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MISSION:  
TO SIMULATE BLOCK CIPHER MODES OF 

OPERATION FOR AES IN MATLAB 

 Simulation of the AES (Rijndael Algorithm) in 
MATLAB for 128 bit key-length. 

 Simulation of the five block cipher modes of 
operation for AES as per FIPS publication. 

 Comparison of the five modes based on 
Avalanche Effect. 

 Future Work 
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A BRIEF HISTORY OF AES 
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  In January 1997, researchers world-over were invited 
by NIST to submit proposals for a new standard to be 
called Advanced Encryption Standard (AES). 

  From 15 serious proposals, the Rijndael algorithm 
proposed by Vincent Rijmen and Joan Daemen, two 
Belgian cryptographers won the contest. 

  The Rijndael algorithm supported plaintext sizes of 
128, 192 and 256 bits, as well as, key-lengths of 128, 
192 and 256 bits. 

  The Rijndael algorithm is based on the Galois field 
theory and hence it gives the algorithm provable 
security properties. 
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GALOIS FIELD 
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GALOIS FIELD - GROUP 

  Group/Albelian Group: A group G or {G, .} is a set 
of elements with a binary operation denoted by . , that 
associates to each ordered pair (a, b) of elements in G 
an element (a . b) such that the following properties 
are obeyed: 
  Closure: If a & b belong to G, then a . b also belongs to G. 
  Associative: For elements a, b & c in G, a . (b . c) = (a . b) . c. 
  Identity element: There is an element e in G such that a . e = 

e . a = a, for all a in G. 
  Inverse element: For each element a in G there is an 

element a’ in G such that         a . a’ = a’ . a= e.  
  Commutative: for all elements a & b in G, a . b = b . a. 
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GALOIS FIELD - RING 

  Ring/Commutative Ring: A ring R or {R, +, x} is a set of 
elements with two binary operations , addition and 
multiplication, such that for all a, b & c in R the following 
properties are obeyed. 
  All properties inside the definition of a ‘Group’ are obeyed. 
  Closure under multiplication: If a & b belong to R, then a x b 

also belongs to R. 
  Associativity of multiplication: a x (b x c) = (a x b) x c for all a, 

b & c in R. 
  Distributive laws: a x (b + c) = a x b + a x c; (a + b) x c = a x c + b 

x c for all a, b & c in R. 
  Commutativity of multiplication: a x b = b x a, for a & b in R. 
  Multiplicative identity: There is an element 1 in R such that a 

x 1 = 1 x a = a, for all a in R. 
  No zero divisors: If a, b in R and a x b = 0, then either a = 0 or b 

= 0. 
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GALOIS FIELD - FIELD 

  Field: A field F or {F, +, x} is a set of elements with two 
binary operations, addition and multiplication, such 
that for all a, b & c in F the following properties are 
obeyed. 
  All properties inside the definition of ‘Group’ and ‘Ring’ are 

obeyed. 
  Multiplicative inverse: For each element a in F, except 0, 

there is an element a-1 in F such that aa-1 = (a-1)a = 1. 

  Note: Finite field of the order pn, is written as GF (pn). 
We will study this field when n = 1 and when p = 2. 

  Finite field of form GF (p): For a given prime p, 
finite field of order p, GF (p), is defined as the set Zp of 
integers {0, 1, 2…..p-1} together with the arithmetic 
operations modulo p. 
  Addition: a + b  (a + b) mod p 
  Multiplication: a * b  (a * b) mod p 9 



GALOIS FIELD OF FORM GF(P) 
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GALOIS FIELD OF FORM GF(2N) 

 Arithmetic operations follow the ordinary rules of 
polynomial arithmetic using the basic rules of 
algebra, with the following two rules: 

 Rule 1: Arithmetic on coefficients is performed 
modulo p. (In simple words addition, subtraction 
are done modulo 2 or equivalently XORed) 

 Rule 2: If multiplication results in a polynomial 
of degree n-1 or greater, then the polynomial is 
reduced modulo some irreducible polynomial m(x) 
of degree n. Hence, f(x)*g(x)  f(x)*g(x) mod m(x) 
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GF(23) [M(X) = X3+X2+1 OR X3+X+1] 
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GF(23) [M(X) = X3+X2+1 OR X3+X+1] 
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AES – GF(28) 

 For AES, the finite field defined is GF(28). 
 Addition and subtraction operations are 

equivalent to XOR operation. 
 Multiplication is done using m(x) = x8 + x4 + x3 + 

x + 1. 
 F(x) = x6+x4+x2+x+1  87 
 G(x) = x7+x+1  131 
 F(x) + G(x) = x7+x6+x4+x2 = 212 
 F(x)*G(x) = F(x)*G(x) mod m(x) 

  F(x)*G(x) = x13+x11+x9+x8+x6+x5+x4+x3+1 
  F(x)*G(x) mod m(x) = x7+x6+1 = 193 14 



DE-CIPHERING THE ALGORITHM-
ENCRYPTION 
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  The Rijndael algorithm starts with the key-expansion 
step.  In this step, the 128, 192 or 258 bit key is 
expanded into 11, 13 and 15 sub-keys respectively, 
representing the number of rounds. 

