementations. Nevertheless we assume (4) both because 
some implementations (for example, Duttweiler’s [2OJ) do 
use this normalization, and for mathematical convenience. 
If instead of (4) we had assumed that 

I lxWl12 <L2, (4’) 
as in [l], then our upper bounds in Section II hold with 
only m inor changes. See, for instance, footnote two to 
inequality (19). 

The effectiveness of the filter is determined by the 
convergence properties of the m isalignment vector r(t) 
which is defined by 

We see that 
r(t) A h--l;(t). (5) 

Ar(t)= -Ad(t), since Ah=O, 
= - K{z(t)-i(t)}x(t), from (2), 
= - K{r’(t)x(t)}x(t). (6) 

The convergence properties of the solutions r(t) of the 
above homogeneous difference equation are the subject of 
the analysis reported in Sections II and III. Our discus- 
sion in Sections I-B and I-C will indicate that because of 
the robustness and simplicity of the algorithm it has found 
a variety of applications. However, the results hitherto 
available leave unresolved some of the basic questions 
regarding the performance of the algorithm. Some of these 
questions are “What is the least stringent condition on the 
input vectors {x(t)} which guarantees uniform conver- 
gence of the m isalignment? What are the rates of conver- 
gence when the input belong to the class for which con- 
vergence is guaranteed?’ These questions are germane 
when the input vectors are derived from a complex signal 
such as speech. 

B. Summary of Results 

In this paper we answer some of these questions. In 
Section I-E we define the key notion of ‘m ixing’ input. We 
emphasize that our usage of the term m ixing is not to be 
confused with other usages. This is the discrete-time ana- 
log of the m ixing condition introduced in [l] and [2] for 
continuous-time vector processes. In particular, m ixing 
does not require stationarity or periodicity of the input 
signal, or even that it is either stochastic or deterministic. 
We are able to prove the following results: 

i) We show in Section II that the m ixing condition 
implies the existence of an exponentially decreasing upper 
bound on Ilr(t)ll. We also show in Appendix I that the 
existence of an exponentially decreasing upper bound 
implies that the m ixing condition is satisfied. Thus the 
m ixing condition is necessary and sufficient for exponen- 
tial convergence of the m isalignment. 

ii) The upper bound on the rate of convergence is valid 
for all m ixing inputs, all K and all t. The m ixing condition 
is also used to obtain a lower bound on the convergence 
rate for small values of K. A related but not identical 
assumption is used in Section III to derive a lower bound 
for larger values of K. The motivation for the care that is 
taken to obtain these bounds is that it provides important 
insights into the question of the best loop gain setting. 
This is exemplified by the fact that the upper and lower 
bounds have identical qualitative dependence on K for 
both small and large K. 

iii) We conclude that, for the large class of processes 
for which both the upper and lower bounds apply, the rate 
Of convergence must increase as K for small K and must 
decrease as l/K to a very small number as K-1, since 
this behavior is common to both bounds. The value of K 
which maximizes the rate of convergence for our upper 
bound is a small number, considerably smaller than the 
“optimum” value of K predicted by a myopic optimiza. 
tion and the “method of averaging”. 

In Section IV we proceed to investigate the effects of 
adding a vector forcing term u(t) to the right side of (6), 
i.e., 

Ar( t) = - Jw(0-+)1d4 + u(t). (7) 
iv) We show that if Ilu(t is bounded, or equivalently 

has a bounded mean over intervals of a finite length, then 
so is /r(t)]]. In particular, the residual error Ilr(t)ll is 
bounded as t+co. Explicit bounds for the residual error 
are obtained so that its dependence on the loop gain is 
transparent. 

v) The above bounded input - bounded output prop- 
erty is exploited by noting that the effects of departures 
from the idealized problem can be represented by the 
term u(t). Thus: a) the effect of an added system noise 
component s(t) in the observed signal z(t), and b) the 
effect of variations with time of the unknown vector h, 
can both be lumped into the term u(t) in (7). 

vi) In the final part of the paper, Section V, we con- 
sider for the first time the rather consequential implica- 
tions of nonmixing inputs on the performance of the filter. 
We begin by showing that inputs may be expected to be 
nonmixing in many applications, especially communica- 
tions-related applications such as echo-cancellation. In 
these cases the high dimensionality of the input vectors 
and the filter, together with the bandlimited form of the 
inputs, are responsible for the phenomenon of nonmixing 
inputs. We show that in the idealized problem as well as 
in the case where noise s(t) is present in the measured 
signal (case a) above) the results obtained previously on 
the basis of the m ixing assumption on the input vectors 
apply (with only m inor modifications) to the case of 
nonmixing inputs. 

vii) The situation changes abruptly if nonmixing inputs 
are considered in conjunction with random errors of two 
different kinds that may arise due to noise or a digital 
implementation of the device. We prove the surprising 
and consequential result that if both kinds of errors occur 
simultaneously, each with arbitrarily small bounds, then 
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I]r(t)]] becomes unbounded as t+co. If, however, only one  propriate change in the scale of K is taken into account; 
kind of error occurs, then the residual error is bounded  thus large K is interpreted as K approaching unity and  K 
provided the bound  on  the error and  the loop gain is approaching infinity for the discrete-time and  
small. continuous-time filters, respectively. 

C. Applications 

Eykhoff [3] provides an  authoritative account of the 
variety of approaches to the identification problem as well 
as the applications that the algorithm has found. The  
algorithm has been  proposed for adapt ing switching 
circuits 141, control [5], [7], and  self-optimization [6]. 
Among communicat ion related applications is the equali- 
zation of te lephone lines for data communicat ion [8], [9], 
[lo]. The  algorithm has been  proposed for echo cancella- 
tion in long distance telephony [ 1  l]-[ 141. Both analog [ 151, 
[16] and  digital [17]-[20] versions of the canceller have 
been  realized. (A point to note about the cancellers is that 
typically the dimension n  is large being on  the order of 
100.) Speech related applications are to be  found in [21] 
and  [22]. 

D. Known Theoretical Results 

A key equation derived from (6) helps to explain the 
basic robustness of the algorithm: 

= - K(2- K){r’(t)x(t)}‘. (8) 
For 

Allr(t)l12={r(t+At)-r(t)}‘{r(t+At)+r(t)} 
={r(t+At)-r(t)}‘{r(t+At)-r(t)+2r(t)} 

=Ilr(t+At)-r(t)~~2+2r’(t){r(t+At)-r(t)} 
(9) 

which yields (8) when the expression for Ar(t) in (6) is 
substituted into the expression on  the right side. 

Equation (8) says that for 0  <K< 2, the norm of the 
m isalignment is nonincreasing.’ This is of course not the 
same as uniform convergence of Ilr(t)ll to zero; additional 
information is called for regarding the behavior of the 
term r’(t)x(t). We  note from (6) that choosing K= 1  + 6  
has virtually the same effect as choosing K= 1  - 6; in 
either case the norm of the component  of r(t + At) in the 
x(t) direction will be  16  { r’(t)x(t)} 1. So henceforth we shall 
assume that 0  <K < 1. 

Equation (8) is also noteworthy because it focuses on  a  
fundamental difference between continuous- and  
discrete-time versions of the adaptive filter; in the former 
case the m isalignment norm is nonincreasing for all values 
of the loop gain K (see for instance [ 11). However, we shall 
find that there is remarkable affinity between the results 
proved in Sections II, III, and  IV, and  the corresponding 
results for continuous-time filters [I] provided an  ap- 

Some of our results have been  initiated by the methods 
and  results presented in two recent papers on  the continu- 
ous-time algorithm. Our derivations of the upper  bound,  
and  the subsequent  results on  the solutions of (7) which 
includes the forcing term u(t), are adaptations of the 
methods in [I]. In an  important paper  Morgan and  
Narendra [2] proved that the m ixing condition is not only 
sufficient but also necessary for exponential convergence 
in continuous-time. Our proof in the Appendix of the 
necessity of the m ixing condition for uniform convergence 
is an  adaptation of the proof provided in [2]. On  the other 
hand, the derivation of the lower bound  for large K, based 
as it is on  geometrical arguments, is basically new. Also, 
almost all the results in Sondhi and  M itra’s paper, includ- 
ing their lower bound,  may be  derived from the results 
given here by going to the continuous lim it in an  ap- 
propriate manner.  F inally, the results in Section V con- 
cern topics which have virtually not been  addressed previ- 
ously in either the continuous- or discrete-time formula- 
tions. Thus the implications of nonmixing inputs have not 
been  investigated previously; we find that the implications 
are rather consequential. We  also recall that there is a  
considerable body of literature concerning the behavior of 
the algorithm under  a  variety of assumptions regarding 
the input vectors [7], [9], [23]-[25]. 

