ADVANCED ENCRYPTION STANDARD (AES) MODES OF OPERATION

Arya Rohan

Under the guidance of Dr. Edward Schneider University of Maryland, College Park

MISSION:

TO SIMULATE BLOCK CIPHER MODES OF OPERATION FOR AES IN MATLAB

- Simulation of the AES (Rijndael Algorithm) in MATLAB for 128 bit key-length.
- Simulation of the five block cipher modes of operation for AES as per FIPS publication.
- Comparison of the five modes based on Avalanche Effect.
- Future Work

OUTLINE

- A brief history of AES
- Galois Field Theory
- De-Ciphering the Algorithm-ENCRYPTION
- De-Ciphering the Algorithm-DECRYPTION
- Block Cipher Modes of Operation
- Avalanche Effect
- Simulation in MATLAB
- Conclusion & Future Work
- References

A BRIEF HISTORY OF AES

• In January 1997, researchers world-over were invited by NIST to submit proposals for a new standard to be called Advanced Encryption Standard (AES).

- From 15 serious proposals, the Rijndael algorithm proposed by Vincent Rijmen and Joan Daemen, two Belgian cryptographers won the contest.
- The Rijndael algorithm supported plaintext sizes of 128, 192 and 256 bits, as well as, key-lengths of 128, 192 and 256 bits.
- The Rijndael algorithm is based on the Galois field theory and hence it gives the algorithm provable security properties.

GALOIS FIELD

GALOIS FIELD - GROUP

- **Group/Albelian Group:** A group G or {G, ·} is a set of elements with a binary operation denoted by · , that associates to each ordered pair (a, b) of elements in G an element (a · b) such that the following properties are obeyed:
 - **Closure:** If a & b belong to G, then a · b also belongs to G.
 - Associative: For elements a, b & c in G, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
 - Identity element: There is an element e in G such that a · e = e · a = a, for all a in G.
 - **Inverse element:** For each element a in G there is an element a' in G such that $a \cdot a' = a' \cdot a = e$.
 - **Commutative:** for all elements a & b in G, $a \cdot b = b \cdot a$.

GALOIS FIELD - RING

- **Ring/Commutative Ring:** A ring R or {R, +, x} is a set of elements with two binary operations , addition and multiplication, such that for all a, b & c in R the following properties are obeyed.
 - All properties inside the definition of a 'Group' are obeyed.
 - **Closure under multiplication:** If a & b belong to R, then a x b also belongs to R.
 - Associativity of multiplication: a x (b x c) = (a x b) x c for all a, b & c in R.
 - Distributive laws: a x (b + c) = a x b + a x c; (a + b) x c = a x c + b x c for all a, b & c in R.
 - **Commutativity of multiplication:** a x b = b x a, for a & b in R.
 - **Multiplicative identity:** There is an element 1 in R such that a x 1 = 1 x a = a, for all a in R.
 - No zero divisors: If a, b in R and a x b = 0, then either a = 0 or b = 0.

GALOIS FIELD - FIELD

- **Field:** A field F or {F, +, x} is a set of elements with two binary operations, addition and multiplication, such that for all a, b & c in F the following properties are obeyed.
 - All properties inside the definition of 'Group' and 'Ring' are obeyed.
 - **Multiplicative inverse:** For each element a in F, except 0, there is an element a-1 in F such that $aa^{-1} = (a^{-1})a = 1$.
- Note: Finite field of the order pⁿ, is written as GF (pⁿ). We will study this field when n = 1 and when p = 2.
- Finite field of form GF (p): For a given prime p, finite field of order p, GF (p), is defined as the set Z_p of integers {0, 1, 2....p-1} together with the arithmetic operations modulo p.
 - Addition: $a + b \Leftrightarrow (a + b) \mod p$
 - **Multiplication:** a * b ⇔ (a * b) mod p

GALOIS FIELD OF FORM GF(P)

