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Digital Adaptive Filters: Conditions for
Convergence, Rates of Convergence,
Effects of Noise and Errors Arising
from the Implementation

ALAN WEISS anp DEBASIS MITRA, MEMBER, 1EEE

Abstract—A variety of theoretical results are derived for a well-known
class of discrete-time adaptive filters. First the following idealized identifi-
cation problem is considered: a discrete-time system has vector input x(¢)
and scalar output z(f)=h'x(f) where h is an unknmown time-invariant
coefficient vector. The filter considered adjusts an estimate vector 4(f) in a
control loop according to

R(t+A0) =h(6)+ K[2(£)— 2(8)]x(0),

where i(t)-l;(t)'x(t) and KX is the control loop gain. The effectiveness of
the filter is determined by the convergence properties of the misalignment
vector r(t)=h— h(z). It is shown that a certain nondegeneracy “mixing”
condition on the input {x(7)} is necessary and sufficient for the exponen-
tial convergence of the misalignment. Qualitatively identical upper and
lower bounds are derived for the rate of convergence. Situations where
noise is present in z(7) and x(7) and the coefficient vector A is time-varying
are analyzed. Nonmixing inputs are also considered, and it is shown that in
the idealized model the above stability results apply with only minor
modifications. However, nonmixing input in conjunction with certain types
of noise lead to bounded input — unbounded output, i.e., instability.

I. INTRODUCTION

N THIS PAPER we derive a variety of theoretical

results for a well-known class of discrete-time adaptive
filters. The results obtained here on the conditions for
convergence, rates of convergence, and the effects of noise
equal in scope results recently obtained for the continu-
ous-time analog counterparts. This paper has the addi-
tional purpose of analyzing and elucidating some of the
unusual, hitherto unexplained behavior of some advanced
realizations in digital hardware that have recently ap-
peared and are in the process of being evaluated.

A. The Adaptation Algorithm

As an introduction to the adaptation algorithm studied
here, let us first consider the following idealized identifica-
tion problem (see Fig. 1). An unknown system (or black
box) has a sequence of vector inputs x(#), each of known
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Fig. 1. (a) Schematic of identification problem. In the idealized prob-
lem the system noise s(£)=0 and A(?) is constant. In Section IV-B and
IV-C these restrictions are removed. (b) Schematic of adaptive filter.
The box indicated by -’- refers to the multiplications and a summa-
tion involved in forming the scalar product of two vectors. Two kinds
of errors arising from the implementation, €V(¢) and €?(¢), are consid-
ered in Section V. In the idealized problem €)(¢)=€?(r)=0. The step
involved in normalizing the norm of x() to unity is not shown.

dimension n, and a sequence of scalar outputs z(f). Both
sequences are known, or observed, at times 7= 1, ¢, +At, 1,
+2A¢,- -+, and it is assumed that

z(t)=h'x(1), (1
where h is a constant n-vector and the prime denotes
matrix transposition. The problem is to estimate A.

_ The adaptive procedure starts with an initial estimate
h(ty) and recursively adjusts the estimates /() according
to the difference equation

AR(1) & h(t+At)— k(1) = K {z(£) = 5(£) } x(1),

where

@

2(6)=h(1y x(1) 3)

and K, the control loop gain, is a parameter. It is assumed
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throughout that
(DI £ x'()x()=1. 4)

Thus a normalization procedure which consists of divid-
ing the right side of (2) by ||x(#)))* is tacitly assumed. This
normalization procedure is not undertaken in all im-
plementations. Nevertheless we assume (4) both because
some implementations (for example, Duttweiler’s [20]) do
use this normalization, and for mathematical convenience.
If instead of (4) we had assumed that

(DI <L, “)
as in [1], then our upper bounds in Section II hold with
only minor changes. See, for instance, footnote two to
inequality (19).

The effectiveness of the filter is determined by the

convergence properties of the misalignment vector r(¢)
which is defined by

r(t) £ h—h(2). %)
We see that
Ar(t)= —Ak(?), sincg Ah=0,
=—K{z(#)—2(t)}x(¢), from (2),
= — K{r()x(0)}x(2). ©)

The convergence properties of the solutions r(¢) of the
above homogeneous difference equation are the subject of
the analysis reported in Sections II and III. Our discus-
sion in Sections I-B and I-C will indicate that because of
the robustness and simplicity of the algorithm it has found
a variety of applications. However, the results hitherto
available leave unresolved some of the basic questions
regarding the performance of the algorithm. Some of these
questions are “What is the least stringent condition on the
input vectors {x(f)} which guarantees uniform conver-
gence of the misalignment? What are the rates of conver-
gence when the input belong to the class for which con-
vergence is guaranteed?”’ These questions are germane
when the input vectors are derived from a complex signal
such as speech.

B. Summary of Results

In this paper we answer some of these questions. In
Section I-E we define the key notion of ‘mixing’ input. We
emphasize that our usage of the term mixing is not to be
confused with other usages. This is the discrete-time ana-
log of the mixing condition introduced in [1] and [2] for
continuous-time vector processes. In particular, mixing
does not require stationarity or periodicity of the input
signal, or even that it is either stochastic or deterministic.
We are able to prove the following results:

i) We show in Section II that the mixing condition
implies the existence of an exponentially decreasing upper
bound on ||#(#)||. We also show in Appendix I that the
existence of an exponentially decreasing upper bound
implies that the mixing condition is satisfied. Thus the
mixing condition is necessary and sufficient for exponen-
tial convergence of the misalignment.
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ii) The upper bound on the rate of convergence is valid
for all mixing inputs, all X and all ¢. The mixing condition
is also used to obtain a lower bound on the convergence
rate for small values of K. A related but not identical
assumption is used in Section III to derive a lower bound
for larger values of K. The motivation for the care that is
taken to obtain these bounds is that it provides important
insights into the question of the best loop gain setting,
This is exemplified by the fact that the upper and lower
bounds have identical qualitative dependence on K for
both small and large K.

iif) We conclude that, for the large class of processes
for which both the upper and lower bounds apply, the rate
of convergence must increase as K for small X and must
decrease as 1/K to a very small number as K—1, since
this behavior is common to both bounds. The value of K
which maximizes the rate of convergence for our upper
bound is a small number, considerably smaller than the
“optimum” value of K predicted by a myopic optimiza-
tion and the “method of averaging”.

In Section IV we proceed to investigate the effects of
adding a vector forcing term #(?) to the right side of (6),

ie.,
Ar()=— K{r'(t)x(t)}x(r) + u(z). @)

iv) We show that if ||u(?)| is bounded, or equivalently
has a bounded mean over intervals of a finite length, then
so is ||r(¢)|- In particular, the residual error ||(¢)| is
bounded as —o0. Explicit bounds for the residual error
are obtained so that its dependence on the loop gain is
transparent.

v) The above bounded input ~ bounded output prop-
erty is exploited by noting that the effects of departures
from the idealized problem can be represented by the
term u(?). Thus: a) the effect of an added system noise
component s(f) in the observed signal z(¢), and b) the
effect of variations with time of the unknown vector A,
can both be lumped into the term u(?) in (7).

vi) In the final part of the paper, Section V, we con-
sider for the first time the rather consequential implica-
tions of nonmixing inputs on the performance of the filter.
We begin by showing that inputs may be expected to be
nonmixing in many applications, especially communica-
tions-related applications such as echo-cancellation. In
these cases the high dimensionality of the input vectors
and the filter, together with the bandlimited form of the
inputs, are responsible for the phenomenon of nonmixing
inputs. We show that in the idealized problem as well as
in the case where noise s(¢) is present in the measured
signal (case a) above) the results obtained previously on
the basis of the mixing assumption on the input vectors
apply (with only minor modifications) to the case of
nonmixing inputs.

vii) The situation changes abruptly if nonmixing inputs
are considered in conjunction with random errors of two
different kinds that may arise due to noise or a digital
implementation of the device. We prove the surprising
and consequential result that if both kinds of errors occur
simultaneously, each with arbitrarily small bounds, then
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I#(?)]| becomes unbounded as t— 0. If, however, only one
kind of error occurs, then the residual error is bounded
provided the bound on the error and the loop gain is
small.