As far as convergence rates are concerned, all publ ished 
results are essentially based upon  averaging of the right 
side of (6) and  (7) and  assuming r to be  either slowly 
varying or independent of x [26], [27], [28]. Some of the 
early results on  the method of averaging were established 
for the deterministic, continuous time  equations by Bogu- 
liubov [29]. Khasminskii [30] has shown that the method 
of averaging provides uniformly good  approximations to 
the true solutions over intervals of order l/K in the 
continuous-time formulation. However, the method of 
averaging gives m isleading results in all cases except 
where K is very small. 

E. The  M ixing Condition 

As ment ioned above almost all our results require 
familiarity with the m ixing condition on  the input vectors 
{x(t)}. The  following is the discrete analog of the m ixing 
condition in [l]. 

The  vectors x(t) satisfy the m ixing condition if there 
exist numbers T  and  a>0 such that for any constant 
nonzero n-vector d  and  any time  t, 

f ;;; {d’x(t+jAt)}2 >alldj12. (10) 

‘W ithout the assumption 11x(‘& = 1, we should have  obtained Allr(t)ll* 
=  - K{2- Kllx(t)ll*)(r’(t)x(r)) ; thus a  decreasing misalignment is im- An equivalent statement of the m ixing condition is the 
plied only if O<K<2/~~x(t)~~*. following discrete analog of the condition used in [2]. 
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There exist numbers a>0 and b such that for any unit 
n-vector d, any time t and any N > 1 

N-l 

2 {d’x(t+jAt)}2>aN+b. 
j=O 

(11) 

Let us examine the condition in (10) in greater detail. 
This condition is basically that, over any time interval of 
length T, the components of x(t) have an average length 
of at least (Y in any direction. In particular, a sequence 
{x(t)} in which the n-vectors are restricted to any proper 
subspace of R” is nonmixing. Further, if the input is 
nonmixing there will be arbitrarily long time intervals for 
which the vectors x(t) are effectively restricted to a partic- 
ular proper subspace of R”. 

It is also clear that where n is the dimension of x(t), 
T>n and a < l/n. (12) 

The first follows from observing that it takes at least n 
vectors to span an n-dimensional space. For the second 
inequality observe that the smallest average component of 
a collection of n-vectors can be no larger than l/n. A 
better proof is to note that there is no loss of generality in 
assuming that 

(Y = smallest eigenvalue of $ 7%’ x( t +jAt)x’( t +jAt). 
J’o 

(13) 
Then note that Ilx(t)ll= 1 for all t, so the trace of x(t)x’(t) 
is unity for each t, and thus the trace of the matrix in (13) 
is also unity. As the trace is the sum of the n eigenvalues, 
the smallest eigenvalue cannot exceed l/n. 

It should be noted in (10) that any T, > T  will suffice in 
the m ixing condition, perhaps with a new (Y, so we should 
properly regard (Y = CX( T). 

It may be seen that many stochastic processes do not 
satisfy the m ixing condition. However, for many processes 
of interest, there will be choices of T  and (Y such that the 
sample paths will be m ixing for long periods of time 
separated by periods when the process is not m ixing. In 
the former periods, our exponential bounds will hold 
while in the latter periods, by virtue of (8), IIr(t)(l is 
nonincreasing. 

For the sake of brevity and simplicity we will agree 
that, from now on, in all summations the index will be 
incremented by At. Thus 

ro+(T- 1)At 

lx x(j)=x(t,)+x(t,+At)+... 
j=to 

+x{t,+(T-l)At}. 

II. UPPER BOUND 

In this section we will derive exponentially decreasing 
upper bounds on the norm of the m isalignment vector r(t) 

in the idealized problem, (6), where x(t) is m ixing. Our 
results and proofs are close to those in Sondhi and M itra’s 
paper 11, Section IIB]. 

The better of our upper bounds for small values of (Y 
(a < 0.05, n > 20) is also the simplest to derive and 
evaluate numerically. Another upper bound, which is an 
improvement only for large values of (Y, is stated without 
proof. 
A. Derivation of the Bound 

The m ixing condition seems to say that r’(t)x(t) cannot 
be small all the time if I] r(t)11 is large. This is exactly what 
we need, according to (8), for Ilr(t)ll to decrease. Equation 
(lo), the m ixing condition, leads us to consider 
z ~2~-‘)Ar{r’(t0)x(t)}2. We have 

t,,+(T- 1)At 

~TlIr(to)I12 ( x {~(tob(4}2, from  (1% t = to 
to+(T- I)At 

= ,g, ww40~2 
0 

t,+(T- 1)At 

+ IX [-W{r(to)--r(t)~]2 
t = to 

t,+(T- I)At 

+2 ,z, wwoH[ X’w~roO)- r(t)>]* 
0 

(14) 

We now bound each term on the right side of (14) from 
above, and derive an inequality involving II r(to)ll and 
)I r( to + TAt)ll. We will need the following formula, valid 
for any n-vectors u(t) and b(t): 

TAt TAt 

t=At+At 

j=At 

TAt 

+ ,~A,~~‘tt)b(t)~2~~‘tr)~o). 

(15) 
Consider the first term which appears on the right side of 
(14). From (8), 

t,+(T- I)At 

= Kt2! Kj (I14to)l12- Ilr(to+ W l12). 

(16) 

Now consider the second term on the right side of (14): 

“+‘~‘)A’ [x’(t)(r(to)-r(t)j]2 
t-to 

t,+(T- I)At 

t=t, 
t,+(T-I)At ,-At 

= ,sF+A, II ,zt, K{r’(s)-ds)lx(s)l12, from  (6h 
0 

t-At 

IX I14~N2 2 {r’(s>4s>12 9 
3 = to I 
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by Schwarz’s inequality, 

since ]lx(s)l12= 1, 
to+(T- 19, t _  to 

=K2 x 
r-,,,+A, 

L\t’ K(2y K) [ IHto)l12- Ilrwl12]~ 

from (8), 

from (8), 

= yIT$) [ l14to)l12- llrOo+ W l12]y (17) 

where the final step follows from the identity ZZy- ,i = N(N 
+ 1)/2. 

F inally, consider the third term in the right side of (14): 
t,,+(T- 1)At 

2 ,T {X’(t)r(t)}[X’(t){rttO)--r(t)}] 
-0 

to+(T- I)At t-At 

-2~ ,=~+A, {x’(t>r(t>)x’(t) x {J(s)x(s))x(s)~ 

from (6;, 
s = to 

t,+(T- 1)At 

-VI ,F bf(t)r(t)b(t)l12 
-0 

t,+(T-1)At 

-K c {x’(t)r(t)}2, from(15), 
t = I, 

t,+(T- 1)A.r t,+(T- l)At 

(K ,z 
0 

IlxW l12 ,=~+,, {~‘(t)r(t))~ 
0 

to+(T- I)At 

- K 2  { x’( t)r( t)} 2, by Schwarz’s inequality, 
t-to 

= K(T- 1) [ Ilr(to)l12- Ilr(to+ W l12] 
K(2-K) ’ from (8), 

= g=J II’(toW - Ilr(to+ W l12]. (18) 

On substituting the bounds in (16), (17), and  (18) into 
(14), we obtain 

lIdto+ W l12~ IIr(to)l12 l- 
2aKT(2 - K) 1 2+2K(T-l)+K’T(T-1) ’ 

(19)2 

The  above equation is equivalent to the promised ex- 

*We  observe that if IIx(r)ll is, as  in (4’), uniformly bounded  by L  
insteady of being normalized to unity, as  has  been  assumed throughout,  
then the above  procedure yields 

II+,+ W ll*< Il44,)ll* 2aKT(2 - KL2) 
2+2K(L*T-l)+K*L4T(T-l) 

641  

ponential bound.  If we take b  such that 

2aKT(2 - K) 
2+2K(T-1)+K2T(T-1) I 

(20) 

then 

Ilr(t,+ NAt)]] < ‘]r(to)‘]’ 
for N<T 

IIr(to)IIe-b(N-T), forN>T. 

(21) 
Observe that b  >0 if K<2. 

We  have also shown (the proof is om itted) by a  rather 
different method that 

Ilr(b+ TAt)ll ~YoII~(to)Il~ for all to, 

where y. is the unique positive root of 

[ 1+ aKT+ cu(aT+ 1)K2T/2]y 

=l+K3[ 2K(;,,,]“2  

. T3(T+ 1)2 + 

1  

T2( T+ 1)(2T+ 1) 1 “2 
4  6  

with O<y, < 1. The  above bound  is superior to (19) only 
for large values of (Y. 

Our results are summarized in the next proposition. 
Proposition 1: If x(t) satisfies the m ixing condition (10) 

and  r(t) satisfies (6), then 

lIdto+ TAt)ll ~BIIr(tdlL for all to, 

where B is the smaller of the quantities 

[ 
l- 2aKT(2 - K) 

2+2K(T- l)+ K’T(T- 1) 1 l/2 

and yo. Thus, for any N > 0, 

where b= -(lnB)/T and  a=ebT.  
If we pass to the continuous lim it in (19), that is, let 

K+O and  T+ cc in such a  way that KT = constant = K’ T’ 
and  TAt = constant = T’ then we find that 

lIdto+ T’)l12< llr(to)l12 
4aK’T’ 

2  + 2  K’ T’ i- Kf2Tf2 1 (22) 
which is identical to Sondhi and  M itra’s [ 1, (26) and  (27)]. 

