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1.4 Kinematics of Linkages

A first step in understanding the kinematics of linkages is to determine a systematic
way of assigning coordinate systems to the links. The convention by which this i1s usually
carried out is due to J. Denavit and R.S. Hartenberg and appears in their 1955 paper - " A
kinematic notation for lower pair mechanisms based on matrices”. Trans ASME 77E (J.
App. Mech. 22) pp. 215-221. We explain this below

Fig: 1.4.1

Generalized lower pair with axis O;z;; its neighboring pairs. and the quantities §;. s;.

@i it+1, @i,i+1 required when transforming coordinates.

Consider the i** pair in a linkage-chain, and align its axis along the z; axis. The x;y;2,

system is determined by directing the z;- axis along the common perpendicular from the
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(2 = 1)th pair. The process is repeated from the i** pair to define the (i + 1)* pair and its
(Zit1,Yi+1,2i+1) coordinate system. To transfer from the i-system to the (i + 1)-system

four quantities in carefully consistent senses and directions must be specified;
(a) a twist a4+ about the z,4; axis and a distance a; ;4 parallel to it;
(b) a rotation ¢; about the z; axis and a translation s; parallel to it.

The four quantities 6;, s;, @i i+1, and @, ;41 uniquely determine the relative positions

of two adjacent pair axes.

While ;41 and a; iy, are always fixed (and are commonly called the ‘twist’ and
‘length’ respectively of the link (¢,2+1)), 8; and s, can, one or both of them. vary according
to the nature of the pair whose axis lies along z;. If this pair is a C-pair then 8; and s,
are variables that are independent of each other; if it is an R-pair then 8; varies and s;
is a fixed offset dimension; if it is a P-pair §; is fixed and s; is a variable translation: if
it is an H-pair a further condition és; = hé@; needs to be specified where h is the pitch
of the screw defining the H-pair. An S-pair can be represented as three cointersecting
series-connected R-pairs, each one preferably at right angles to its neighbor. A 4 x 4

matrix representing the transfer of coordinates from the (¢ + 1)-system to the (-system is

given by,
cos(8;) —sin(bi)cos(aii+1) sin(0i)sin(a;it1)  aiiy1cos(8;)
4. sin(6;) cos(8i)cos(aii+1) —cos(Bi)sin(eiit1) aiiy18n(6;)
it 0 sin(ag iv1) cos(ai,i+1) _ 55
0 0 0 1

Denavit and Hartenberg also use a convenient shorthand notation
Qi i+1
a5 iql
6
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Another Version of D-H Parametrization

Fig. 1.4.2

a;= length of common normal between Z;_; and Z;

a;= angle between Z;_; and Z; positive in the right hand sense about the common normal
X

0; = joint angle positive in the right hand sense about Z;

r; = length along Z;_; from X,_; to X;

Consider a system of mechanical links (numbered 1 through N) each capable of linear or
rotary motion relative to the adjacent links. For reference, define link 0 to be fixed to a base
(on a rigid table, on a vehicle or in the ground). Define a joint to be the intersection of two

T

adjacent links. In particular, joint i is the intersection of links i — 1 and /. i =1.2..--.V.
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Z; = axis of joint (7 + 1) (sense arbitrary). If the joint 7 is an R-pair then Z, is the
axis of the rotation; if it is a P pair, then it is the direction of linear motion: if it is an
H pair, then it is the screw axis. Defining Zy in an arbitrary manner Z; is defined for

: = 0,1,2--- N.
The vector, X, = ”ZZ.'_;I":“Z—” defines the common normal between Z;,_; and Z; directed
from the former to the latter. If Z;~, and Z; are such that Z,_; x Z; = O then X, is

arbitrary subject only to the condition X127,

Defining Z, in an arbritrary manner we have X, defined for i = 0. 1.2....N.. Define
Y, = Z; x Xi,i = 0,1,2,---,N.

—

Thus we have defined an orthonormal coordinate system (.f,-. Y. Z ;) fixed in link
i, 1 = 0,1,2,..,N. We can state unambiguously,
#; = angle from X',-._l to f,- measured positively counterclockwise about 4 iz
r; = distance along Z;_l from f,--l to X’.-
a; = angle from Z._1 to Z,- measured positively counterclockwise about X,

a; = distance along X, from Z;_, to Z;

A vector V; fixed in coordinate system 1 can be expressed in system (: — 1) as Tis

using the transformation T}_, as follows:
Vi = TV,

More specifically V; or the frame i is first rotated about X, by —a; (aligning Ziand Z;_,
then translated along jf,- by a; (bringing Z-f.- and Z-,-_l into coincidence). then translated
along 2?,(‘:‘ Z_',-_l) by r; (giving jf,- and f,-_l common origin) and finally rotated about Z:

by —6; (bringing the two systems into coincidence).

Thus,
Cop —Se; 0 O 1000 1 0 0 a 1 0 0 0
i _ | Se Cs 00 010 0 010 0 0 Co; —Sa O
=1 0 0 10 00 1 n 001 0 0 So; Coi O
0 0 01 000 1 0 00 1 0 0 0 1



Where

Ce, = cos(8;)
Ss, = sin(6;)
Co; = cos{a;)
Sa; = sin{a;).