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5
			Addit	ion moo	dulo 7		
			Addit	ion moo	dulo 7		
×	0	1	Addit 2	ion moo 3	dulo 7 4	5	6
× 0	0	1	Addit 2 0	ion moo 3 0	dulo 7 4 0	5	6
× 0 1	0 0	1 0 1	Addit 2 0 2	3 0 3	dulo 7 4 0 4	5 0 5	6 0 6
× 0 1 2	0 0 0	1 0 1 2	Addit 2 0 2 4	3 0 3 6	dulo 7 4 0 4 1	5 0 5 3	6 0 6 5
× 0 1 2 3	0 0 0 0	1 0 1 2 3	Addit 2 0 2 4 6	3 0 3 6 2	dulo 7 4 0 4 1 5	5 0 5 3 1	6 0 6 5 4
× 0 1 2 3 4	0 0 0 0 0	1 0 1 2 3 4	Addit 2 0 2 4 6 1	3 0 3 6 2 5	dulo 7 4 0 4 1 5 2	5 0 5 3 1 6	6 0 6 5 4 3
× 0 1 2 3 4 5	0 0 0 0 0 0	1 0 1 2 3 4 5	Addit 2 0 2 4 6 1 3	3 0 3 6 2 5 1	4 0 4 1 5 2 6	5 0 5 3 1 6 4	6 0 6 5 4 3 2

Multiplication modulo 7

GALOIS FIELD OF FORM $GF(2_N)$

- Arithmetic operations follow the ordinary rules of polynomial arithmetic using the basic rules of algebra, with the following two rules:
- **Rule 1:** Arithmetic on coefficients is performed modulo p. (In simple words addition, subtraction are done modulo 2 or equivalently XORed)
- **Rule 2:** If multiplication results in a polynomial of degree n-1 or greater, then the polynomial is reduced modulo some irreducible polynomial m(x) of degree n. Hence, $f(x)*g(x) \rightarrow f(x)*g(x) \mod m(x)$

$GF(2^3)$ [M(X) = X³+X²+1 OR X³+X+1]

		000	001	010	011	100	101	110	111
	+	0	1	х	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1	x	<i>x</i> + 1	x ²	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
001	1	1	0	<i>x</i> + 1	x	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^{2} + x$
010	x	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x + 1	x	1	0	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x ²
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	x + 1
101	$x^2 + 1$	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^{2} + x$	1	0	x + 1	x
110	$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x ²	$x^2 + 1$	x	<i>x</i> + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	<i>x</i> ²	<i>x</i> + 1	x	1	0

Addition

		000	001	010	011	100	101	110	111
	+	0	1	2	3	4	5	6	7
000	0	0	1	2	3	4	5	6	7
001	1	1	0	3	2	5	4	7	6
010	2	2	3	0	1	6	7	4	5
011	3	3	2	1	0	7	6	5	4
100	4	4	5	6	7	0	1	2	3
101	5	5	4	7	6	1	0	3	2
110	6	6	7	4	5	2	3	0	1
111	7	7	6	5	4	3	2	1	0

Addition

$GF(2^3)$ [M(X) = X³+X²+1 OR X³+X+1]

		000	001	010	011	100	101	110	111			
	×	0	1	x	x + 1	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$			
000	0	0	0	0	0	0	0	0	0			
001	1	0	1	x	<i>x</i> + 1	x ²	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$			
010	x	0	x	x ²	$x^{2} + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$			
011	x + 1	0	<i>x</i> + 1	$x^{2} + x$	$x^2 + 1$	$x^2 + x + 1$	x ²	1	x			
100	x^2	0	x ²	<i>x</i> + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1			
101	$x^2 + 1$	0	$x^2 + 1$	1	x ²	x	$x^2 + x + 1$	<i>x</i> + 1	$x^{2} + x$			
110	$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	<i>x</i> + 1	x	x ²			
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	x	1	$x^{2} + x$	x ²	<i>x</i> + 1			
	Multiplication											