B. Dependence of the Upper Bound on  the Loop  Ga in K 

We  now examine the manner  in which b, which indi- 
cates the rate of convergence, depends on  K. We  do  not 
consider the dependence on  (Y and  T, since these parame- 
ters are inherent to the input process and  not subject to 
control. We  consider the case where 

b=-&ln l- 
I 

2aKT(2 - K) 
2+2K(T-l)+K’T(T-1) 1  

* (20) 
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Fig. 2. Convergence rate derived from upper bound (Section II-A). b = - (l/2T)ln[l-4aKT/(2 + 2KT + K*T*)]. 

KT 

If K is small then 2- Km2 and using the approxima- 
tion ln( 1 - a)= - a for small values of a, we obtain 

b& 4aKT 
2T2+2K(T-1)+K2T(T-1)aQ 

K. (23) 

If K is large, that is K-21, then we ignore terms of order 
less than two in T  (recall that T  >n, the dimension of x(t), 
typically a large number) and we obtain from (20) 

bw- 2rxKT(2 - K) 
I 

a(2-K) (Y 
K2T2 * KT2 -3’ 

(24) 
Observe that CX/ T2 < l/ n3, a very small number. 

We see that in the exponential bound the rate of con- 
vergence b increases linearly with K for small K, and is 
inversely proportional to K as K approaches 1. As K 
approaches 1, the exponent in the exponential bound 
rapidly approaches the very small number a/T’, A graph 
of b(K) for certain values of cx and T which demonstrates 
this behavior is given in Fig. 2. 

The optimum value of K, i.e., that value of K for which 
Ilr(t)ll decreases most rapidly, as suggested by our upper 
bound, is easily calculated to be (after setting db/dK=O 
and solving) 

K= VEG- -US* 
T2-1 T  (25) 

Since T is typically large (T >n) we see that the optimull 
value of K is rather small compared to one. 

C. Discussion of the Optimum Value of the Loop Gain K 

The optimum value just calculated from our upper 
bound is quite different from the best value of K obtained 
from ‘myopic’ optimization: examining (8) we see that 
Ilr(Oll - Ilr(t+W ll . is maximal when K = 1. This is not 
surprising since maximizing (A[( r(t)((( after each interval of 
length At may not maximize the change in norm over a 
collection of intervals. 

Another notion which leads to an erroneous ‘optimum’ 
value of K is the method of averaging. This involves 
taking (6), Ar(t) = - Kx(t)x’(t)r(t), and assuming that r(t) 
behaves something like the solution to 

Ar( t) = - K&(t) GW 
where A is the n x n matrix which is the expected value of 
x(t)x’(t). We can show that the method of averaging is 
not very useful for large K, or even for values of K for 
which our upper bound on the convergence rate is opti- 
mal. We note parenthetically that we will use something 
similar to the averaging argument for the case of small K 
in the following section on lower bounds. 

We also observe that for a particular process the true 
optimal value of K (that value which makes for the fastest 
decrease in Ilr(t)ll) may be quite different from the value 
given in (25). In fact, we have some (rather pathological) 
examples for which the optimal value of K is indeed 1.3 
However, for many processes x(t), we are in a position to 
indicate an interval in which the true optimum lies. We do 
this by finding exponentially decreasing lower bounds on 
Ilr(t)ll where the exponents have the same behavior with K 
as our upper bound; that is, we find lower bounds whose 
exponent increases linearly with K for small K and (for a 
wide class of processes) decreases as 1 /K as K approaches 
1. As shown in Fig. 3, this will give bounds on the range 
of the true optimal value of K for a given process x(t). 

III. LOWER BOUNDS 

We obtain our first lower bound on Ilr(t)ll directly from 
(6): 

Ilr(t+ At)ll= Ilr(t)- K(r’(tb(Ob(t)ll 
> Ilr(t)ll- Kll(r’(tb(t))x(t)ll 
2 Il~(oll(l- 0 

(27) 
(28) 

‘One excellent example is a process x(r) where x(r) is perpendicular to 
x(r--jAr)forj=1,2,...,n - 1. In this example we have a= l/n, T=n. If 
we take K= 1 here, then r(r,+ nAr)=O! Any K smaller than unity will 
not perform as well. 
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CONVERGENCE 
RATE, b 

ACTUAL b n K CURVE 
MUST LIE H HERE 

MUST LIE IN 
LOWER BOUND 

UPPER BDw4D 

k OPTIMUM K MUST LIE IN THIS RANGE---+ 

Fig. 3. Sketch illustrating role of upper  and  lower bounds  in determining range of values of K of particular interest for 
given input process. 

For small K we see that this is equivalent to 

Jlr(t,+ iVAt) >eN1og(‘-K)Jlr(t,)JI, (2% 
i.e., we have an  exponential lower bound  whose exponent  
increases linearly with K for small K. 

Unfortunately, this simple lower bound  leaves much to 
be  desired since, as detailed in the discussion at the end  of 
Section III-A, it does not have anything like the behavior 
of the upper  bound  in Proposition 1, Section II-A, for 
large values of K. For extremely small K we obtain below 
a  sharper lower bound  via the m ixing condition. For 
larger values of K we obtain a  lower bound  summarized 
in Proposition 2, Section III-C. 

A. Lower Bound for Ve/eiy Small K 

Intuitively, if K is very small, then r(t) does not change 
very rapidly, so we suspect r(t)=r(t,-,) for t-t,< TAt, 
where T  is as in the m ixing condition (10). We  then have 

IId&,+ W l12= l14h,)l12- J@-K) 
t,+(T- 1)At 

. x {r’(t)~(t)}~, from @), 
t = to 

t,+(T-1)At 

=ll~(4,)I12--2K 2  t=t w0>~c~>>‘9 
0  

(30) 

= )lr(to))12[ 1-2KT{ 1  -(n- l)c~}]. (32) 

Equation (30) follows from replacing 2- K by 2  and  r(t) 
by r(t,). By using (28) and  the bound  in Proposition 1, it is 
easy to show that the errors incurred in (30) are of order 
K2. Inequality (31) comes from the fact that the largest 

eigenvalue of 
to+ (T- 1)At 

2  44x’(t) /T 
t =  to 1  

is at most 1  -(n - 1)a. From (32) we have 

llr(t,+NA~\t)JI > Ilr(fo)lle-c(N-T) 
where 

(33) 

CA -&ln[l-2KT{l-(n-l)a}]aK{l-(n--1)a). 

(34) 
The  above is better than the bound  in (29) which has 

c=K. In fact, if (YX l/n (the maximum possible value), 
(34) gives c= K/n, which is the same as the upper  bound  
(23). This shows that the bound  in (34) is the best possible 
when all that is known about the input is that it is m ixing. 

We  now have the best possible lower bound  for small 
K, (33), and  we also have a  lower bound  for all K, (29). 
However, the exponent  in the exponential bound  implied 
by (29) grows monotonically with K, in sharp contrast 
with our upper  bound  where it decreases as 1  /K for large 
K. In order to establish this behavior for the lower bound  
we will have to examine the convergence process in 
greater detail. 

B. Geometrical Preliminaries: K Not SmaN 

It will be  beneficial to give the reader a  flavor of the 
final result of this section which is developed almost 
exclusively from geometrical arguments. Consider the 
plane formed by the generic x(t) and  r(t) vectors, see F ig. 
4. Provided K is large relative to the rate at which the 
vectors x(t) may change, we show that there exist two 
regions in the plane, B, and  B,, with the following im- 
portant properties. Region B, acts as a  ‘trap’ region in the 
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Fig. 4. Regions B, and B, in the (x(t),r(f)) plane. See Section III-B on 
lower bound. 

sense that if {x(t),r(t)} occurs in B, then so does { x(t + 
At),r(t + At)} an consequently all subsequent such pairs d 
also. Region B, acts as a ‘drift’ region in the sense that if 
{x(&r(t)} occurs in B,, then r(t+At) lies closer to the 
region B, in the {x( t + At), r(t + At)} plane. Eventually the 
pairs of vectors are guaranteed to ‘drift’ into the trap 
region B,. We do not make any claims regarding the 
subsequent behavior of the system if {x(t),r(t)} does not 
lie in either B, or B,. Note that the regions B, and B, are 
completely defined by the angles p, and p2, 0 < p, <p2 < 
n/2: 

{x(t),+)} E  B,-os& ( Ix’W W l 
IlrW ll 

< cosP*t (35) 

{x(t),r(t)} E B,&O< Ix’(MQl 
MOl 

< cos p2. (36) 

Let 0, be the angle between x(t) and r(t), and let (p, be 
the angle between x(t) and r(t + At) in the plane formed 
by the x(t),r(t) vectors. (Note that r(t +At) is in the 
{x(t),r(t)} plane as r(t+At)=r(t)- K{r’(t)x(t)}x(t) is a 
linear combination of the vectors in the plane.) For most 
of this section our only contact with the dynamics of the 
{r(t)} process will be through the following geometrical 
statement relating C& and 0,: 

tan d+ tan4 _ 
1-K’ (37) 

This is clear from Fig. 5, and it may also be easily proved 
analytically from (6). The lower bound that we derive (for 
K not small) requires the assumption that 

Ilx(t+At)-x(t)ll<fi, for all t. (38) 
More precisely we require an angle 6, 0<6 <n/2, such 
that 

Assumption: 

IIx(t+At)-x(t)/1 < V/2(1-co&) <fi) for all t 
(39) 

or, equivalently, 
x’(t+At)x(t)>cosS >O, for all t. (40) 

Fig. 5. (x(t),r(l)) plane. See Section III-B on lower bound. 