C. Applications

Eykhoff [3] provides an authoritative account of the
variety of approaches to the identification problem as well
as the applications that the algorithm has found. The
algorithm has been proposed for adapting switching
circuits {4], control [5], [7}, and self-optimization [6]}.
Among communication related applications is the equali-
zation of telephone lines for data communication [8], [9],
[10]. The algorithm has been proposed for echo cancella-
tion in long distance telephony [11]-[14]. Both analog [15],
[16] and digital [17]-[20] versions of the canceller have
been realized. (A point to note about the cancellers is that
typically the dimension » is large being on the order of
100.) Speech related applications are to be found in [21]
and [22].

D. Known Theoretical Results

A key equation derived from (6) helps to explain the
basic robustness of the algorithm:

Allr(D)|P=lr(e+ AP = r(D)I

= —KQ—- K){r()x(1)}>~ (8)

For
Alr(D))P={r(t+AD)— ()} {r(t+AD) + r(1)}
={r(t+At)—r()Y {r(t+A0)— r(t)+2r(1)}
=|r(t+A8) = r(O)|>+2r () {r(t+At)— r(2)}
)
which yields (8) when the expression for Ar(f) in (6) is
substituted into the expression on the right side.

Equation (8) says that for 0<K <2, the norm of the
misalignment is nonincreasing.! This is of course not the
same as uniform convergence of |[r(¢)|| to zero; additional
information is called for regarding the behavior of the
term #()x(#). We note from (6) that choosing K=1+4§
has virtually the same effect as choosing K=1-46; in
either case the norm of the component of r(¢+Af¢) in the
x(£) direction will be |8 {#'(H)x(1)}]. So henceforth we shall
assume that 0<K<1.

Equation (8) is also noteworthy because it focuses on a
fundamental difference between continuous- and
discrete-time versions of the adaptive filter; in the former
case the misalignment norm is nonincreasing for all values
of the loop gain K (see for instance [1]). However, we shall
find that there is remarkable affinity between the results
proved in Sections II, III, and IV, and the corresponding
results for continuous-time filters [1] provided an ap-

'Without the assumption [|x(tg|| =1, we should have obtained A||r(1)(?
= — K{2— K| x(®*}{F()x(n)}?; thus a decreasing misalignment is im-
plied only if 0 <K <2/]jx(#)|*-
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propriate change in the scale of K is taken into account;
thus large K is interpreted as K approaching unity and X
approaching infinity for the discrete-time and
continuous-time filters, respectively.

Some of our results have been initiated by the methods
and results presented in two recent papers on the continu-
ous-time algorithm. Our derivations of the upper bound,
and the subsequent results on the solutions of (7) which
includes the forcing term wu(r), are adaptations of the
methods in [1]. In an important paper Morgan and
Narendra [2] proved that the mixing condition is not only
sufficient but also necessary for exponential convergence
in continuous-time. Our proof in the Appendix of the
necessity of the mixing condition for uniform convergence
is an adaptation of the proof provided in [2]. On the other
hand, the derivation of the lower bound for large K, based
as it is on geometrical arguments, is basically new. Also,
almost all the results in Sondhi and Mitra’s paper, includ-
ing their lower bound, may be derived from the results
given here by going to the continuous limit in an ap-
propriate manner. Finally, the results in Section V con-
cern topics which have virtually not been addressed previ-
ously in either the continuous- or discrete-time formula-
tions. Thus the implications of nonmixing inputs have not
been investigated previously; we find that the implications
are rather consequential. We also recall that there is a
considerable body of literature concerning the behavior of
the algorithm under a variety of assumptions regarding
the input vectors [7], [9], [23]-[25].

As far as convergence rates are concerned, all published
results are essentially based upon averaging of the right
side of (6) and (7) and assuming r to be either slowly
varying or independent of x [26], [27], [28]. Some of the
early results on the method of averaging were established
for the deterministic, continuous time equations by Bogu-
liubov [29]. Khasminskii [30] has shown that the method
of averaging provides uniformly good approximations to
the true solutions over intervals of order 1/K in the
continuous-time formulation. However, the method of
averaging gives misleading results in all cases except
where KX is very small.

E. The Mixing Condition

As mentioned above almost all our results require
familiarity with the mixing condition on the input vectors
{x(#)}. The following is the discrete analog of the mixing
condition in [1].

The vectors x(¢) satisfy the mixing condition if there
exist numbers 7" and a >0 such that for any constant
nonzero n-vector d and any time ¢,

‘ (10)

=

-1
> {d'x(t+jA0)) >a|d)>
Jj=0

An equivalent statement of the mixing condition is the
following discrete analog of the condition used in [2].
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There exist numbers @ >0 and b such that for any unit
n-vector d, any time ¢ and any N > 1
N-1
> {d'x(t+jA0)}* >aN +b.

Jj=0

(11)

Let us examine the condition in (10) in greater detail.
This condition is basically that, over any time interval of
length T, the components of x(¢) have an average length
of at least a in any direction. In particular, a sequence
{x(#)} in which the n-vectors are restricted to any proper
subspace of R" is nonmixing. Further, if the input is
nonmixing there will be arbitrarily long time intervals for
which the vectors x(¢) are effectively restricted to a partic-
ular proper subspace of R".

It is also clear that where n is the dimension of x(¥),

T>n a<l/n. (12)

The first follows from observing that it takes at least n
vectors to span an n-dimensional space. For the second
inequality observe that the smallest average component of
a collection of n-vectors can be no larger than 1/n. A

and

better proof is to note that there is no loss of generality in

assuming that
| T=1
o =smallest eigenvalue of — > x(t+jAD)x' (1 +jAr).

j=0
(13)

Then note that ||x(2)|| =1 for all 7, so the trace of x()x'(?)
is unity for each ¢, and thus the trace of the matrix in (13)
is also unity. As the trace is the sum of the » eigenvalues,
the smallest eigenvalue cannot exceed 1/n.

It should be noted in (10) that any T, > T will suffice in
the mixing condition, perhaps with a new a, so we should
properly regard a= a(T).

It may be seen that many stochastic processes do not
satisfy the mixing condition. However, for many processes
of interest, there will be choices of T and « such that the
sample paths will be mixing for long periods of time
separated by periods when the process is not mixing. In
the former periods, our exponential bounds will hold
while in the latter periods, by virtue of (8), ||r(¢)|| is
nonincreasing.

For the sake of brevity and simplicity we will agree
that, from now on, in all summations the index will be
incremented by Az. Thus

to+(T— At _
> x(N)=x(t)) + x(tg+ A+ -+

j=t

+x{t,+(T—1)At}.

II. UrpER BouND

In this section we will derive exponentially decreasing
upper bounds on the norm of the misalignment vector r(¢)
in the idealized problem, (6), where x(¢) is mixing. Our
results and proofs are close to those in Sondhi and Mitra’s
paper [1, Section IIB].
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The better of our upper bounds for small values of «
(a<0.05, n>20) is also the simplest to derive and
evaluate numerically. Another upper bound, which is an
improvement only for large values of a, is stated without
proof.

