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MISSION:
TO SIMULATE BLOCK CIPHER MODES OF
OPERATION FOR AES IN MATLAB

Simulation of the AES (Ryndael Algorithm) in
MATLAB for 128 bit key-length.

Simulation of the five block cipher modes of
operation for AES as per FIPS publication.

Comparison of the five modes based on
Avalanche Effect.

Future Work
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A BRIEF HISTORY OF AES




In January 1997, researchers world-over were invited
by NIST to submit proposals for a new standard to be
called Advanced Encryption Standard (AES).

From 15 serious proposals, the Riyjndael algorithm
proposed by Vincent Rijmen and Joan Daemen, two
Belgian cryptographers won the contest.

The Rijndael algorithm supported plaintext sizes of
128, 192 and 256 bits, as well as, key-lengths of 128,
192 and 256 bits.

The Rijndael algorithm is based on the Galois field
theory and hence it gives the algorithm provable
security properties.



(GALOIS FIELD




(GALOIS FIELD - GROUP

Group/Albelian Group: A group G or {G, '} is a set
of elements with a binary operation denoted by -, that
assoclates to each ordered pair (a, b) of elements in G
an element (a -b) such that the following properties
are obeyed:
Closure: If a & b belong to G, then a -b also belongs to G.
Associative: For elementsa,b& cinG,a-(b-c)=(a"b) -c.

Identity element: There is an element e in G such that a-e =
e-a=a,forall ain G.

Inverse element: For each element a in GG there 1s an
element a’ in G such that a-a=a-a=e.

Commutative: for all elementsa &b G,a-b=Db-a.



(GALOIS FIELD - RING

Ring/Commutative Ring: A ring R or {R, +, x} 1s a set of
elements with two binary operations , addition and
multiplication, such that for all a, b & ¢ in R the following
properties are obeyed.

All properties inside the definition of a ‘Group’ are obeyed.

Closure under multiplication: If a & b belong to R, then a x b
also belongs to R.

Associativity of multiplication: a x (b x ¢) = (ax b) x ¢ for all a,
b & cin R.

Distributive laws:ax(b+c)=axb+axc;(a+b)xc=axc+b
x cforall a,b & cin R.

Commutativity of multiplication: axb=b x a, for a & b in R.

Multiplicative identity: There is an element 1 in R such that a
x1l=1xa=a,forall ainR.

No zero divisors: If a, bin R and a xb =0, then eithera=0orb
=0.



(GALOIS FIELD - FIELD

Field: A field F or {F, +, x} 1is a set of elements with two
binary operations, addition and multiplication, such
that for all a, b & c 1n F the following properties are
obeyed.

All properties inside the definition of ‘Group’ and ‘Ring’ are
obeyed.

Multiplicative inverse: For each element a in F, except 0,
there 1s an element a-1 in F such that aa! =(a1)a =1.

Note: Finite field of the order p®, is written as GF (p»).
We will study this field when n = 1 and when p = 2.

Finite field of form GF (p): For a given prime p,
finite field of order p, GF (p), 1s defined as the set Z of
integers {0, 1, 2.....p-1} together with the arithmetic
operations modulo p.

Addition: a+b & (a+ b) mod p

Multiplication: a *b < (a * b) mod p



GALOIS FIELD OF FORM GF(P)
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(GALOIS FIELD OF FORM GF(2v)

Arithmetic operations follow the ordinary rules of
polynomial arithmetic using the basic rules of
algebra, with the following two rules:

Rule 1: Arithmetic on coefficients is performed
modulo p. (In simple words addition, subtraction
are done modulo 2 or equivalently XORed)

Rule 2: If multiplication results in a polynomial
of degree n-1 or greater, then the polynomial is
reduced modulo some 1rreducible polynomial m(x)

of degree n. Hence, f(x)*g(x) 2 f(x)*g(x) mod m(x)
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010
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GF(2%) [M(X) = X3+X2+1 OR X3+X+1]

010
011
100
101
110
111

000 001 010 011 100 101 110 111
0 1 X x+1 X 241 X2+ x X+x+1
0 1 X x+1 .t: 241 2 4x 24+l
0 x+1 X C o+l x4l X+ x
X X+ 1 0 1 C o+ x PYrx+l X+l
x + 1 X 1 0 X+x+ X+ x e+l X
X 24 P 4x C4x+l 0 1 X x+1
X+l ¥ YH+x+1 ¥+ x 1 0 x+1 X
4 x x4+l x 2+ X x+1 0 1
X+x+ P+ x P+l X x+1 X 1 0
Addition
000 001 010 011 100 01 110 111
+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 ] 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 S
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
] h] - 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