Thus the angle between x(t + At) and x(t) is bounded by a 
number 6 <n/2, for all t > t,,. Another way of interpreting 
this condition is that the ‘velocity’ of the input process is 
bounded by a finite number (see [l] for a similar restric- 
tion). This assumption is somewhat related to the m ixing 
condition. If 6 is small then x(t) cannot move very 
rapidly, and so cannot “m ix” well in a short period of 
time. This means that if S is small then we cannot have 
both T  small and IX large in the m ixing condition, see (10) 
in Section I-D. 

Relying only on the assumption on x(t), (39), we claim 
that 

bt - &+Atl G6, (41) 
that is, the angle between x(t + At) and r(t + At) is within 
6 of the angle between x(t) and ‘(t +At). This is so 
because the angle between x(t +At) and x(t) is, by (39), 
bounded by 6. 

From (41) we conclude that 

id2- et+Ati < w2-+tl + a* (42) 
Let us now try to find angles et, for given K and 6, such 

that (compare with (41)), 

i4+--s=4 (43) 
that is, the angle between r(t) and r(t + At) is 6. It is 
understood that (p, is related to /3, through (37). The 
solutions 0, of (43) will prove important for our bounds. 

We now show that if K is large or 6 small then there are 
exactly two solutions, & and p2, for angles 0, in the 
interval [0,~/2] which satisfy the following pairs of equa- 
tions: 

tan@, 
taWt = rK, O<$+,,<n/2. 

+t - et = 6. (45) 
If we call the solutions to these equations j3, and sub- 
stitute (45) into (44), we obtain’ the single equation 

tan(p+&)=s. (46) 

Note parenthetically that S <p + 6 <a/2 since tan( /? + S) 
and tan/3 have the same sign. On expanding the left side 
of (46), 

tan(p+a)= tanP+tan6 
1 -tanptans ’ 

we observe that (46) is a quadratic in tanj3. The solutions 
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are 

tan&,,= 
KTdK2-4(1 - K)tan26 

2tan6 (47) 

For solutions to exist it is necessary and  sufficient that the 
following assumption relating K and  6  be  valid. 

Assumption: 
K 

di=x 
> 2tan6. (48) 

We  see that as tana+cc (S-+7r/2) we need  K-+1 for the 
solutions to exist. 

At this stage then we have that if K is large or S small, 
i.e., (48) is valid, then two solutions j3, and  p2  of (47) exist. 
We  have already seen that 0  <p, <p2 <m/2. These angles, 
/?, and  p2, are used to define the regions B, and  B, as in 
F ig. 4  and  (35) and  (36). Now 

tan(& - et) = 
Ktan8, 

l-K+tan28,’ (49) 

rical terms: 

If r(t) is an  element of B, in the {x(t), r( t)} plane, 
then r( t + At) also lies in the corresponding region 
in the {x(t+At),r(t+At)} plane. 

(54) 
The  statements (52) and  (54) concerning the regions B, 

and  B, summarize the results of this section. These results 
are contingent upon  the assumptions that K is large or S 
small, as in (39) and  (48), for only then do  these regions 
exist. 

C. Analytic Bounds: K Not Small 

We  are now ready to give our lower bound.  If r(t,,) lies 
in the region B, of F ig. 4, then all succeeding r(t) will also 
lie in that region. Thus if (cosB,J < cosj3, then lcosBJ < 
cosp, for all t > to. This leads directly to 

)Ir(t+At)l12= Ilr(t)lj2{ 1- K(2- K)cos28,}, from (8) 
An elementary calculations shows that this expression is 
strictly increasing for 0  < tan@, < L&?? , and  is strictly 
decreasing for m  < tan8, < cc. Recalling that if 0, = 
j3, or p2  then tan($+ - 0,) = tan 6, we have 

if /3, <et <p2, then tan6 < tan(& - et), 
i.e., 6  < +t - et. (50) 

From (42) for j3, <et <p2 (recall that this implies $+ < 
~/a, 

b/2-et+Ati<?r/2-+t+6 

<T/2-et=lm/2-e,l. (51) 
Considering the three cases - p2  <t7, < - &, 7~ - /?, <et <a 
- p2, and  r + /I, <et <V + p2  separately, we find that in 
each case (51) holds. This can be  put concisely in the form 
of a  picture: 

The  region B,, see F ig. 4, acts as a  ‘drift’ region in 
the following sense. If {x(t),r(t)} lies in B, in the 
{x(t),r(t)} plane, then r(t+At) lies closer to the 
perpendicular to x(t+At) in the {x(t+At),r(t+ 
At)} plane. 

(52) 

2  Ilr(t)l12{ 1- K(2- K)cos2P2} 
which in turn implies 

Ilr(to+NAt)ll) IIr(tdle-CN 
where 

(55) 

(56) 

c = - i ln{ 1  - K(2 - K)cos2P2}. 

If r(t,,) is in region B, of F ig. 4  then we know from (51) 
that cos2et0+At < cos20t0. This leads to a  bound  indentical to 
(56) and  (57) with p2  replaced by et,. 

Actually, we can do  better than this. If r(to) is in B, 
then there is no  loss of generality in assuming j3i <0t0</32. 
We  see then that 

tan&+,, > tan(& - S), from (42), 
=(tanf#+-tan6)/{1+tancpttan6}, 

tan(!),-(l-K)tan6 
= tan@,tans+(l-K) ’ from (37). (58) 

This provides the basis for a  recursive lower bound  on  0, 
for t > to. From (8) we directly obtain the following lower 
bound:  

We  now examine the region B,. We  claim that 

if 17r/2-et1<n/2-p2, 
then lT/2-flt+&l <IT/~-&. 

For 

t,,+N-I 

Ilr(t,+ NAt)ll ) Ilr(to)ll u  
j=t, 

{ l- K(2- K)co~~aj_,~}“~ 

(53) (59) 
where the angles {aj} satisfy the recursion 

lTr/2-etj <7f/2-P,+tanfY,) atan/?, tanaj+, = 
tan+-(l-K)tanS 

Itan0,l tanj3, tanajtan&+(l-K)’ 
a, = et,. (60) 

*yrjp 1-K 
*ltan&,l > tan( p2+ a), from (37) and  (46), 

We  know from previous considerations that aj+, >aj and  
aj+p2. It is difficult to solve (60) in closed form, but 

=+r/2-ql I<?r/2-(fi2+S) numerical answers can be  easily obtained for any et,, K 

+/2-@t+Atl <m/2-&, from (43). 
and  6. We  summarize the lower bound  in the following. 

Proposition 2: Suppose that the input vectors x(t) are 
The  results in (53) can also be  stated concisely in geomet-  such that the angle between x(t + At) and x(t) is bounded  
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by a number 6<lr/2, i.e., 

]]x(t+At)-x(t)]]<d2(1-cos6) <ti, for all t > to, 

and that K is sufficiently large so that 
K 

VFX 
> 2tanS. 

Equation (47) gives the two solutions /?, and p2, O<p, < 
P2<n/2, to the equation 

tan(/3+6)=tan/3/(1-K). 
The angles j3, and p2 define the regions B, and B, as in 
(35) and (36). 

i) If r(to) and x(&-J are aligned such that they lie in B, 
then 

llr(h+ NWII > Ilr(~o)lle-Nc~ for all N > 0, (61) 
where c= - iln{ 1 - K(2 - K)cos2B2}. 

ii) If r(tQ) and x(t,,) are aligned such that they lie in B, 
then 

to+N-l 
IIr(t,+ NAt)ll > IIr(t,,)ll fl { 1- K(2- K)cos~~-,~}“~, 

j=t0 
for all N > 1, (62) 

where 

tanaj+,= 
tan+ - (1 - K)tana 
tanaitans+(l-K)’ 

a,=cos-’ r(4J’-443> 
II&J II * 

In particular, lim j+maj = fi2, i.e., eventually 
{ x(t),r(t)} enter the “trap” region B,. 