		000	001	010	011	100	101	110	111	
	\times	0	1	2	3	4	5	6	7	
000	0	0	0	0	0	0	0	0	0	
001	1	0	1	2	3	4	5	6	7	
010	2	0	2	4	6	3	1	7	5	
011	3	0	3	6	5	7	4	1	2	
100	4	0	4	3	7	6	2	5	1	
101	5	0	5	1	4	2	7	3	6	
110	6	0	6	7	1	5	3	2	4	
111	7	0	7	5	2	1	6	4	3	

Multiplication

$AES - GF(2^8)$

- For AES, the finite field defined is $GF(2^8)$.
- Addition and subtraction operations are equivalent to XOR operation.
- Multiplication is done using $m(x) = x^8 + x^4 + x^3 + x + 1$.
- $F(x) = x^6 + x^4 + x^2 + x + 1 \rightarrow 87$
- $G(x) = x^7 + x + 1 \rightarrow 131$
- $F(x) + G(x) = x^7 + x^6 + x^4 + x^2 = 212$
- $F(x)*G(x) = F(x)*G(x) \mod m(x)$
 - $F(x)*G(x) = x^{13}+x^{11}+x^9+x^8+x^6+x^5+x^4+x^3+1$
 - $F(x)*G(x) \mod m(x) = x^7+x^6+1 = 193$

DE-CIPHERING THE ALGORITHM-ENCRYPTION

- The Rijndael algorithm starts with the key-expansion step. In this step, the 128, 192 or 258 bit key is expanded into 11, 13 and 15 sub-keys respectively, representing the number of rounds.
- Each sub-key has the same number of bits as the primary symmetric key.
- The four major steps of the Rijndael algorithm during encryption are
 - SubBytes Step
 - ShiftRows Step
 - MixColumns Step
 - Add Round Key step

SUBBYTES STEP-I

• Here each byte in the plain-text array is substituted using an 8-bit substitution box.

	x 0	x 1	x 2	x 3	x4	x 5	x 6	x 7	x 8	x 9	xa	xb	xc	xd	xe	xf
0x	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
1x	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
2x	b7	fd	93	26	36	3f	f7	cc	34	a5	e5	f1	71	d8	31	15
3 x	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
4x	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
5x	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
6x	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3c	9f	a 8
7 x	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	£3	d2
8x	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
9x	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
ax	eO	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
bx	e7	c8	37	6d	8d	d5	4e	a9	6c	56	£4	ea	65	7a	ae	08
сх	ba	78	25	2e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	8b	8a
dx	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
ex	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
fx	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	b0	54	bb	16

SUBBYTES STEP-II

• It provides non-linearity to the cipher.

SUBBYTES STEP – III

- For any F(x), find its multiplicative inverse.
- Or, find G(x) such that $F(x)*G(x) \mod m(x) = 1$
- Perform the affine transform on G(x) to get the substitution value

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

SHIFTROWS STEP

- This step operates on the rows of the state, cyclically shifting it by a fixed offset.
- The Shiftrows and the next step (Mixcolumns step) provides diffusion to the cipher.

MIXCOLUMNS STEP – I

- Here the four bytes of each column of the state are combined using an invertible linear transformation.
- The transformation function takes each of the four bytes as input and gives four output bytes with each input byte affecting all four output bytes.

MIXCOLUMNS STEP – II

• The MixColumns step is performed by carrying out the following transformation on each column.

$$\begin{bmatrix} r_0 \\ r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

$$r_{0} = 2a_{0} + 3a_{1} + a_{2} + a_{3}$$

$$r_{1} = a_{0} + 2a_{1} + 3a_{2} + a_{3}$$

$$r_{2} = a_{0} + a_{1} + 2a_{2} + 3a_{3}$$

$$r_{3} = 3a_{0} + a_{1} + a_{2} + 2a_{3}$$

• The multiplication and additions are performed as discussed before.

ADDROUNDKEY STEP

- In this step the sub-key is combined with the state.
- Each byte of the state is XOR-ed with the respective bytes of the sub-key

• All the four steps are repeated for each round.