Thus the Denavit-Hartenberg matrix for the joint i is given by

Co, —Cq;Se; Sa;Ss; aiCly,

T_,' _ 59.- Ca‘-Ce,' —Sng.. a,'Sg,-
=1 0 Sa.' Co-,. T
0 0 0 1

Here a; and a; are constants. If 7 is an R-pair, then r; is a constant and §; is a variable.
If 2 is a P-pair, then 8; is a constant and r; is a variable. If / is a H-pair. then 8; and ©; are
both variables but
éri = héb;,  h = pitch

In the next few pages we sketch out the JPL-Stanford Arm (handouts supplied by
JPL). The D-H parameters are also given.



Recall that the end-effector coordinate system is (Xy. ¥n. Zx). In the case of the
Stanford-JPL Arm it is the frame (X5, Ye, Zs,) see Fig. 1.4.3 and Fig. 1.4.4. Referring
to Figure 1.4.6. the vectors @, &, and d@ completely determine the orientation of the end-
effector with respect to the base = (fo, Y., Zo) frame. The origin of the end-effector
frame is given by a vector p. Now any four vector of the form (z.y.=z.1) in the end-effector

coordinate system, has coordinates in the base system given by

&

= (Ty - T¢ ... i)

—ohow oy

—_ by

base end—ef fector

fl
3
[l I - > |

end—e f fector

Now consider separately the cases in which the vector in end-effector coordinates is
taken to be V; = (0,0,0,1), V2 =(1,0,0,1),V53 = (0.1,0.1)" and Vy = (0.0.1.1)

Now V] is the origin of the (f N,}_}N, Z N ) coordinate system and hence is given by

the tip of the vector p. Thus,

ToN .Vl = (.Vl)ba.u = }3.

The vectors V,, Va and V are respectively the tips of the vectors 7. ¥ and @ But the

latter are given in base coordinates by (i +p). , (§ + p) and (@ + p).

On the other hand,
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(ﬁ. + ﬁ)bnae = (VZ)bnae = TUN(Vz)
[ 1\

= T 0
\1/

0 1
=TV (0\ + V|0
- o 0 0 0

\1/ 0
1
- r|1 0
=75+ T 0
0

Thus (7)sase = Tg" and similarly for § and a.

OO o=

Thus we see that

when A = (n,s,a) is the matrix of direction cosines of the vectors 77, 5, @ with respect to

the base coordinate system (f 0s 17,,, Zo)

From now on, the end-effector as in Fig. 1.4.6 will be called a hand. More sophisticated

hands will be of interest to us later.

We have shown that the hand position (p) and orientation A4 can be determined in

terms of the joint variables:

A p| _ N
e

(1.4.1) = ToT2...TH_,

Now the fundamental problems of robotic manipulation are of the following form:
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Given an initial condition (%0 Plﬂ) for the hand it is desired to find time functions

for the joint variables which will ensure that at time ¢; the final condition('_é1 1311)

will be attained. This is a low level control problem and we shall see how to systematically

attack problems of this type.

Once the right hand side of 1.4.1 is written explicity in terms of the joint variables we

get a set of equations for the position and orientation of the manipulator end-effector.

These are what we call the kinematic equations of the manipulator. For example.
the Standford-JPL arm has 6 degrees of freedom and is a linkage of the type RRPRRR.

Table 1.4.3 gives an explicit form of the kinematic equations for the JPL-Stanford arm.

A key observation that deserves to be made is the following. Associated to an R pair
i, an angle 8; enters the kinematics equation. Only expressions of the form cos8; and sin 8,

enter the kinematic equations.

This suggests we define

z; = cos(8;)

y: = sin(6;) (1.4.2)

and add the constraint
2+yi=1 (1.4.3)

If we do this for every R pair then the kinematic equations become a system of n
algebraic equations in m variables where,
m=2x Ng+ (N - Ng)
= N + Ng

where, Ng = number of R-pairs. The number of equations

n=6+3+Ng

The key point here is that we can try to use the tools of algebraic geometry to

understand the structure of the set of solutions to the system of equations so obtained. Of

8
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particular interest is the possibility that when the manipulator is redundant (X" > 6) such a
system of equation may have multiple solutions of which certain solutions may be preferable
to certain other solutions such as when we take into account work-space constraints and

the need for collision avoidance.

Before we close this section we would like to encourage the reader to try his/her hand
at working out some of the kinematic equations in the above- mentioned algebraic form for
a specific manipulator such as the JPL- Stanford Arm. A second related exercise is to

prove the following,

Theorem (Peiper): If a given minipulator has 6 degrees of freedom and if the fourth. fifth

and sixth joints are R-pairs with axes intersecting at a comnon point. then the problem of

. solving the kinematic equations decouples into two independent subproblems:

(1) the problem of computing joint angles to fix the orientation of the end-effector.
(2) the problem of computing the joint angles for the joints 1.2.3 to fix the position
of the origin of the end-effector.

Remark: A manipulator in which the last three joints are cointersecting R-pairs

is said to have a spherical wrist.
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