D. The Continuous Limit 

The special case of (59) where At+0 (i.e., K+O and 
6-O in such a way that K/6 = constant) can be solved 
analytically, yielding the same result as Sondhi and 
M itra’s [ 1, eq. (45)]. The details are somewhat cumber- 
some and are omitted. 

E. Dependence of the Lower Bound on the Loop Gain K 

We now analyze the behavior of the lower bound as a 
function of K for large K. We assume r(t,) is in B, since 
we know that the system tends to this situation for 
{x(tMhJ~ in 4 or B,. From the expression for tanp, in 
(47) we see that if (tan&)/K is small, then tanfi,= 
K/tan 6, or lr/2 - p2 = (tan S)/ K; hence cos p2 55: 
(tan6)/K. Thus in (57) 

c = - iln{ 1 - K(2 - K)cos*B,} 

l-K(2-K)% 

~ (2 - K)tan28 
2K ’ 

As K increases we see that c decreases something Iike 
l/K. Thus the qualitative similarity of the upper and 
lower bounds is established. If we let At+0 (i.e., K+O, 
1340, S/ K=constant) we obtain cwtan2S/K, Sondhi and 
M itra’s result [ 1, eq. (40)]. 

IV. NOISE 

A. The Forced Equations 

We consider the effects of the forcing term u(t) in the 
equation 

Ar(t)= - K{r’(t)x(t)}x(t)+u(t). (7) 
The term u(t), an n-vector, can be used to represent the 
effects of departures from the idealized problem described 
by the homogeneous version of (7), such as when noise is 
present in the return signal or the unknown coefficients 
are varying with time. We will show now that if Ilu(t is 
bounded, or equivalently has a bounded mean over inter- 
vals of length T, then the residual error JJr(t)]J remains 
bounded as t+ cc. Subsequently, by appropriately identi- 
fying the forcing term u(t), we will obtain estimates of the 
effects of the departures from the idealized problem. 

Equation (7) may be rewritten as 
r(t+At)= [Z- Kx(t)x’(t)]r(t)+u(t), t= t,,t,+At; . . . 

(63) 
As is well-known [31], there exists a formal solution to 
(64) in terms of the fundamental matrix Y(t, to), t, < t: 

r(t)= Y(t,t,)r(t,)+ i Y(t,$4j-A9, (64) 
j= t,+At 

Our upper bound developed in Section II-A and 
summarized in Proposition 1 translates to the following 
bound in the fundamental matrix: 

11 Y(t, #,)I( = e-jbT when jTAt <t- &,<(j+ l)TAt. (65) 
Assume at this stage that all that is known about the 
forcing terms u(t) is that the time average of its norm over 
any T  samples is bounded, i.e., 

+ 
t+(T-1)At 

,zt Ilu(j d U, for all t>tw (66) 

Then as t+oc we obtain, from (64), 

Ilr(co)ll < UT 2 e-jbT= 1 -LjeT,, . (67) 
j=Q 

Alternatively if I] u(t)11 is bounded by U for all t > to, then 
U<ii so that 

Il44ll~ 1 _“,‘_,, . (68) 

B. Noise in the Measured Signal 

We apply the result in (67) and (68) to some special 
cases. Suppose that there is noise, or errors in observation, 
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in the observed signal z(t) which appears in (1). Specifi- 
cally, suppose that instead of (1) we have 

z(t)=h’x(t)+s(t) (69) 
where s(t) is an  undesirable noise signal. We  take the 
approach that not much is known about s(t) except that it 
is bounded.  When  we follow the effects of this signal 
through we see that (7) holds with 

u(t)= -Ks(t)x(t). (70) 
If 

+ f+(y)ArS2(j)<S2, 
j-t 

then Schwarz’s inequality gives 

for all t, (71) 

f 

r+(T- 1)Ar 

(72) 

which may be  used in (67). We  have then that 

Recall from Section 2-B that b  is proportional to K for 
small K. Thus the bound  for the residual error in (73) is 
independent of K for small K. Also, for K approaching 1, 
b  is approximately a/KT2 (see (24)), a  small number;  
hence the bound  in (73) is proportional to K2 as K 
approaches one. 

C. Variations in the Coefficient Vector h  

Suppose now that the vector h  in (1) is not time  in- 
variant. Then  

Ar(t)=Ah(t)-A/i(t) 
=Ah(t)- K{r’(t)x(t)}x(t). (74) 

We see that we may identify the forcing term u(t) with 
Ah(t), and  assuming 

IlW~)ll <HY for all t, (75) 
we find that (68) yields 

Thus if li changes slowly with the time  the residual error 
will be  small. 

An interesting facet of the bound  (76) is that it is 
m inimized with respect to K at a  value of K which is 
identical to the value of K which maximizes the rate of 
convergence of the upper  bound  derived for the idealized 
problem. We  saw in (25) that this opt imum value of K is 
given by Km fi / T. 

V. EFFECTS OFNOISEAND ERRORS ARISING FROM 
THE DIGITALIMPLEMENTATION: MIXING AND 

NONMIXING INPUT 
Here we consider the performance of the filter under  

various departures from the idealized mode l. We  use the 
language of errors introduced by the implementation. 

However, with the proper identification of the error terms 
e(i)(t) and  l c2)(t) below, the effects of noise in the signals 
for instance are estimated. The  noise can be  more general  
than that considered in Section IV-B (see (83) below) 
since it may exist in the input vectors x(t) as well as in 
z(t), although in the simple case the results below are not 
as sharp. 

A. Nonmixing Inputs 
If x(t) is not m ixing, then we do  not necessarily expect 

the m isalignment norm Ilr(t)ll to decrease to zero; in fact, 
Appendix I shows that there is no  uniform upper  bound  
on  the m isalignment. We  examine below some of the 
effects on  the convergence process for inputs which be- 
longs to a  particular class of nonmixing inputs. 

We  digress here to explain why we m ight expect the 
inputs x(t) not to be  m ixing in many applications. (See 
Section I-D for the m ixing condition.) In many com- 
mun ications-related applications, such as echo cancella- 
tion, x(t) is derived from a  speech signal. Typically, a  
bandpass filtered version of the speech signal is passed 
through a  delay line to yield x(t); thus if S(t) is the 
bandpass filtered speech signal at time  t, then 

x(t)=[S(t),S(t-At),... ,S{ t-(n- l)At}]‘. (77) 

Now consider the constant vector d where 
d= [cos(onAt),cos{w(n- l)At};.* ,cos(uAt)]‘. (78) 

We  see that d’x(t) is (approximately) proportional to the 
Fourier coefficients of S(t) at f requency w. If we take w 
well outside the frequency band  to which s(t) is lim ited, 
then we m ight expect Z  :(l-i’,‘- ‘)“{ d’x(t)}2 to be  quite 
small, especially if n  is large. Thus if S(t) is band-limited, 
we m ight expect that x(t) m ixes very slowly, if at all. 

We  see below that even in the case that the input 
process is not m ixing, the results that have been  obtained 
so far with the m ixing assumption are applicable with 
only m inor mod ifications. Suppose that there is a  sub- 
space P of R” for which PI x(t) for all t > to; that is, x(t) 
has no  component  in the space P for any t > t,. This 
situation does not exhaust all the possibilities that are 
associated with the condition “x(t) is not m ixing;” how- 
ever, there will be  arbitrarily long time  intervals for which 
this situation is approximated arbitrarily well for any 
nonmixing input. We  also assume that x(t) is m ixing in 
the orthogonal complement of P in R” which we denote 
by S, i.e., S= Pl. 

In the idealized problem the component  of r(t) in the 
space S will converge exponentially to zero, while the 
component  in the space P will remain constant. This is 
easily seen from (6) by writing 

rs( t) = component  of r(t) in S, (79) 
rp( t) = component  of r(t) in P. (80) 

Equation (6) becomes 
Am(t)= - K{rs’(t)x(t)}x(t), 

AT(~) = 0, 

since rp’( t)x( t) = 0, and  hence r’( t)x( t) = rs’( t)x( t). 

(81) 

(82) 
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As (8 1) concerns only rs( t) and x(t), and x(t) is m ixing 
in the subspace S, the results in Sections II-IV apply. In 

particular, we know that rs(t) converges exponentially fast 
to zero, The remaining component rp(t) is completely 

described by (82). In any case, as t+co, ]]<t)]] remains 

bounded. 
The reader may also verify that the important qudita- 

tive property of boundedness is preserved even when the 
noise signal s(t) is present in the measured signal, as in the 
case considered in Section IV-B, and the input process is 
nonmixing. 