A. Derivation of the Bound
The mixing condition seems to say that »'(¢#)x(¢) cannot
be small all the time if ||#(¢)|| is large. This is exactly what
we need, according to (8), for ||r(¢)| to decrease. Equation
(10), the mixing condition, leads us to consider
St T=DM (1) x(1))>. We have
to+(T— 1)A¢

al|r()’< X

t=t,

{r’(to)x(t)}z, from (10),

o+ (T~ 1)A1

-3

t=1t,

{x(nr(n)}*

to+(T— 1Az

+ § [ () {r(t)—r(1)} ]

to+ (T —1)At

+2 >

t=1ty

{x(Or()}[ ¥ (){r(t)—r(1)}].
(14)

We now bound each term on the right side of (14) from
above, and derive an inequality involving {/r(#y)|| and
|r(to+ TAL)||. We will need the following formula, valid
for any n-vectors a(#) and b(z):

TAt TAt

I Y {a(@b())b(n)IP=2 2

t=A47t t=Ar+At
1—Ar

- > (@’ ()b()} b))

J=At
TAt 5
+ 3 (@(0p(0) (F ()50},
t=A4t
(15)
Consider the first term which appears on the right side of
(14). From (8),
to+(T— 1At

> {(x(rn)

t=1ty

{a'()b()}b'(2)

[r(t)I12 = | (2o + TAD)|?).
(16)

Now consider the second term on the right side of (14):
to+ (T — 1At s
S [¥O{r)~r(1)}]
t=1fy
to+(T— 1At
< 2
t=ty
to+(T— 1At
1= ty+At
to+(T—1)As
<K* 3

t=1+A1

1
- K(2—K)(|

17 (t6) — r(D1I?

t—At

| 3 K{r(s)x(s)}x(s)II% from (6),

s=1g
t—Ar

1—At
> k@I 2 {F(9)x())*],

s=1, s=1p
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by Schwarz’s inequality,
to+(T— 1At

2

t=1o+Ar

t— At

S {#(s)x(s)),

s=1

t_to

= K2
k At

since ||x(s)|>=1,
to+(T— DAt ¢

Tl L )P IO,

= K2
K At K(2—-K)

t=to+Ar
from (8),
to+(T—1)A¢

)

£=ty+ At

t—ty

< AL’

o LIrI = 1r(tg+ TAD) ]
from (8),
KT(T-1)

= =) LI~ i+ TaOI?]

amn
where the final step follows from the identity =Y_,i=N(N
+1)/2.
Finally, consider the third term in the right side of (14):
to+(T—1)A?

2 gt {x(r()} [ 2 (D){r(t)— ()} ]

to+(T—1)At

=2K 3,

t=1ty+ At

from (6),
to+(T—1)Ar

E {x(Or(t)} x(0)|)?

to+(T~1)Az

-K 2

tm= gy

t— At

{(x(Or()}x'(1) 2 {r(s)x(s)} x(s),

s=1

=K|

{(x'(0)r(2)}?, from (15),

to+(T—1)As

<K >

()1
t=1

to+(T—1)Ar

t=ty+At
-k 3 {(FOrY,

(o)1= (g * TADI]
K2—-K) ’
T-1 ) ,
= T LlIrt) P~ (1o + TADI] (18)

On substituting the bounds in (16), (17), and (18) into
(14), we obtain

to+(T— 1At

> (X))

by Schwarz’s inequality,

=K(T-1) from (8),

2aKT(2—-K)
242K(T-1)+K*T(T-1)
(19)*

The above equation is equivalent to the promised ex-

lr(to+ TADIP < [ r(5) 171 -

2We observe that if ||x(#)| is, as in (4’), uniformly bounded by L
insteady of being normalized to unity, as has been assumed throughout,
then the above procedure yields

Ity + TAD)|2 < ||r(to)|12(1 - 20KT(2— KL?) )

2+ 2K(LT- 1)+ KAAT(T-1) )
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ponential bound. If we take b such that

2T 2+2K(T—1)+K*T(T—1)
then
(2 )lls for NT
th+ NAY| <
I+ NADI [ur(to)ne""””% for N >T.
(21)

Observe that b >0 if K<2.
We have also shown (the proof is omitted) by a rather
different method that

lr(2o+ TAD|| <vollr(2o)ll;
where v, is the unique positive root of

[1+aKT+a(aT+1)K?T/2]y

}1/2

TXT+1)*  TXT+1)Q2T+1) ]‘/2
7 6

for all ¢,

1—72

=1+K| ———1—
2K(2—K)

with 0<y,< 1. The above bound is superior to (19) only
for large values of a.
Our results are summarized in the next proposition.
Proposition 1: If x(¢) satisfies the mixing condition (10)
and r(¢) satisfies (6), then

|r(2o+ TAL)|| <B|r(2)ll, for all #,,

where B is the smaller of the quantities
B 2aKT(2— K) 172
242K(T—-1)+ K?*1(T-1)

and vy,. Thus, for any N >0,
|89+ NAD|| <ae™*M||r(2o)|]

where b= —(InB)/T and a=e’”
If we pass to the continuous limit in (19), that is, let
K—0 and T—o0 in such a way that KT'=constant=K'T"’
and TAt=constant= 7’ then we find that
40K'T’
2+2K'T'+ K™*T"

s+ T <l r(1) 17| 1 - (22)

which is identical to Sondhi and Mitra’s [1, (26) and (27)].

B. Dependence of the Upper Bound on the Loop Gain K

We now examine the manner in which b, which indi-
cates the rate of convergence, depends on K. We do not
consider the dependence on a and 7, since these parame-
ters are inherent to the input process and not subject to
control. We consider the case where

b=——1in|1- 20KT(2— K) . (20)
2T 242K(T-1)+ K*T(T-1)
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Fig. 2. Convergence rate derived from upper bound (Section II-A). b= —(1/2T)Infl —4aKT/(2+2KT + K2T?)].

If K is small then 2— K~2 and using the approxima-
tion In(1 — @)~ — a for small values of a, we obtain
1 4aKT
b~ —
2T 2+2K(T-1)+ K*1(T-1)
If K is large, that is K—1, then we ignore terms of order

less than two in T (recall that T >n, the dimension of x(¢),
typically a large number) and we obtain from (20)

(23)

~ak.

1 _2eKT2-K)| a2-K) «a

b~ - 5—7—_,11'1 1 K2T2 KT2 KT2 .
29

Observe that a/ T?< 1/n> a very small number.

We see that in the exponential bound the rate of con-
vergence b increases linearly with K for small K, and is
inversely proportional to K as K approaches 1. As K
approaches 1, the exponent in the exponential bound
rapidly approaches the very small number /T2 A graph
of b(K) for certain values of o and 7" which demonstrates
this behavior is given in Fig. 2.

The optimum value of K, i.e., that value of K for which
{lr(#)]] decreases most rapidly, as suggested by our upper
bound, is easily calculated to be (after setting db/dK=0
and solving)

Vari-1 -1 V2

K= T2_1 ~ T .

(25)

Since T is typically large (T >n) we see that the optimu..
value of X is rather small compared to one.

C. Discussion of the Optimum Value of the Loop Gain K

The optimum value just calculated from our upper
bound is quite different from the best value of K obtained
from ‘myopic’ optimization: examining (8) we see that
O — || r(t+A2))] is maximal when K=1. This is not
surprising since maximizing |A{|#(¢)||| after each interval of
length At may not maximize the change in norm over a
collection of intervals.

Another notion which leads to an erroneous ‘optimum’
value of K is the method of averaging. This involves
taking (6), Ar(t)= — Kx()x'(t)r(¢), and assuming that r(?)
behaves something like the solution to

Ar(t)= = KAr(1) (26)

where A is the n X n matrix which is the expected value of
x(£)x'(t). We can show that the method of averaging is
not very useful for large K, or even for values of K for
which our upper bound on the convergence rate is opti-
mal. We note parenthetically that we will use something
similar to the averaging argument for the case of small X
in the following section on lower bounds.

We also observe that for a particular process the true
optimal value of K (that value which makes for the fastest
decrease in {|r(?)||) may be quite different from the value
given in (25). In fact, we have some (rather pathological)
examples for which the optimal value of K is indeed 1.3
However, for many processes x(f), we are in a position to
indicate an interval in which the true optimum lies. We do
this by finding exponentially decreasing lower bounds on
{|r(¢)|| where the exponents have the same behavior with K
as our upper bound; that is, we find lower bounds whose
exponent increases linearly with K for small K and (for a
wide class of processes) decreases as 1/ K as K approaches
1. As shown in Fig. 3, this will give bounds on the range
of the true optimal value of K for a given process x(¢).