  Each sub-key has the same number of bits as the 
primary symmetric key. 

  The four major steps of the Rijndael algorithm during 
encryption are 

  SubBytes Step 
  ShiftRows Step 
  MixColumns Step 
  Add Round Key step 16 



SUBBYTES STEP-I 

 Here each byte in the plain-text array is 
substituted using an 8-bit substitution box. 
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SUBBYTES STEP-II 

  It provides non-linearity to the cipher. 
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SUBBYTES STEP – III 

 For any F(x), find its multiplicative inverse. 
 Or, find G(x) such that F(x)*G(x) mod m(x) = 1 
 Perform the affine transform on G(x) to get the 

substitution value 

19 



SHIFTROWS STEP 

 This step operates on the rows of the state, 
cyclically shifting it by a fixed offset. 

 The Shiftrows and the next step (Mixcolumns 
step) provides diffusion to the cipher. 
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MIXCOLUMNS STEP – I 

 Here the four bytes of each column of the state are 
combined using an invertible linear transformation. 

 The transformation function takes each of the four 
bytes as input and gives four output bytes with each 
input byte affecting all four output bytes. 
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MIXCOLUMNS STEP – II 

 The MixColumns step is performed by carrying 
out the following transformation on each column. 

r0 = 2a0+3a1+a2+a3 

r1 = a0+2a1+3a2+a3 

r2 = a0+a1+2a2+3a3 

r3 = 3a0+a1+a2+2a3 

 The multiplication and additions are performed 
as discussed before. 22 



ADDROUNDKEY STEP 

  In this step the sub-key is combined with the state. 
 Each byte of the state is XOR-ed with the respective 

bytes of the sub-key 

 All the four steps are repeated for each round. 23 



DE-CIPHERING THE ALGORITHM-
DECRYPTION 
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  The decryption applies the inverse operation of the 
encryption routine 

  However, the first step is to expand the key through 
the key-expansion step. 

  The inverse of addroundkey is exactly the same 

  The inverse of subbytes step uses an inverse 8-bit 
substitution box 

  The inverse of shiftrows step is shifting the rows over 
a suitable distance 
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 The inverse substitution box 
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BLOCK CIPHER MODES OF OPERATION 

 A mode of operation is a technique for enhancing 
the effect of a cryptographic algorithm or 
adapting the algorithm for an application such as 
applying a block cipher to a sequence of data 
blocks or a data stream. 

 Can be used with any symmetric block cipher 
algorithm such as DES, 3DES or AES. 

 NIST originally defined four modes of operation, 
as part of FIPS 81, through which block ciphers 
can be applied to a variety of applications. 
However, with newer applications the NIST 
extended the list of federal recommended modes 
to five in Special Publication 800-38A. 28 



ELECTRONIC CODEBOOK (ECB) 
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CIPHER BLOCK CHAINING (CBC) 
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CIPHER FEEDBACK MODE (CFB) 
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OUTPUT FEEDBACK MODE (OFB) 
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COUNTER MODE (CTR) 

33 



34 

AVALANCHE EFFECT 



AVALANCHE EFFECT 

 When the input (plaintext or key) to any 
cryptographic algorithm is changed slightly, then 
there must be significant change in the output. 

  It is the most desirable property of any 
cryptographic algorithm is the avalanche effect. 
It was a term coined by Horst Feistel. 

  It accounts for the randomization in the 
algorithm or can be thought of as a metric for 
diffusion & confusion. 

 Normally, a change of about 50% is desirable as 
it makes the algorithm truly random. 
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SIMULATION IN MATLAB 
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SIMULATION PARAMETERS 

 A plaintext-key combination is given as input. 
 First, a random bit in the plaintext is changed 

and percentage change in the cipher for all five 
modes is outputted. 

 Then, a random bit in the key is changed and 
percentage change in the cipher for all five modes 
is outputted. 

 This process is repeated for several plaintext-key 
combinations (20). 

 The results are averaged over all different 
plaintext-key combinations. 
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SIMULATION RESULTS 
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ECB CBC CFB OFB CTR 

Key 52% 53% 48% 48% 47% 

Plaintext 93% 74% 87% *98% *98% 



CONCLUSION & FUTURE WORK 

 We learnt the mathematics behind the design of 
the Rijndael Algorithm (AES) 

 We briefly analyzed the five block cipher modes 
of operation for AES based on the Avalanche 
effect. 

 For the future, I would like to simulate the DES 
and 3-DES algorithms and compare them with 
AES. 

 And of course, my constant efforts to break the 
Rijndael algorithm.  
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QUESTIONS? 

 
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THANK YOU 