B. Errors due to Digital Implementation 

Here we introduce two rather different kinds of errors 
which arise in digital implementations of the device. 
Suppose that instead of (2) we have 

A@t)=K{z(t)--i(t)}{x(t)+e(‘)(t)} (83) 
where z^( t) = {If< t) + E@( t)}‘x( t), and e(i)(t) and e@)(t) are 
random vectors, most likely with small components, which 
are introduced in the course of implementing the ideal 
recursion. Fig. 1 illustrates the points at which these errors 
appear in a schematic of the device. As the effects of the 
errors differ qualitatively, we find it convenient to make a 
distinction by referring to e(‘)(t) and eC2)(t), respectively, as 
errors of the first and second kind. 

Errors of the second kind could arise from a fixed point 
to floating point conversion in the device [20]; such a 
conversion would take place if &<t) is stored in the fixed 
point mode, but the multiplications involved in forming 
h(t)‘x(t) are effected in floating point. Likewise, errors of 
the first kind could arise from a floating point to fixed 
point conversion of x(t) prior to multiplication with 
K{z(t)-2(t)}. 

To see that the model in (83) is more general than that 
considered in Section IV-B, note that we may identify 
~(t)=e(~)(t)‘x(t) and make &)(t)=O. 

There is yet another, rather important, reason for con- 
sidering errors of the first kind. In certain implementa- 
tions, like the COMSAT echo canceller presently being 
evaluated [19], the signal x(t) (see Fig. 1) is very coarsely 
quantized prior to multiplication with K { z(t) - i(t)}. The 
motivation for this is to simplify the design of the multi- 
pliers: The errors introduced by the quantization may of 
course be denoted by e(“)(t). 

Incorporating the errors d’)(t) and e(‘)(t) in (6) gives 

Ar( t) = -K{J(t)x(t)-c’2’(t)‘x(t)}{x(t)+r(’)(t)}. 

It will be assumed throughout that (84) 

Ilf(‘)(f)ll (4 llc(2)(Oll GE29 for all t. (85) 

C. Qualitative Behavior with Errors of Both Kina!s Present 

We examine in turn the convergence properties of the 
solution r(t) of (84) for the cases where x(t) is respectively 
m ixing and nonmixing. 

4Note that this procedure is not at all the same as using the “nonideal 
multipliers” described in [32] even though the motivation is the same. 

I) M ixing Inputs: Equation (84) may be written thus 

Ar( t) = -K{r’(t)x(t)}x(t)-K{r’(t)x(t)}c(’)(t)+f(t) 
(86) 

where 
j(t)=K{~(2~(t)‘x(t)}{~(t)+c(1)(t)}. (87) 

The assumption that the two errors are uniformly 
bounded implies a uniform a priori bound for ]]j(t)]]. 
However, this is not the case for the second term in the 
right side of (86) since a uniform apriori bound for Ilr(t)ll 
does not exist. For the same reason (86) is not in a form 
that has been encountered previously. We need to step 
back briefly and prove a new result regarding the be- 
havior of solutions of equations like (86). 

Lemma: Suppose 
Ar(t)= -Kx(t)x’(t)r(t)+m(t)r(t)+j(t) (88) 

where m(t) and f(t) are, respectively, n X n and n X 1 
arbitrary sequences such that 

Ilm (Oll GM and IIAOII (4 for all t. (89) 
Suppose further that x(t) is m ixing so that, by Proposition 
1 (see also (65)), the fundamental matrix Y(t, t,,) associated 
with the recursion Ar(t)= - Kx( t)x’( t)r( t) satisfies the 
bound 

(1 Y(t,t,)(( <ae-b(‘-to)/At, 
Then, for all N > 2, 

for all t > to. (90) 

llr(NAt)ll < Ilr(O)jla(l+ M)(aM+e-b)N-’ 

+ aF { 1-(aM+eUb)u}. (91) 
l-aM-eeb 

In particular, as N+cc we have the following result for 
arbitrary values of r(0): 

if aM+eeb < 1, then Ilr(~)ll <aF/(l -aM- e-“). 
(92) 

Proof: A formal solution of (88), see (64), is 

r(t)= Y(f,O)r(0)+,~At Y(t,~)[m (t)r(j-At)+Aj-At)], 

t = At,2At; . . (93) 
Thus 

l l4NW ( II Y(NAGO)ll IIr(O)ll 
NAt 

NAt 

<aeTbNIIr(0)(J + aF 2 e-b(N-j/At) 
j=At 

NAt 

+aMx e -b(N-j/AI)IJr(j-At)JI, (94) 
j=At 

i.e., 

allr(O)(j + aFe~be~l-l) 
I 

(N- 1)Ar 

+aMeb x ebi/Al(r(j)ll. (95) 
j-0 
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At this stage we need  a  discrete-time version of Gron- 
wall’s lemma [33]: 

If p  is a  constant and  if yN < &. + X$,ipyl for N= 
1,2,. * +, then 

N-l 

YN<XN+/&(IJ.+QN-i z $(l+Y)-j+Ya 
j=l I 

for all N > 2. (96) 
This is easily established by induction, and  we will not 
prove it here. 

We  make the identification yN = ebN](r(NAt)]l and  the 
natural identification for XN and  y. After some straight- 
forward man ipulations we find that for N > 2  

]lr(NAt)]l < IIr(0)l]a(e-b+ M)(aM+ e-b)N-l 

We  may obtain separate equations for rs(t) and  r&t), as 
in Section V-A: 

Am(t)= -K{rs’(t)x(t)}x(t)-K{rs’(t)x(t)}w(t)+u(t) 

(101) 

Arp(t)=K{~(~)(t)‘x(t)-rs’(t)x(t)}v(t). (102) 
Note that the recursion for rs does not depend  on  rp; in 
contrast, the recursion for rp depends on  rs but not on  rp. 

Consider (101) first. Observe that the equation is in the 
form of the equation investigated in the Lemma-&t) is 
restricted to the subspace S, and  x(t) is m ixing in the 
subspace S. Application of the Lemma shows that 

if IIw(t)ll < w <Ed for all t, (103) 
and  

aF  + 
l -aM-eeb 

{ 1- (aM+ e-b)N}, (97) if aKW+ emb < 1, then Ilrs(m)ll < 
aK(l+ W)E, 
l -aKW-emb * 

from which (91) follows. Observe that the right side di- 
verges if (aM+emb)> 1. If, on  the other hand, (aM+ 
emb)< 1  then IIr(NAt)lI has the asymptotic upper  bound  
given in (92). This concludes the proof of the Lemma.  0  

Returning to (86), we find that 

Il~“‘w~‘(oll <E, IIAN <KE2(1+ Ed, for all t. 

(98) 
An application of the Lemma gives 

aK( 1  + E,)E, 
ifaKE,+e-b<l,thenJlr(oc)J]< l-aKE -e-b. (99) 

I 
This is important. We  observe that the condition for 

boundedness is satisfied if E,, which bounds the energy in 
errors of the first kind, is sufficiently small. It m ight also 
appear  that, regardless of the value of E,, the condition is 
satisfied if K is sufficiently small, but this is not so. Closer 
inspection shows that it is necessary that E, <aT; if the 
latter is true and  K is sufficiently small then the condition 
for boundedness is satisfied. In any case, if neither E, nor 
K is small then the condition for boundedness is violated. 

Note the qualitative difference between the two types of 
errors: errors of the second kind affect the bound  quanti- 
tatively, in fact linearly, but the condition for bounded-  
ness is independent of E, while depending on  E,. Errors 
of the first kind have more influence in determining the 
qualitative behavior of the device. 

2) Nonmixing Inputs: We  now consider the case where 
x(t) is restricted to a  subspace S wherein it is m ixing. Call 
w(t) the projection of &i)(t) on  S, and  call u(t) the 
projection of c(‘)(t) on P, the orthogonal complement of S. 
Then  we may write (84) as 

Ar(t)= - {r’(t)x(t)}x(t)- K{r’(t)x(t)}w(t)+u(t) 

+ K{d2)(t)‘x(t)-r’(t)x(t)}u(t) (100) 
where 

tw 
In brief, all the results in Section V-Cl on  r(t) for m ixing 
input apply here to m(t). 

Now consider (102). The  point to note is that it is 
qualitatively different from (101). Equation (101) contains 
a  stabilizing term in the right side which through the 
m ixing mechanism acts to reduce Ilrs(t)ll whenever  the 
latter is large. As the right side of (102) is independent of 
rp( t), no such mechanism exists to stabilize ]I rp( t)ll . 

The  vector rp(t) performs a  random walk in the sub- 
space P with random step size and  direction. Even if m(t) 
is bounded,  the right side of (102) may have a  nonzero 
mean  since d2)(t) is random; in this case ]I rp(t)ll will grow 
linearly with t. Now even if the expectation of the right 
side of (102) is zero, the norm of rp(t) will grow like V’? 
because of random fluctuations. We  thus conclude that, 
even if Ilc(‘)(t)ll and lld2)(t)ll have arbitrarily small bounds 
the quantity Ilrp(t)ll, and consequently also IIr(t)ll, wil; 
become arbitrarily large after a  sufficiently long period of 
time! This is in sharp contrast with our results in Section 
V-C 1  for m ixing inputs. 