III. Lower BOUNDS

We obtain our first lower bound on ||#(?)|| directly from

(6):
fir(e+ A =1Ir() - K(r'()x())x()|

> (Ol ~ K(r (D) x())x(0)
> [r()li(1 = K).

27)
(28)

30ne excellent example is a process x(¢) where x(?) is perpendicular to
x(t—jAf) forj=1,2,- - ,n~1. In this example we have a=1/n, T=n. If
we take K=1 here, then r(fp+ nAf)=0! Any K smaller than unity will
not perform as well.
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THIS RANGE

R —_—— —

|
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ACTUAL b vs K CURVE
MUST LIE N HERE

LOWER B8OUND

I UPPER BOUND

T {
lﬂ— OPTIMUM K MUST LIE IN THIS RANGE——"'

Fig. 3. Sketch illustrating role of upper and lower bounds in determining range of values of K of particular interest for
given input process.

For small K we see that this is equivalent to
o+ NAL(| >e™ =B r(1y))], (29)

i.e., we have an exponential lower bound whose exponent
increases linearly with K for small K.

Unfortunately, this simple lower bound leaves much to
be desired since, as detailed in the discussion at the end of
Section III-A, it does not have anything like the behavior
of the upper bound in Proposition 1, Section II-A, for
large values of K. For extremely small K we obtain below
a sharper lower bound via the mixing condition. For
larger values of K we obtain a lower bound summarized
in Proposition 2, Section I11-C.

A. Lower Bound for Very Small K

Intuitively, if K is very small, then r(#) does not change
very rapidly, so we suspect r(H)=~r(ty) for t—1t,<TAt,
where 7 is as in the mixing condition (10). We then have

l[r(ro+ TAD | = || r(1)|*— K(2 - K)

to+(T— At

)

t=¢

{r(H)x(1) }2, from (8),

to+(T—1)At

~|r(t) |- 2K Z, {(F(1)x())?,
(30)
> (1) |2 = 2KT || r(t0)|{ 1 — (n — )a},
31)

= ||r(to)[|2[1—2KT{l—(n—- l)a}]. (32)

Equation (30) follows from replacing 2— K by 2 and r(?)
by #(ty). By using (28) and the bound in Proposition 1, it is
easy to show that the errors incurred in (30) are of order
K2 Inequality (31) comes from the fact that the largest

eigenvalue of
to+ (T—1)At

)

t=ty

x(0)x'(r) ] /T

is at most 1 —(n— 1)a. From (32) we have

lr(to+ NADY| > [|r(to)lje =N~ (33)

where
c& - El—fln[l—ZKT{l—(n—— Da} J~K{1-(n—1)a}.
(G4

The above is better than the bound in (29) which has
c~K. In fact, if a~1/n (the maximum possible value),
(34) gives c~K/n, which is the same as the upper bound
(23). This shows that the bound in (34) is the best possible
when all that is known about the input is that it is mixing,

We now have the best possible lower bound for small
K, (33), and we also have a lower bound for all X, (29).
However, the exponent in the exponential bound implied
by (29) grows monotonically with K, in sharp contrast
with our upper bound where it decreases as 1/K for large
K. In order to establish this behavior for the lower bound
we will have to examine the convergence process in
greater detail.

B. Geometrical Preliminaries: K Not Small

It will be beneficial to give the reader a flavor of the
final result of this section which is developed almost
exclusively from geometrical arguments. Consider the
plane formed by the generic x(¢) and r() vectors, see Fig.
4. Provided K is large relative to the rate at which the
vectors x(f) may change, we show that there exist two
regions in the plane, B; and B,, with the following im-
portant properties. Region B, acts as a ‘trap’ region in the



Fig. 4. Regions B, and B, in the (x(1),/(?)) plane. See Section 1II-B on
{ower bound.

sense that if {x(¢),r(¢)} occurs in B, then so does {x(¢t+
At),r(t+Ar)} and consequently all subsequent such pairs
also. Region B, acts as a ‘drift’ region in the sense that if
{x(#),r(?)} occurs in B,, then r(t+A¢) lies closer to the
region B, in the {x(z+A¢),r(z+ Af)} plane. Eventually the
pairs of vectors are guaranteed to ‘drift’ into the trap
region B,. We do not make any claims regarding the
subsequent behavior of the system if {x(7),#(f)} does not
lie in either B, or B,. Note that the regions B, and B, are
completely defined by the angles 8, and 8,, 0< 8, <8,<
a/2:

{x(8),r(r)} € Bys>cos B, < P%l(ri()% <cosB;, (35)
lx'()r(2)]

IOl

Let 8, be the angle between x(f) and »(¢), and let ¢, be
the angle between x(¢) and r(z+A¢) in the plane formed
by the x(#),r(¢) vectors, (Note that r(¢r+Af) is in the
{x(D,r(#)} plane as r(t+Af)=r()— K{r'(H)x()}x(¢) is a
linear combination of the vectors in the plane.) For most
of this section our only contact with the dynamics of the
{r(¢)} process will be through the following geometrical
statement relating ¢, and 6,

{x(t),r()} € Be=0< <cosB,.  (36)

tand,
1-X°
This is clear from Fig. 5, and it may also be easily proved

analytically from (6). The lower bound that we derive (for
K not small) requires the assumption that

tang, = 37

x(t+AD)—x()|<V2, foralls (38)
More precisely we require an angle §, 0<8<7/2, such
that

Assumption:

lx(2+ A7) —x(0)| < V2(1—cosd) <V2, foralls
(39)
or, equivalently,
x'(t+Af)x(t) > cosd >0, for all «. (40)
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KIECH) cos 8,

rir)

Fig. 5. (x(2),n(?)) plane. See Section III-B on lower bound.

Thus the angle between x(z +A¢) and x(¢) is bounded by a
number 8 <#/2, for all >, Another way of interpreting
this condition is that the ‘velocity’ of the input process is
bounded by a finite number (see [1] for a similar restric-
tion). This assumption is somewhat related to the mixing
condition. If & is small then x(r) cannot move very
rapidly, and so cannot “mix” well in a short period of
time. This means that if § is small then we cannot have
both 7 small and « large in the mixing condition, see (10)
in Section I-D.

Relying only on the assumption on x(¢), (39), we claim
that

‘¢1_01+Atl <39, (41)

that is, the angle between x(z+A¢) and (¢ + At) is within
§ of the angle between x(¢) and r(¢+Af). This is so
because the angle between x(z+Af) and x(¢) is, by (39),
bounded by 4.

From (41) we conclude that

17/2= 0, al <|m/2- @] +8. (42)

Let us now try to find angles é,, for given K and §, such
that (compare with (41)),

|¢t - 0[] =34, (43)

that is, the angle between r(r) and r(¢+At) is 8. It is
understood that ¢, is related to 6§, through (37). The
solutions 8, of (43) will prove important for our bounds.

We now show that if K is large or § small then there are
exactly two solutions, 8; and B,, for angles 6§, in the
interval [0, 7 /2] which satisfy the following pairs of equa-
tions:

tané,
tan¢,=—l?:nTé, 0<¢,<m/2. (44)
&, —0,=38. (45)

If we call the solutions to these equations 8, and sub-
stitute (45) into (44), we obtain' the single equation

tan 8
1-K
Note parenthetically that § <8+ 8 <« /2 since tan(S+98)
and tanfB have the same sign. On expanding the left side
of (46),

tan(B+8) = . (46)

tan 8 +tand
I—tanBtand’

we observe that (46) is a quadratic in tan 3. The solutions

tan( B+68)=
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are

KFVK2—4(1- K)tan’s
2tand
For solutions to exist it is necessary and sufficient that the
following assumption relating K and 8§ be valid.
Assumption:

tanf, ,= 47)

__K

V1-K

We see that as tand— oo (6—>7/2) we need K—1 for the
solutions to exist.