Addition




001
010
011

101
110
111

GF(2%) [M(X) = X3+X2+1 OR X3+X+1]

000 001 010 011 100 101 110 111
X 0 1 X x+1 X 4 X2+ x X4x+1
0 0 0 0 0 0 0 0 0
I 0 1 X x+1 X X+l X+ x PHx+l
X 0 X X X+x x+1 1 P+l 2+ 1
x+1 0 X'+ X+ x 2+ 1 CHx+l X 1 X
x? 0 5 x+1 24x+l 2+ x X 2+ 1
P+ 0 2 +1 1 2 X Y¥4x+1 x+1 ¥4 x
2 +x 0 2+ x cHx+1 1 C o+l x+1 X X
Yrx+l 0 CHx+l ¥+l X 1 X4 xt x+1
Multiplication
000 001 010 011 100 101 10 111
> 0 1 2 3 4 5 6 7
000 0 0 0 0 0 0 0 0 0
001 1 0 1 2 3 4 5 6 7
010 2 0 2 4 6 3 1 7 2
011 3 0 3 6 5 7 - 1 2
100 4 0 4 3 7 6 2 5 1
101 5 0 5 1 B 2 7 3 6
110 6 0 6 7 1 5 3 2 4
111 7 0 7 5 2 1 6 4 3

Multiplication




AES — GF(28)

For AES, the finite field defined 1s GF(29).

Addition and subtraction operations are
equivalent to XOR operation.

Multiplication is done using m(x) = x® + x* + x3 +
x + 1.

F(x) = x6+x*+x?+x+1 2> 87

G(x) =x™x+1 =2 131

F(x) + G(x) = x"+x5+x4+x2 = 212

F(x)*G(x) = F(x)*G(x) mod m(x)
F(x)*G(x) = x3+x11+x9+x8+x6+x5+x4+x5+1
F(x)*G(x) mod m(x) = x"+x5+1 = 193



DE-CIPHERING THE ALGORITHM-
ENCRYPTION




The Ryndael algorithm starts with the key-expansion
step. In this step, the 128, 192 or 258 bit key is
expanded into 11, 13 and 15 sub-keys respectively,
representing the number of rounds.

Each sub-key has the same number of bits as the
primary symmetric key.

The four major steps of the Rijndael algorithm during
encryption are

SubBytes Step
ShiftRows Step

MixColumns Step
Add Round Key step



SUBBYTES STEP-I

Here each byte 1in the plain-text array i1s
substituted using an 8-bit substitution box.

x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | xS | %xa | xb | xc | xd | xe | x£
Ox | €3 | T | 77 | To | £2 | €b | 6£ | ¢S | 30 | 01 | €7 | 2b | £fe | d7 | ab | 76
1x | ca | 82 cS | 7d | £fa | 59 47 | £f0 |ad | d4 | a2 | af | Sc | a4 | T2 cO
2x | b7 | £d | 93 | 26 | 36 | 3£ | £7 | cc | 34 | a5 | eS| £1 | 71 | d8 | 31 | 15
3x | 04 | c7T | 23 | c3 | 18 [ 5S¢ [0S [ Sa (07 |12 |80 | e2 |eb | 27 | b2 | 75
4x | 0S5 (83 | 2¢c | 1la | 1lb | 6e [ Sa | a0 | S2 | 3b | de | b3 | 25 | e3 | 2£ | B84
Sx | S3 | d1 | 00| ed | 20| £fc | b1 | Sb | €a | cbhb | be | 35 | 4a | 4c | S8 | c£
6x | dO0O | ef | aa | fb | 43 | 4d | 33 | 85 | 45 | £S5 | 02 | 7T£ | SO | 3c | S£ | a8
Tx | S1 | a3 | 40 | 8£ | 52 | Sd | 38 | £S5 | bc | b6 | da | 21 | 10| ££ | £3 | d2
8x | cd | Oc | 13 (ec | SE [ ST | 44 | 17 | cé4 | a7 | Te | 3d | 64 | SA | 15 | 73
Sx | 60 | 81 | 4f | dc | 22 | 2a | SO | 88 46 | ee | b8 | 14 ([ de | Se | Ob | db
ax | e0 | 32 3a | Oa | 45 | 06 | 24 | Sc | c2 | d3 | ac | &2 S1 5SS | e4 75
bx | e7 | c8 37 | ed | 8d | d5 4e | a5 6c | 56 f4 | ea €S | 7a | ae | 08
cx | ba | 78 | 25 | 2e | 1lc | a6 | b4 | c6 | eB8 | dd | 74 | 1£ | éb | bd | 8b | 8a
dx | 70 | 3e | bS5 | 66 | 48 | 03 | £f6 | Oe | 61 | 35 | ST | b9 | 86 | c1 | 14 | Se
ex | el | £8 S8 | 11 | €5 | dS | 8e | 5S4 Sb | 1e | 87 | e5 | ce | S5 | 28 | AE
fx | 8c | al | 85 | 0d | bf | e6 | 42 | €8 41 | SS | 24 | 0f | O | S4 | bbb | 16