It is interesting that the two hardware implementations 
that we are acquainted with [19], [20] have on  occasions 
demonstrated such unbounded behavior. 

We  should point out that the quantity r’(t)xt), which is 
of interest in many applications (in the echo cancellation 
application, the uncancel led echo is given by z(t) - i(t) = 
r’( t)x( t) - d2)( t)‘x( t)) is uniformly bounded simply be- 
cause r’(t)x(t)= rs’(tix(t). 

We  should also note that the well-known technique of 
introducing ‘leakage’ in the adaptation can stabilize the 
filter at the cost of introducing a  residual m isalignment 
error. We  om it an  analysis of the effects of leakage on  the 
adaptation because a  related analysis for the continuous- 
time  algorithm may be  found in [l]. 

U(t)=K{d2)(t)‘x(t)}{x(t)+w(t)}. D. Both Kinds of Errors Not Simultaneously Present 

Observe that the vectors {u(t)} are restricted to the sub- It is of additional interest that, as we show now, neither 
space S. one  of the two kinds of errors is by itself sufficient to 
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bring about unbounded growth if its energy is bounded by 
a small number and the loop gain is small. 

1) d’)(t)=O: The above statement is easily substanti- 
ated when d2)(t) is the only source of error. Equation (84) 
then reduces to 

Ar(t)= - K{r’(t)x(t)}x(t)+ K{d2’(t)‘x(t)}x(t). 
(105) 

This immediately gives 

Ars(t)= -K{rs(t)‘x(t)}x(t)+K{~(2)(t)‘x(t)}x(t), 
(106) 

Arp(t)=O. (107) 
Equation (106) is in a form to which the results of Section 
IV and the Lemma in Section V-Cl apply. We may 
conclude that II rs(t)ll is bounded without making any 
special restrictions on the loop gain or on the energy of 
c(‘)(t). Clearly Ilrp(t)ll is constant. Consequently Ilr(t)ll is 
bounded. 

2) d2)(t) ~0: The situation here is marginally more 
complicated. We have from (83) that 

Ar(t)= -K{r’(t)x(t)}x(t)-K{r’(t)x(t)}@(t). 
(108) 

Hence 
Ars( t) = -K{rs’(t)x(t)}x(t)-K{rs’(t)x(t)}w(t) 

(109) 

h(t) = - K{ m ’(t)x(t)}u(t), (110) 
where, as before, w(t) and u(t) are respectively the projec- 
tions of r(‘)(t) onto S and P, respectively. 

Equation (109) is simpler than (101); with u(t) ~0 in 
(101) we obtain (109). The following result therefore 
follows from (103) and (104): 

if aKW+edb < 1, then n(t)+0 as t+w. (111) 
Assuming that the above condition for convergence holds, 
we also have from the Lemma (see (91)), 

Ilrs(NAt)ll < Ilrs(O)lla(l+ KW)(aKW+e-b)N-‘, 
for all N > 2. (112) 

The condition for exponential convergence in (111) is the 
same as the condition for boundedness in (99) except that 
W occurs in the former in lieu of E,. The conclusions of 
the discussion following (99) concerning the requirements 
on E, and K for the boundedness condition to hold are 
thus applicable here. 

Assuming that this condition is satisfied we have, from 
(11% 

(N- I)Aht 

lIdN~t)ll= IIdO)- K  jzo {rs’(j)x(j)b(.dll 

=G Ilc~(O)ll +KE, 5 lldj)ll 
j=O 

< Ilrp(O)ll + ‘(l+ KW)~irs(o)~l + KE,Ilrs(O)ll. 
1-aKW-eeb 

(I 13) 

From (112) and (113) we may thus conclude that in this 
case Jlrs(NAt)ll+O, Ilrp(NAt)ll is bounded and, conse- 
quently, IIr(NAt)ll is bounded for all N. 
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APPENDIX 
THE MIXING CONDITION Is NECESSARY FOR EXPONENTIAL 

CONVERGENCE 

The proof of the neccesity of the mixing condition on {x(t)} 
for exponential convergence to zero of the solutions r(t) of (6) is 
essentially that given by Morgan and Narendra [2]. The main 
difference is that they dealt with continuous time, while we deal 
with discrete time. We prove that the existence of an exponen- 
tially decreasing bound on ]I r(t)11 implies that x(t) is mixing. We 
do this in two steps-showing that of the following three state- 
ments, ld2 and 2+3 (we note that 3=+1 by virtue of our upper 
bound). 

1) There exist positive numbers a and b such that 

I]r(t,+NAt)l] < Ilr(to)llae-bN for all taand N > 1. (Al) 

2) For any unit vector y in R” there are numbers N >O and 
r>O, and there is a conical neighborhood (see Fig. 6) C, of y 
such that for any m  > N and any to 

1 
m  x ~l14t)llZ~~ 0-w 

tEA(jO,m,C,) 
where6 .4(t,,m,C,)={t~t=t0+jAt,j=0,1;~~,m-1; and xl(t) 
n C, = 0). The set A(to, m, C,) is the set of all times, spaced At 
apart in the interval [to, to + (m - l)At], where x(t) is not essen- 
tially perpendicular to y. Note that if C; c C, then A ( to, m, C,) c 
A(t,,m,C;). 

3) x(t) is mixing (see (10) in Section I-E); that is, there exist 
numbers T > 0 and (Y > 0 such that for any unit vector w and 
any to, 

t,+(T-1)At 
+ x {W’X(t)}2>a. (A3) 

I = 10 

Condition 2 says that on the average x(t) has components of 
at least a certain size in any given direction; that is, x(t) is not 
essentially perpendicular to any given direction almost all the 
time. But this is exactly what the m ixing condition says. Thus it 
seems plausible that 2+3; we now see that this is so. 

Suppose that condition 2 is satisfied. Then to each unit vector 
y in R” there is an associated conical neighborhood C,. (Since 
A ( to, m , C,) c A ( to, m , C,‘) whenever C; c C’, we may choose any 
smaller neighborhood than our original neighborhood C,,, and 
we may wish to do this later.) The conical neighborhoods C’ 
cover the unit sphere; .take a finite subcover C,,; . . , CY,. Pick 
any w on the unit sphere, so 11 wll = 1. Then there is a yi such that 

5A conical neighborhood of y is a set of all points in R” which can be 
represented as hrr, where h E R and u is a member of a connected open 
subset of the unit sphere in R” which contains y. 

6We are denoting by x * the (n - 1) dimensional subspace orthogonal 
to x. 
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Then  

r(tl)= w+ 2  Y(t,j)B(j-At)r(j-At). WO)  
j- t,+At 

Now 

/I 
i Y(t,,j)B(j-At)r(j-At) < “kAt ,/B(j),/ (Al 1) 

j- t,+At 
II i-h 

UNIT SPHERE since, by  virtue of the nonincreasing property of Ilr(t)ll stated in 
@3)> 

II Y(tJ)ll G  1  IWII G  Il~(kJll = ll4l= 1. 6412) 
Also 

Fig. 6. Conical ne ighborhood of y. ll~~~~ll=II-~~~~~~‘~~~-~~~~ll 
~~llxWx’(i)ll + W4A~‘W ll 

w E C,, and  there is an  c, >  0  such that, for any  to and  m, G 2f+(j)l12. (A13) 

{x’mv 2  l M t)ll* (A4) Thus we have  for the right side of (All), 

for all tEA(tO,m,Cy>. 
Let N and  c be  those numbers  associated with yi in condit ion 

2. Choosing any  m > N and  any  to we see 

t,-At 

2 llW)ll= ) llB(j)ll + I: llW)ll 
j= to i=[t,,,‘,-A’] 

j~A(to~N,Cw) 

,<2 x ~lW )l12+ 
iEA(bN,C,) je[toz-At] IIB(j)llo 

j4A(bN.C,) (A14) 
l l 1  >K’-& 2  ~11~(0112 

t~~(cm,c,) W e  may choose C, so that IIB(J)ll <  1/8N for j&l(t,N,C,,,); 
this means  that any  two vectors e  and  f in C, satisfy either 

>zL 
K’ 

(As) Ile+fll< 1/8N or lie-fll < 1/8N. W ith such a  choice we have  

The  second inequality follows from (A4) and  the third from 
condit ion 2. 

Now set T= maxyiN (the yi make up  the finite open  cover, 
and  N(y,) represents the N in condit ion 2  associated with each  
yi), and  set 

1  a=  - inf eel, K (A@ 
WER” 
IIwII=1 

where c and  zi are associated with each  unit vector as  in the 
previous paragraph.  It is easy to see that (Y >O and  T< co; thus 
the mixing condit ion is satisfied. 