At this stage then we have that if K is large or 8 small,

i.e., (48) is valid, then two solutions 8, and S, of (47) exist.

We have already seen that 0 <3, <B,<w /2. These angles,

B, and B,, are used to define the regions B, and B, as in
Fig. 4 and (35) and (36). Now

>2tané. (48)

Ktan¥,

—_———, 49
1— K +tan%, “9)

tan(p,—6,) =

An elementary calculations shows that this expression is
strictly increasing for 0 <tanf, < V1-K, and is strictly
decreasing for V1— K <tan#, < oco. Recalling that if §,=
B, or B, then tan(¢,— 6,)=tand, we have
if B, <, <B,, then tand < tan(¢,—6,),
ie., 0<g¢,— 4, (50)
From (42), for B, <6, <fB, (recall that this implies ¢, <
7/2),
[7/2= 0, nl <m/2—,+8
<m/2—0,=|n/2-6] 51
Considering the three cases — B,<8, < —B,, 71— 8, <8, <«
— B,y and 7+ B, <8, <w+ B, separately, we find that in
each case (51) holds. This can be put concisely in the form
of a picture:

The region B, see Fig. 4, acts as a ‘drift’ region in
the following sense. If {x(#),/(¢)} lies in B, in the
{x(2),r()} plane, then r(z+ A7) lies closer to the
perpendicular to x(¢+Af) in the {x(r+Af),r(t+
A1)} plane.

(52)

We now examine the region B,. We claim that

if|m/2-0,|<m/2—B,,

For
|m/2—6,|<7/2— B,~|tand,|
|tand,| tanﬁ2
l—K 1-K
=|tan¢,| > tan( B,+48), from (37) and (46),
=|7/2—¢|<7/2—(B,+9)
=|7/2—0, | <7/2— B, from (43).

The results in (53) can also be stated concisely in geomet-

> tanpS,
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rical terms:

If r(¢) is an element of B, in the {x(¢),r(#)} plane,
then r(¢+ At) also lies in the corresponding region
in the {x(z+A?),r(t +Ar)} plane.

(54)

The statements (52) and (54) concerning the regions B,
and B, summarize the results of this section. These results
are contingent upon the assumptions that K is large or 8§
small, as in (39) and (48), for only then do these regions
exist.

C. Analytic Bounds: K Not Small

We are now ready to give our lower bound. If r(z;) lies
in the region B, of Fig. 4, then alt succeeding r(¢) will also
lie in that region. Thus if |cosf,|<cospB, then |cosf,| <
cos 3, for all ¢ >¢,. This leads directly to

(2 + A0 |P={r()*{1— K(2— K)cos¥,}, from (8)
> Ir())*{1— K2~ K)cos’B,} (55)
which in turn implies
ir(to+ NAD)| > [ r(to)lle ™Y (56)
where
c= —%ln{l—K(2—K)cosz,82}. (57

If r(to) is in region B, of Fig. 4 then we know from (51)
that cos 0, +a; <COS 0 This leads to a bound indentical to
(56) and (57) with S, replaced by 0,.

Actually, we can do better than  this. If r(ty) is in B,
then there is no loss of generality in assuming §, <6, <f,.
We see then that

tan(¢,—6), from (42),

=(tan¢,—tand)/{1+tan¢,tand },

_ tanf,—(1-K)tand
tanf,tand+(1—-K)’

tanf,, ,, >

from (37). (58)

This provides the basis for a recursive lower bound on 6,
for t > ¢,. From (8) we directly obtain the following lower
bound:

+N—1
Ir(t+ NAD> Ir(r) T {1- K2~ K)eos’s,_, )"
J=1l
(59)
where the angles {a;} satisfy the recursion
tang;— (1 — K)tand
tang;, = a,=96,. (60)

tang;tand+(1-K)’

We know from previous considerations that g, , >a, and
a;—f,. It is difficult to solve (60) in closed form but
numerlcal answers can be easily obtained for any 6,, K
and §. We summarize the lower bound in the followmg
Proposition 2: Suppose that the input vectors x(f) are
such that the angle between x(z+Af) and x(¢) is bounded
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by a number §<7/2, i.e.,
llx(z+A0) - x(2)]| < V2(1~cosd) < V2,

and that X is sufficiently large so that
_K
Vi-K
Equation (47) gives the two solutions 8, and §,, 0<8, <
B,<m/2, to the equation
tan( B+ 8)=tanB/(1—K).
The angles B8, and B, define the regions B, and B, as in
(35) and (36).
i) If r(z,) and x(1,) are aligned such that they lie in B,
then
lr(2ty+ NAD)|| > ||r(%))le ™™,  forall N >0, (61)

where ¢= — 1In{1— K(2 — K)cos’B,}.
ii) If r(ty) and x(¢,) are aligned such that they lie in B,

for all ¢ >1,,

> 2tané.

then
g+ N-1 2
Ir(tg+ NAD| > e}l TT {1- K2~ K)eoss;_, }
Jj=u
forallN>1, (62)
where

tang,— (1 — K)tan$

tang,, = ,
MG tang, tand+ (1K)
) x(¢
ao=COS—l r( 0) ( 0)
(12l
In particular, lim,_ ,a, =B, ie., eventually

{x(?),r(t)} enter the “trap” region B,.
D. The Continuous Limit

The special case of (59) where Ar—0 (i.e., K—0 and
8—0 in such a way that K/8=constant) can be solved
analytically, yielding the same result as Sondhi and
Mitra’s [1, eq. (45)]. The details are somewhat cumber-
some and are omitted.

E. Dependence of the Lower Bound on the Loop Gain K

We now analyze the behavior of the lower bound as a
function of X for large K. We assume r(¢,) is in B, since
we know that the system tends to this situation for
{x(y),r(1y)} in B, or B,. From the expression for tan g, in
(47) we see that if (tand)/K is small, then tanf,~
K/tand, or w/2- B,~(tand)/K; hence cosf,~
(tan8)/ K. Thus in (57)

e= - 3In{1- KQ—K)cos8,)

tan%
K 2

~— %In[l—-K(Z—K)

_(2—K)tan’
N
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As K increases we see that ¢ decreases something like
1/K. Thus the qualitative similarity of the upper and
lower bounds is established. If we let Ar—0 (i.e., K—0,
8—0, 8/ K= constant) we obtain c~tan’8/ K, Sondhi and
Mitra’s result [1, eq. (40)].

IV. NOISE

A. The Forced Equations

We consider the effects of the forcing term u(¢) in the

equation
Ar(t)= — K{r(t)x(1)}x(t)+ u(r). )

The term u(¢), an n-vector, can be used to represent the
effects of departures from the idealized problem described
by the homogeneous version of (7), such as when noise is
present in the return signal or the unknown coefficients
are varying with time. We will show now that if Jla(?)|| is
bounded, or equivalently has a bounded mean over inter-
vals of length T, then the residual error ||r(¢)| remains
bounded as 1—o0. Subsequently, by appropriately identi-
fying the forcing term u(¢), we will obtain estimates of the
effects of the departures from the idealized problem.