SUBBYTES STEP-II

It provides non-linearity to the cipher.

%,0| F,1| %,2| Fo,3 bo,o bo,l bo,z l:)0,3
[SubBytes]

a1,0 a1,1 a1,2 a1,3 bl,O bl,l b1,2 b1,3

%0( 3 1 B, R,

C




SUBBYTES STEP — 111

For any F(x), find its multiplicative inverse.
Or, find G(x) such that F(x)*G(x) mod m(x) = 1

Perform the affine transform on G(x) to get the
substitution value

1 00 01 1 1 1] [xol 1]
1 10 001 1 1] |z 1
1 11 000 1 1{ a9 0
1 1T 1 1 0 0 0 1| [z 0
1111100 0fzs| |0
0 1 1 111 0 0f|as 1
0 01 1 11 1 0]z 1
0001111 1)|zr 0]




This step operates on the rows of the state,

SHIFTROWS STEP

cyclically shifting it by a fixed offset.

The Shiftrows and the next step (Mixcolumns
step) provides diffusion to the cipher.
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MIXCOLUMNS STEP — 1

Here the four bytes of each column of the state are
combined using an invertible linear transformation.

The transformation function takes each of the four
bytes as input and gives four output bytes with each
input byte affecting all four output bytes.

MixColumns
b

& c(x)




MIXCOLUMNS STEP — 11

The MixColumns step 1s performed by carrying
out the following transformation on each column.

o 2 3 1 1] [ag

| |1 2 3 1f |a4

) - 1 1 2 3 (19
_7‘3d _3 1 1 2_ _(1-3_

r, = 2a,+3a;ta,ta;

r, = a,t2a;+3a,+a,

r, = a,ta;+2a,+3a,

rq = 3a,ta;ta,+2a,
The multiplication and additions are performed
as discussed before.



ADDROUNDKEY STEP

In this step the sub-key 1s combined with the state.

Each byte of the state 1s XOR-ed with the respective
bytes of the sub-key

a0,0 aO,l a0,2 a0,3 b0,0 bO,l b0,2 b0,3
EddRoundKe)"
a1,0 al'l a17 a1,3 b1,0 bl b12 b1,3
>
a2,0 a2, a2,2 2,3 bZ,O bZ, b2,2 2,3
a3,0 a3,1 21 73,3 b?a,O b3 2 3
Koo| Kol Koz | Kos
Kio| Kia| Kip| Kis
|<2,0 I<2 |<2,2 3
s 0 | K, prememmit,

All the four steps are repeated for each round.



DE-CIPHERING THE ALGORITHM-
DECRYPTION




The decryption applies the inverse operation of the
encryption routine

However, the first step is to expand the key through
the key-expansion step.