It remains to show that 1+2. W e  prove this by  contradiction. 
Suppose condit ion 1  is satisfied, but condit ion 2  is not. The  
latter part of the hypothesis means  there exists a  unit vector 
WE R” so that for any  N >0, c >0  and  any  conical neighbor- 
hood  C, of w, there exist to and  tI with t, >  t,+(N- 1)At and  

1  

t,-At 

IX IINi)ll G2  2  KlW)ll*+ x 
j - to jEA(to.N,G) jE-[r,t, -At] 

T& 
i@A(to3N,Cw) 

1  1  1  “2i&+N8N=4 (A15) 

From (AlO) and  (Al 1) 

Il~(t~)ll~ Ilwll- js$+At Y(t,j)B(j-At)r(j-At) 
/I II 
t,-At 

> llwll - E IIW)ll 
j-to 

1  3  >l-q=q. 

if 2  KII~(Oll*<~. (A7) 

Pick N such that ae  -bN < l/2, where a  and  b  are the con- 111  
stants which appear  in condit ion 1, and  pick l = l/ 16. Define t, 
to be  to+(N- I)At. Define u(t) to be  the projection of x(t) on  
w’, i.e., u(t) = [I - ww’]x(t). The  equat ion Ar(t) = - PI 

Ku(t)u’(t)r(t) has  the stationary solution r(t)=w. W e  show that 
the equat ion Ar(t)= - Kx(t)x’(t)r(t) has  nearly stationary solu- 131  
tions. 

Call 141  

A(t)= - Ku(t)u’(t) B(t)= -Kx(t)x’(t)-A(t). (A8) I51 
Let Y(t, to) be  the fundamental  solution matrix associated with 
the recursion Ar(t)= A(r)r(t), (see (66) in Section IV-A) and  PI 
consider 

Ar( t) = -Kx(t)x’(t)r(t)=[A(t)+B(t)]r(t), r( to) =  w. I71 
W ’) 

But we chose N so that Ilr(t,)ll= IIr(t,,+ NAt)ll G  l/2. Thus we 
have  our  contradiction. 

M. M. Sondhi  and  D. Mitra, “New results on  the Performance of a  
well-known class of adapt ive filters,” Proc. IEEE, vol. 64, no. 11, 
pp. 1583-1597,  1976.  
A. P. Morgan and  K. S. Narendra,  “On  the uniform asymptotic 
stability of certain linear nonautonomous differential equations,” 
SIAM J. Contr., vol. 15, no. 1, pp. 5-24, 1977.  
P. Eykhoff, System Identification. New York: W iley, 1974,  Ch. 7, 
Ch. 9, Sec. 5.3. 
B. W idrow and  M. E. Hoff, Jr., “Adaptive switching circuits,” in 
IRE Weston Conv. Rec., pt. 4, pp. 96-  104,  1960.  
P. Whitaker, “The  MIT Adaptive Autopilot,” in Proc. Self-Adap- 
five Conrr. @sump.,  Wright Air Dev. Center, Wright-Patterson 
AFB, Ohio, 1959.  
K. S. Narendra and  L. E. McBride, “Mult iparameter self-optimiz- 
ing systems using correlation techniques,” IEEE Truns. Automat. 
Contr., vol. AC-9, pp. 31-38, 1964.  
B. W idrow, P. E. Mantey, L. J. Griffiths, and  B. B. Good,  
“Adaptive Antenna Systems,” Proc. IEEE, vol. 55, pp. 2143-2159,  
1967.  



652 

181 

[91 

WI 

[Ill 

WI 

v31 

1141 

(151 

WI 

[I71 

WI 

(191 

PO1 

Pll 

R. W. Lucky, “Automatic equalization for digital communication,” 
Bell Syst. Tech. J., vol. 44, pp. 547-588, 1965. 
A. Gersho, “Adaptive equalization of highly dispersive channels 
for data communication,” Bell Syst. Tech. J., vol. 48, pp. 55-70, 
1969. 
R. W. Lucky, J. Salz, and E. J. Weldon, Jr., Principles of Data 
Communicution. New York: McGraw Hill, 1968, ch. 6. See also, 
R. W. Lucky and H. R. Rudin, “An automatic equalizer for 
general-purpose communication channels,” BetI Syst. Tech. J., vol. 
46, QQ. 2179-2208, 1967. 
M. M. Sondhi, “Closed loop adaptive echo canceller using gener- 
alized filter networks,” U. S. Patent 3,499,999, Mar. 1970. 
J. Kelly and B. F. Logan, Jr., “Self-Adaptive Echo Canceller,” 
U.S. Patent 3,500,000, Mar. 1970. 
“Echo Canceller Wins 3,500,OOOth Patent,” Be/I Laboratories Rec., 
p. 126, Apr. 1970. 
M. M. Sondhi, ‘An Adaptive Echo Gmceller,” Bell Syst. Tech. J., 
vol. 46, no. 3, pp. 497-511, 1967. 
M. M. Sondhi and A. J. Presti, “A self-adaptive echo canceller,” 
Bell Syst. Tech. J., vol. 45, no. 10, pp. 1851-1854, 1966. 
F. K. Becker and H. R. Rudin, “Application of automatic trans- 
versal filters to the problem of echo supression,” Bell Syst. Tech. 
J., vol. 45, no. 10, pp. 1847-1850, 1966. 
S. J. Campanella, H. G. Suyerhoud, and M. Onufry, “Analysis of 
an adaptive impulse response echo canceller,” COMSAT Tech. 
Rev., vol. 2, no. 1, pp. l-38, 1972. 
N. Demytko and L. K. Mackechnie, “A high speed digital adaptive 
echo canceller,” Australian Telecomm. Res., vol. 7, no. 1, pp. 
20-28, 1973. 
G. K. Helder and P. C. Lopiparo, “Improving transmission on 
domestic satellite circuits,” Bell Lab. Rec., pp. 202-207, Sept. 1977. 
D. L. Duttweiler, “A twelve-channel digital echo canceller,” IEEE 
Trans. Commmun.,  vol. COM-26, no. 5;pp. 647-653, May 1978. 
J. D. Gibson, S. K. Jones. and J. L. Melsa, “Secmentiallv adaotive 
prediction and coding of ‘speech signals,” IEEi Trans.Con&n., 
vol. COM-22, pp. 1789-1796, 1974. 

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-25, NO. 6, NOVEMBER 1979 

WI 

1231 

1241 

1251 

WI 

1271 

PI 

~291 

[301 

1311 

[321 

[331 

J. N. Maksym, “Real-time pitch extraction by adaptive prediction 
of the speech waveform,” IEEE Trans. Audio Electroacoust., vol. 
AU-21, pp. 149-153, 1973. 
S. Jones, “Adaptive filtering with correlated training samples,” 
Internal Rep., Bell Labs., 1972. 
J. K. Kim and L. D. Davisson, “Adaptive linear estimation for 
stationary M-dependent processes,” IEEE Trans. Inform. Theory, 
vol. IT-21, pp. 23-31, 1975. 
T. P. Daniell, “Adaptive estimation with mutually correlated train- 
ing sequences,” IEEE Trans. Syst. Sci. Cybern., vol. SSC-6, pp. 
12-19, 1970. 
G. Ungerboeck, “Theory on the speed of convergence in adaptive 
equalizers for digital communications,” IBM J. Res. Devel., vol. 
16, no. 6, pp. 546-555, 1972. 
J. R. Rosenberger and E. J. Thomas, “Performance of an adaptive 
echo canceller operating in a noisy, linear, time-invariant environ- 
ment,” Bell Syst. Tech. J., vol. 50, no. 3, pp. 785-813, 1971. 
D. P. Derevitskii and A. L. Fradkov, “Two models for analyzing 
the dynamics of adaptation algorithms,” Automutiku i Tele., no. 1, 
pp. 67-75 (translated), 1974. 
N. N. Bogoliubov and 5. A. Mitropolski, Asymptotic Methods in the 
Theory of Nonlinear Oscillations. New York: Gordon and Breach, 
1961. 
R. Z. Khasminskii, “On stochastic processes defined by differential 
equations with a small parameter,” Theory Prob. Appl. (USSR), 
vol. XI, no. 2, pp. 211-228, 1966. 
K. Ogata, State Space Analysis of Control Systems. Englewood 
Cliffs, N.J.: Prentice-Hall, 1967, Sec. 6-7. 
D. Mitra and M. M. Sondhi, “Summary of results on an adaptive 
filter using non-ideal multipliers,” in 1976 Nat. Telecomm. Conf., 
Conf. Rec., vol. 1, pp. 8.5-l-8.5-6, Dallas, TX, 1976. See also 
IEEE Trans. Automat. Contr., vol. AC-24, no. 2, pp. 276-283, 
1979. 
W. A. Coppel, Stab@ and Asymptotic Behuuior of Differential 
Equations. Boston: D. C. Heath, 1965, Ch. 1, Sec. 3. 