Equation (7) may be rewritten as

r(t+A)=[I-Kx()x' () |r(t) +u(?), t=tolg+AL,- .
(63)

As is well-known [31], there exists a formal solution to
(64) in terms of the fundamental matrix Y(¢,4y), {5 <t:

t
(=Yt + 3 Y()u(-A0, (64
J=ty+Ar
Our upper bound developed in Section II-A and
summarized in Proposition 1 translates to the following
bound in the fundamental matrix:

| Y(t,t5)l| = €T when jTAt<t—t,<(j+1)TAzt. (65)

Assume at this stage that all that is known about the
forcing terms u(7) is that the time average of its norm over
any T samples is bounded, i.e.,

1 t+(T—~ 1At
F S lw)I<U, forallt>t,  (66)
j=t
Then as —o0 we obtain, from (64),
< i ur
“"(00)”<UTZOG JbT=————_E- (67)
j=

Alternatively if ||u(¢)|| is bounded by i for all 1 >¢,, then
U< so that
ul

(el < I—_‘ie—— (68)

-bT "

B. Noise in the Measured Signal

We apply the result in (67) and (68) to some special
cases. Suppose that there is noise, or errors in observation,
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in the observed signal z(¢) which appears in (1). Specifi-
cally, suppose that instead of (1) we have

z2()=hx(1)+ (1) (69)
where s(¢) is an undesirable noise signal. We take the
approach that not much is known about s(7) except that it

is bounded. When we follow the effects of this signal
through we see that (7) holds with

u(t)=— Ks(t)x(1). (70)
If
] H(Toa
T > sq(j)<S?  forally, 71)
J=t
then Schwarz’s inequality gives
] T haAr
7 = lu()l<ks (72)
J=t
which may be used in (67). We have then that
KST
llr(0)|l < T (73)

Recall from Section 2-B that b is proportional to K for
small K. Thus the bound for the residual error in (73) is
independent of K for small K. Also, for K approaching 1,
b is approximately a/KT? (see (24)), a small number;
hence the bound in (73) is proportional to K? as K
approaches one.

C. Variations in the Coefficient Vector h

Suppose now that the vector A in (1) is not time in-
variant. Then
Ar(f)=Ah(1) — k(1)
=Ah(?)— K{r'()x(1)}x(2). (74)
We see that we may identify the forcing term wu(#) with
Ah(?), and assuming

IAR()| <H,  forallt, (75)
we find that (68) yields
HT
flr(eo)ll < T (76)

Thus if A changes slowly with the time the residual error
will be small.

An interesting facet of the bound (76) is that it is
minimized with respect to K at a value of K which is
identical to the value of K which maximizes the rate of
convergence of the upper bound derived for the idealized
problem. We saw in (25) that this optimum value of X is
given by K~V2 /T.

V. EFFECTS OF NOISE AND ERRORS ARISING FROM
THE DIGITAL IMPLEMENTATION: MIXING AND
NoNMIXING INPUT

Here we consider the performance of the filter under
various departures from the idealized model. We use the
language of errors introduced by the implementation.
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However, with the proper identification of the error terms
€V(¢) and €?(¢) below, the effects of noise in the signals
for instance are estimated. The noise can be more general
than that considered in Section IV-B (see (83) below)
since it may exist in the input vectors x(¢) as well as in
z(#), although in the simple case the results below are not
as sharp.

A. Nonmixing Inputs

If x(¢) is not mixing, then we do not necessarily expect
the misalignment norm ||r(¢)|| to decrease to zero; in fact,
Appendix I shows that there is no uniform upper bound
on the misalignment. We examine below some of the
effects on the convergence process for inputs which be-
longs to a particular class of nonmixing inputs.

We digress here to explain why we might expect the
inputs x(¢) not to be mixing in many applications. (See
Section I-D for the mixing condition.) In many com-
munications-related applications, such as echo cancella-
tion, x(f) is derived from a speech signal. Typically, a
bandpass filtered version of the speech signal is passed
through a delay line to yield x(¢); thus if S(¢) is the
bandpass filtered speech signal at time ¢, then

x(1)=[8(2),S(t—Ap),---,S{t—(n—DA}]. (77)
Now consider the constant vector d where
d=[cos(wnAt),cos{w(n—1)At},- - - ,cos(wA?)]". (78)

We see that d'x(?) is (approximately) proportional to the
Fourier coefficients of S(¢) at frequency w. If we take w
well outside the frequency band to which S(7) is limited,
then we might expect X"~ P¥{d'x(r)}* to be quite
small, especially if » is large. Thus if S(7) is band-limited,
we might expect that x(¢) mixes very slowly, if at all.

We see below that even in the case that the input
process is not mixing, the results that have been obtained
so far with the mixing assumption are applicable with
only minor modifications. Suppose that there is a sub-
space P of R” for which P_L x(7) for all ¢ >¢,; that is, x(¢)
has no component in the space P for any t>¢, This
situation does not exhaust all the possibilities that are
associated with the condition “x(¢) is not mixing;” how-
ever, there will be arbitrarily long time intervals for which
this situation is approximated arbitrarily well for any
nonmixing input. We also assume that x(¢) is mixing in
the orthogonal complement of P in R” which we denote
by S, ie., S=P*L.

In the idealized problem the component of #(¢) in the
space S will converge exponentially to zero, while the
component in the space P will remain constant. This is
easily seen from (6) by writing

rs(¢) =component of #(¢) in S, (79)
rp(t) =component of r(7) in P. (80)
Equation (6) becomes
Ars(t)=—K{rs'(t)x() } x(1), (81)
Arp(1)=0, (82)

since rp’(H)x(#)=0, and hence r'(t)x(£)=rs'()x(?).
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As (81) concerns only rs(?) and x(f), and x(¢) is mixing
in the subspace S, the results in Sections II-IV apply. In
particular, we know that rs(¢) converges exponentially fast
to zero. The remaining component rp(f) is completely
described by (82). In any case, as t—o0, ||/(¢)|| remains
bounded.

The reader may also verify that the important qualita-
tive property of boundedness is preserved even when the
noise signal s(7) is present in the measured signal, as in the
case considered in Section IV-B, and the input process is
nonmixing,.

B. Errors due to Digital Implementation

Here we introduce two rather different kinds of errors
which arise in digital implementations of the device.
Suppose that instead of (2) we have

AR(D) = K{2()— 2(0)} {x(1) + (1)) (83)
where 2(f) = {h(t) + €P(1)) x(¢), and €(¢) and €®P(z) are
random vectors, most likely with small components, which
are introduced in the course of implementing the ideal
recursion. Fig. 1 illustrates the points at which these errors
appear in a schematic of the device. As the effects of the
errors differ qualitatively, we find it convenient to make a
distinction by referring to €V(¢) and €?(¢), respectively, as
errors of the first and second kind.

Errors of the second kind could arise from a fixed point
to floating point conversion in the device [20]; such a
conversion would take place if l;(t) is stored in the fixed
point mode, but the multiplications involved in forming
If(t)’x(t) are effected in floating point. Likewise, errors of
the first kind could arise from a floating point to fixed
point conversion of x(#) prior to multiplication with
K{z(t)—2(1)}.

To see that the model in (83) is more general than that
considered in Section IV-B, note that we may identify
s()=€D(£) x(¢) and make €V()=0.

There is yet another, rather important, reason for con-
sidering errors of the first kind. In certain implementa-
tions, like the COMSAT echo canceller presently being
evaluated [19], the signal x(¢) (see Fig. 1) is very coarsely
quantized prior to multiplication with K{z(f)— Z(¢)}. The
motivation for this is to simplify the design of the multi-
pliers.* The errors introduced by the quantization may of
course be denoted by V().

Incorporating the errors €V(¢) and €?(¢) in (6) gives

Ar()=— K{r()x(t)— P () x() }{ x(2) +V(0) }.
: (84)
It will be assumed throughout that

I€PWISE, €PWI<E, forallt.

(85)
C. Qualitative Behavior with Errors of Both Kinds Present

We examine in turn the convergence properties of the
solution r(¢) of (84) for the cases where x(¢) is respectively
mixing and nonmixing.

“Note that this procedure is not at all the same as using the “nonideal
multipliers” described in [32] even though the motivation is the same.
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1) Mixing Inputs: Equation (84) may be written thus

Ar(t)= = K{r()x(0)}x(0)— K{r(t)x(1) }D() + A1)
(86)

where

f()=K{€®@tyx()}{x(2) +eD(1)}. (87)
The assumption that the two errors are uniformly
bounded implies a uniform a priori bound for ||A?)|.
However, this is not the case for the second term in the
right side of (86) since a uniform a priori bound for ||r()||
does not exist. For the same reason (86) is not in a form
that has been encountered previously. We need to step
back briefly and prove a new result regarding the be-
havior of solutions of equations like (86).