The inverse of addroundkey i1s exactly the same

The inverse of subbytes step uses an inverse 8-bit
substitution box

The inverse of shiftrows step i1s shifting the rows over
a suitable distance



The 1inverse substitution box

x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | xS | xa | xb | xc | xd | xe | x£
Ox | S2 [0S | 6a | d5 | 30 | 36 | a5 | 38 | bEf | 40 (a3 | Se | 81| £3 | d7 | £b
1x | 7c | e3 | 39 | 82 | Sb | 2L | £f£ | 87 | 34 | Be | 43 | 44 | c4 | de | eSS | cb
2x | 5S4 | Tb | 94 [ 32 | a6 | c2 | 23 | 3d | ee | 4c | SS | Ob | 42 | £fa | c3 | 4e
3x | 08| 2e | al |66 | 28 | dS | 24 | b2 |76 | Sb | a2 | 45 | ed | 8b | d1 | 25
4x | 72 | £f8 | £f6 | 64 | B | 68 [ S8 | 16 | d4 | a4 | Sc | cc | Sd | €5 | be | S2
Sx | 6c | 70| 48 | SO | £fd | ed | b9 | da | Se | 1S | 46 | S7T | a7 | 8d | Sd | 84
6x | S0 | d8 | ab |00 | Bc | bc | d3 | Oa | £7 | e4 | S8 | 05 | b8 | b3 | 45 | 06
Tx | d0O | 2c | 1le [ Bf | ca | 3£ |0 |02 |cl | af [bd |03 | 01 | 13 | 8a | &b
8x | 3a | 91 | 11 | 41 | 4£ | 67 |dc | ea | 97 | £2 | cf | ce | £0 | b4 | e6 | 73
Sx | S6 |ac | 74 | 22 | e7 |ad | 35S | 85 | e2 | £9 | 37 | =8 lc | 75 | df | 6e
ax | 47 | £1 | 1la | 71| 14 [ 25 | ¢S | 85 | 6£f | b7 | 62 | Oe |[aa | 18 | be | 1b
bx | fc |56 | 3e | 4b | c6 | d2 | 79| 20| %a | db | cO | £fe | 78 | cd | Sa | £4
cx | 1£f | dd | a8 [ 33 (88 | 07 | 7 | 31 | b1 |12 (10 | S5 | 27 | 80 | ec | S£
dx | 60 | S1 | 7£ | aS | 1S5S | bS | 4a | 0d | 2d | eS| Ta | 9f£ [ 93 | cS | Sc | ef
ex | a0 |e0 | 3b | 4d | ae | 2a | £S5 | b0 | c8 | eb | bb | 3c | 83 | S3 | 55 | 61
fx | 17 | 2b | 04 | 7Te | ba | 77 | de | 26 | el | 65 | 14 | 63 | S5 | 21 | Oc | 74




B1L.OCK CIPHER MODES OF
OPERATION




BL.OCK CIPHER MODES OF OPERATION

A mode of operation is a technique for enhancing
the effect of a cryptographic algorithm or
adapting the algorithm for an application such as
applying a block cipher to a sequence of data
blocks or a data stream.

Can be used with any symmetric block cipher
algorithm such as DES, 3DES or AES.

NIST originally defined four modes of operation,
as part of FIPS 81, through which block ciphers
can be applied to a variety of applications.
However, with newer applications the NIST

extended the list of federal recommended modes
to five 1in Special Publication 800-38A.



ELECTRONIC CODEBOOK (ECB)

(a) Encryption
C| C2

P,
(b) Decryption




CIPHER BLOCK CHAINING (CBC)
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CIPHER FEEDBACK MODE (CFB)
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(b) Decryption

CM 1

ff— y

Shift register

| b — s bits

| s bits

A

64
/

Kk —>{ Encrypt_ ]

/]
A

64

Select
s bits |

y
Discard
b — s bits

V5

CM 1

~—

I Shift register

b — s bits

| s bits I

A64
\
Select Discard
sbits | b —s bits
A Y




OUTPUT FEEDBACK MODE (OFB)
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COUNTER MODE (CTR)

Counter

Counter + 1
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AVALANCHE EFFECT




AVALANCHE EFFECT

When the input (plaintext or key) to any
cryptographic algorithm is changed slightly, then
there must be significant change in the output.

It 1s the most desirable property of any
cryptographic algorithm is the avalanche effect.
It was a term coined by Horst Feistel.

It accounts for the randomization in the

algorithm or can be thought of as a metric for
diffusion & confusion.

Normally, a change of about 50% 1s desirable as
1t makes the algorithm truly random.



SIMULATION IN MATLAB




SIMULATION PARAMETERS

A plaintext-key combination is given as input.

First, a random bit 1n the plaintext 1s changed
and percentage change in the cipher for all five
modes 1s outputted.

Then, a random bit in the key is changed and
percentage change in the cipher for all five modes
1s outputted.

This process 1s repeated for several plaintext-key
combinations (20).

The results are averaged over all different
plaintext-key combinations.



SIMULATION RESULTS

52% 53% 48% 48% 47%

Plaintext 93% 74% 87% *98% *98%




CONCLUSION & FUTURE WORK

We learnt the mathematics behind the design of
the Rijndael Algorithm (AES)

We briefly analyzed the five block cipher modes
of operation for AES based on the Avalanche
effect.

For the future, I would like to simulate the DES

and 3-DES algorithms and compare them with
AES.

And of course, my constant efforts to break the
Riyjndael algorithm. ©
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QUESTIONS?

THANK YOU