Lemma: Suppose

Ar(t)= — Kx()x'(£)r(£) + m()r(t) + f(t)  (88)
where m(f) and f{¢) are, respectively, nXn and nX1
arbitrary sequences such that

lm(£)|| <M and || A2)|I<F, (89)

Suppose further that x(¢) is mixing so that, by Proposition
1 (see also (65)), the fundamental matrix Y(z,1,) associated
with the recursion Ar(f)= — Kx(£)x'(¢)r(¢) satisfies the
bound

for all z.

| Y(,8,)|| < ae =20~ /A
Then, for all N >2,

forallt>¢,  (90)

I(NAD)|| < ||r(0)|a(1+ M)(aM + e~ )"
aF — N
+— {1—(aM+e )"}, (91
l—aM—e_b{ ( ) } ©n
In particular, as N—>co we have the following result for
arbitrary values of r(0):

if aM +e~? <1, then ||r(o0)|| <aF/(1—aM—e™?).
(92)
Proof: A formal solution of (88), see (64), is

r(0)=Y(£,0)r(0) + 2’ Y(t,j)[m(t)r(j—At)+f(j—At)],

Jj=At
t=At,2At,-+-  (93)
Thus
| r(NAD|| < || Y(NALO)] || (0))]
NAt
+ 3 JY(NALHI[ Mr(— D))+ F]),
j=At
NA: .
<ae N ||r(0)|| +aF >, e bN-i/An
J=Ar
NAt )
+aM 3, e PN IAp(j-Ar)|,  (94)
Jj=At
ie.,
Fo b bN_l
a0 < afroyy + L=
(N—1)At
+aMe® X YA (95)
j=0
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At this stage we need a discrete-time version of Gron-
wall’s lemma [33]:

If p is a constant and if yy <Ay +2
1,2,--+, then

N omy; for N=

N-1
YN<>\N+IL(P-+1)N_1 2 Aj(l*‘ﬂ)_j"'J’o}
j=1

forall N >2. (96)

This is easily established by induction, and we will not
prove it here.

We make the identification yy =e®"||r(NAf)|| and the
natural identification for Ay and p. After some straight-
forward manipulations we find that for N >2

|H(NAD)| < [|(0)la(e >+ M)(aM + e )" !
+ IT—;;F—_e:{l—(aM+e_b)N}, (97)

from which (91) follows. Observe that the right side di-
verges if (aM+e~%)>1. If, on the other hand, (aM+
e7%)<1 then ||(NA¢)| has the asymptotic upper bound
given in (92). This concludes the proof of the Lemma. []

Returning to (86), we find that

le€P()x'(¢)|| < E, IAOI<KE,(1+E,), forallt.
(98)
An application of the Lemma gives
K(1+E)E
if aKE, + e~ <1, then [|(o0)[| < U EVEr (99)
1—aKE,—e™®

This is important. We observe that the condition for
boundedness is satisfied if E,, which bounds the energy in
errors of the first kind, is sufficiently small. It might also
appear that, regardless of the value of E|, the condition is
satisfied if K is sufficiently small, but this is not so. Closer
inspection shows that it is necessary that E, <aT;if the
latter is true and K is sufficiently small then the condition
for boundedness is satisfied. In any case, if neither E, nor
K is small then the condition for boundedness is violated.

Note the qualitative difference between the two types of
errors: errors of the second kind affect the bound quanti-
tatively, in fact linearly, but the condition for bounded-
ness is independent of E, while depending on E,. Errors
of the first kind have more influence in determining the
qualitative behavior of the device.

2) Nonmixing Inputs: We now consider the case where
x(¢) is restricted to a subspace S wherein it is mixing. Call
w(f) the projection of €(f) on §, and vall o(f) the
projection of €)(7) on P, the orthogonal complement of S.
Then we may write (84) as

Ar(t)=—{r()x(0)}x(r)— K{r()x(¢)}w(t)+u(z)
+ K{c(z)(t)’x(t)— r’(t)x(t)}v(t) (100)
where
u(t)= K {€@(1) x(1)} (x(£) + w(1)}.

Observe that the vectors {u(¢)} are restricted to the sub-
space S.
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We may obtain separate equations for rs(¢) and rp(¢), as

in Section V-A:
Ars(t)=—K{rs'()x(1) } x(t) — K {rs'(£)x(1) } w(t) + u(?)
(101)

Arp(t)= K {€®(2) x(£)— rs'(£)x(1) } o(2). (102)
Note that the recursion for rs does not depend on rp; in
contrast, the recursion for rp depends on rs but not on rp.

Consider (101) first. Observe that the equation is in the
form of the equation investigated in the Lemma—rs(¢) is
restricted to the subspace S, and x(#) is mixing in the
subspace S. Application of the Lemma shows that

if | w(0)|| <W(<E))

for all ¢, (103)

and

ak(1+ W)E,

1—akKW—e~t"
(104)

if aKW+e72< 1, then ||rs(0)|| <

In brief, all the results in Section V-C1 on r(¢) for mixing
input apply here to rs(?).

Now consider (102). The point to note is that it is
qualitatively different from (101). Equation (101) contains
a stabilizing term in the right side which through the
mixing mechanism acts to reduce ||rs(f)|| whenever the
latter is large. As the right side of (102) is independent of
rp(¢), no such mechanism exists to stabilize || rp(?)||.

The vector rp(¢) performs a random walk in the sub-
space P with random step size and direction. Even if rs(#)
is bounded, the right side of (102) may have a nonzero
mean since €?(¢) is random; in this case ||rp(?)|| will grow
linearly with /. Now even if the expectation of the right
side of (102) is zero, the norm of rp(¢) will grow like V¢
because of random fluctuations. We thus conclude that,
even if ||€)(¢)|| and ||€@(¢)|| have arbitrarily small bounds,
the quantity |jrp(?)||, and consequently also ||r(#)||, will
become arbitrarily large after a sufficiently long period of
time! This is in sharp contrast with our results in Section
V-C 1 for mixing inputs.

It is interesting that the two hardware implementations
that we are acquainted with [19], [20] have on occasions
demonstrated such unbounded behavior.

We should point out that the quantity #/(¢)xr), which is
of interest in many applications (in the echo cancellation
application, the uncancelled echo is given by z(¢)— 2(¢)=
F(O)x(t) — €2(t) x(1)), is uniformly bounded simply be-
cause ¥ ()x(t)=rs'(1)x(r).

We should also note that the well-known technique of
introducing ‘leakage’ in the adaptation can stabilize the
filter at the cost of introducing a residual misalignment
error. We omit an analysis of the effects of leakage on the
adaptation because a related analysis for the continuous-
time algorithm may be found in [1].

D. Both Kinds of Errors Not Simultaneously Present

It is of additional interest that, as we show now, neither
one of the two kinds of errors is by itself sufficient to
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bring about unbounded growth if its energy is bounded by
a small number and the loop gain is small.

1) éY(1)=0: The above statement is easily substanti-
ated when €®(f) is the only source of error. Equation (84)
then reduces to

Ar(1)=— K{r()x(£)} x(£) + K {€P(£) x(t) } x(2).
(105)
This immediately gives
Ars(r)=— K {rs(t)' x(£)} x(2) + K {€P(1) x(2) } x(2),
(106)
Arp(2)=0. (107)
Equation (106) is in a form to which the results of Section
IV and the Lemma in Section V-Cl apply. We may
conclude that |rs(?)|| is bounded without making any
special restrictions on the loop gain or on the energy of
€?(1). Clearly ||rp(?)|| is constant. Consequently ||r(#)] is
bounded.
2) €d(f)=0: The situation here is marginally more
complicated. We have from (83) that

Ar(t)=— K {r()x()}x(£) — K {r()x(1)}V().

(108)
Hence
Ars(t)=— K{rs'(£)x(1) }x(8) — K {rs' () x(2) } w(2)
(109)
Arp(1)= — K{rs'(£)x(1)} (), (110)

where, as before, w(¢) and v(¢) are respectively the projec-
tions of €V(¢) onto S and P, respectively.

Equation (109) is simpler than (101); with #(1)=0 in
(101) we obtain (109). The following result therefore
follows from (103) and (104):

if aKW+e~ %<1, then rs(t)—>0 as t>00.  (111)

Assuming that the above condition for convergence holds,
we also have from the Lemma (see (91)),

|rs(NAD)| < [|rs(0)|la(1 + KW)(aKW+e~2)" 7,
forall N >2. (112)

The condition for exponential convergence in (111) is the
same as the condition for boundedness in (99) except that
W occurs in the former in lieu of E,. The conclusions of
the discussion following (99) concerning the requirements
on E, and K for the boundedness condition to hold are
thus applicable here.

Assuming that this condition is satisfied we have, from
(110),

(N—1)ar
Ip(NAN =) - K 2 (' (Nx(D}e()I
j=

[ee]

<)+ KE, 3, lIss())
P

a(1+ KW)| rs(0)]|
1—akKW—e~*

<l ()l + + KE,||rs(0)|.

(113)
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From (112) and (113) we may thus conclude that in this
case ||rs(NA?)||—0, ||[rp(NAf)|| is bounded and, conse-
quently, ||#(NAY)|| is bounded for all V.
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APPENDIX
Tue MIxING CONDITION Is NECESSARY FOR EXPONENTIAL
CONVERGENCE

The proof of the neccesity of the mixing condition on {x(#)}
for exponential convergence to zero of the solutions #(¢) of (6) is
essentially that given by Morgan and Narendra [2}. The main
difference is that they dealt with continuous time, while we deal
with discrete time. We prove that the existence of an exponen-
tially decreasing bound on [{r(¢)|| implies that x(¢) is mixing. We
do this in two steps—showing that of the following three state-
ments, 1=2 and 2=3 (we note that 3=1 by virtue of our upper
bound).

1) There exist positive numbers @ and b such that

|F(to+ NAD)|| < ||7(2o)||ae 2V for all tyand N > 1. (Al)

2) For any unit vector y in R” there are numbers N >0 and
€>0, and there is a conical neighborhood® (see Fig. 6) C, of y
such that for any m > N and any ¢,

LS KOs
tEA(tem,Cy)
where® A(tg,m,C,)={t|t=ty+jAt, j=0,1,---,m—1; and x1()
N G, =0}. The set A(f,m,C) is the set of all times, spaced Az
apart in the interval [fo, o+ (m — 1)At], where x(f) is not essen-
tially perpendicular to y. Note that if C; C C, then A(f,m,C,)C
A(tgm,C)).

3) x(¢) is mixing (see (10) in Section I-E); that is, there exist
numbers 7 >0 and a >0 such that for any unit vector w and
any o

(A2)

1 fo+(T—1)As
7 =

=t

(wx()} >a. (A3)

Condition 2 says that on the average x(f) has components of
at least a certain size in any given direction; that is, x(¢) is not
essentially perpendicular to any given direction almost all the
time. But this is exactly what the mixing condition says. Thus it
seems plausible that 2=>3; we now see that this is so.

Suppose that condition 2 is satisfied. Then to each unit vector
y in R" there is an associated conical neighborhood C,. (Since
A(to,m, C,) C A(tg,m, C;) whenever C;C C,, we may choose any
smaller neighborhood than our original neighborhood C,, and
we may wish to do this later.) The conical neighborhoods C,
cover the unit sphere; take a finite subcover C,,--+,C,. Pick
any w on the unit sphere, so ||w||=1. Then there is a y; such that

5A conical neighborhood of y is a set of all points in R” which can be
represented as Au, where A€ R and u is a member of a connected open
subset of the unit sphere in R” which contains y.

6We are denoting by x* the (n— 1) dimensional subspace orthogonal
to x.
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y/lyll

UNIT SPHERE

Fig. 6. Conical neighborhood of y.

weC,, and there is an ¢, >0 such that, for any ¢, and m,

{x(Ow)*> elllx(0))?
for all t€ A(ty,m, Cy').
Let N and e be those numbers associated with y; in condition
2. Choosing any m > N and any 7, we see

(A4)

lt°+(m—l)Al ) 1
= 3 (FowY>—- T K0P
t=1, t&A(t,m,C)
>%4.L S Kx@P
K m

1€ A(1,m,C,)
€€,
>5-
The second inequality follows from (A4) and the third from
condition 2.
Now set 7=max, N(y;) (the y; make up the finite open cover,
and N(y,;) represents the N in condition 2 associated with each
¥, and set

(AS)

a=— inf e,
K weER"

Iwij=1

(A6)

where € and ¢, are associated with each unit vector as in the
previous paragraph. It is easy to see that a >0 and T"< c0; thus
the mixing condition is satisfied.

It remains to show that 1=2. We prove this by contradiction.
Suppose condition 1 is satisfied, but condition 2 is not. The
latter part of the hypothesis means there exists a unit vector
w& R" so that for any N >0, ¢e>0 and any conical neighbor-
hood C,, of w, there exist ¢, and ¢, with ¢, > #,+(N—1)At and

L3 (A7)

~ K|x(D)f<e
tEA(t, N, C,)

Pick N such that ae Y <1/2, where a and b are the con-
stants which appear in condition 1, and pick e=1/16. Define ¢,
to be f5+ (N —1DAs. Define v(#) to be the projection of x(7) on
wt, ie, o()=[I— ww]x(f). The equation Ar(s)= -~
Ko()v'(1)r(¢) has the stationary solution »(r)=w. We show that
the equation Ar(f)= — Kx(#)x'()r(¢) has nearly stationary solu-
tions.

Call

A()=—Ko(1)v'(t) B(t)=—Kx()x'(1)—A(r). (A8)
Let Y(1,1) be the fundamental solution matrix associated with
the recursion Ar(t)=A(r)r(?), (see (66) in Section IV-A) and

consider
Ar()= - Kx()x'()r(t)=[4()+ B(H)}r (1),  r(tg)=w.

(A9)
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Then
r(t)= w+j=§+m Y(,,)B(—ADr(j—Ar). (Al0)

Now
z‘+ YO BG=80n-0) < _iA 1B (AL

since, by virtue of the nonincreasing property of |[r(7)]| stated in

@®),

YEHI<T eI <lr()lI=|wli=1.  (Al2)
Al IBUI=I- Kx (DX (D40
<K|lx(Dx' NI+ Koo' DI
<2K|[x(H)I2 (A13)
Thus we have for the right side of (All),
t,— At
2 IBWI= > 1B+ 2 B
J=1 JEA(t,N,C,) JE[tety —AL]
J&A(15N,C,)
<2 X KlxO)P+ > 1B
JEA(te,N,C,) JE[tet— 1]
JEA(N.C)  (Al4)

We may choose C, so that ||B())||<1/8N for j&A(¢,N,C,);
this means that any two vectors e and f in C, satisfy either
lle+f)|<1/8N or |le—f] <1/8N. With such a choice we have

1, — At
' , . 1
2 IBU)II<2 2 Klx()I*+ 2 N
J=1 JEA(t0N,C,) JE][to 1 — Al]
J&A(1N,C,)
1 1 1
<2—E+N8———Z (Al15)
From (A10) and (Al1)
3]
eI > MW= X Y(2.)B(—A0)r(j—Ar)
J=to+ At
t,— At
>wll= X 1B
Jj=t
1 3
> 1- Z = Z . (A16)

But we chose N so that ||r(¢)|| = ||r(tg+ NAD)| <1/2. Thus we
have our contradiction.
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