DE-CIPHERING THE ALGORITHM-DECRYPTION

- The decryption applies the inverse operation of the encryption routine
- However, the first step is to expand the key through the key-expansion step.
- The inverse of addroundkey is exactly the same
- The inverse of subbytes step uses an inverse 8-bit substitution box
- The inverse of shiftrows step is shifting the rows over a suitable distance

• The inverse substitution box

	x 0	x 1	x 2	x 3	x4	x 5	x 6	x 7	x 8	x 9	xa	xb	xc	xd	xe	xf
0x	52	09	6a	d5	30	36	a5	38	bf	40	a3	9e	81	£3	d7	fb
1x	7c	e3	39	82	9b	2f	ff	87	34	8e	43	44	c4	de	e9	cb
2 x	54	7b	94	32	a6	c2	23	3d	ee	4c	95	0b	42	fa	c3	4e
3 x	80	2e	a1	66	28	d9	24	b2	76	5b	a2	49	6d	8b	d1	25
4x	72	f8	f6	64	86	68	98	16	d4	a4	5c	сс	5d	65	b6	92
5x	6c	70	48	50	fd	ed	b9	da	5e	15	46	57	a7	8d	9d	84
6x	90	d8	ab	00	8c	bc	d3	0a	f7	e4	58	05	b8	b3	45	06
7 x	d0	2c	1e	8f	ca	3f	0f	02	c1	af	bd	03	01	13	8a	6b
8x	3a	91	11	41	4f	67	dc	ea	97	f2	cf	ce	f0	b4	e6	73
9x	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	6e
ax	47	f1	1a	71	1d	29	c5	89	6f	b7	62	0e	aa	18	be	1b
bx	fc	56	3e	4b	c6	d2	79	20	9a	db	c0	fe	78	cd	5a	£4
сх	1f	dd	a8	33	88	07	c7	31	b1	12	10	59	27	80	ec	5f
dx	60	51	7f	a9	19	b5	4a	0d	2d	e5	7a	9f	93	c9	9c	ef
ex	a 0	e0	3b	4d	ae	2a	£5	b0	c8	eb	bb	3c	83	53	99	61
fx	17	2b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	0c	7d

 $\mathbf{26}$

BLOCK CIPHER MODES OF OPERATION

BLOCK CIPHER MODES OF OPERATION

- A mode of operation is a technique for enhancing the effect of a cryptographic algorithm or adapting the algorithm for an application such as applying a block cipher to a sequence of data blocks or a data stream.
- Can be used with any symmetric block cipher algorithm such as DES, 3DES or AES.
- NIST originally defined four modes of operation, as part of FIPS 81, through which block ciphers can be applied to a variety of applications. However, with newer applications the NIST extended the list of federal recommended modes to five in Special Publication 800-38A.

ELECTRONIC CODEBOOK (ECB)

CIPHER BLOCK CHAINING (CBC)

CIPHER FEEDBACK MODE (CFB)

OUTPUT FEEDBACK MODE (OFB)

COUNTER MODE (CTR)

AVALANCHE EFFECT

AVALANCHE EFFECT

- When the input (plaintext or key) to any cryptographic algorithm is changed slightly, then there must be significant change in the output.
- It is the most desirable property of any cryptographic algorithm is the avalanche effect. It was a term coined by Horst Feistel.
- It accounts for the randomization in the algorithm or can be thought of as a metric for diffusion & confusion.
- Normally, a change of about 50% is desirable as it makes the algorithm truly random.

SIMULATION IN MATLAB

SIMULATION PARAMETERS

- A plaintext-key combination is given as input.
- First, a random bit in the plaintext is changed and percentage change in the cipher for all five modes is outputted.
- Then, a random bit in the key is changed and percentage change in the cipher for all five modes is outputted.
- This process is repeated for several plaintext-key combinations (20).
- The results are averaged over all different plaintext-key combinations.

SIMULATION RESULTS

	ECB	CBC	CFB	OFB	CTR
Key	52%	53%	48%	48%	47%
Plaintext	93%	74%	87%	*98%	*98%

CONCLUSION & FUTURE WORK

- We learnt the mathematics behind the design of the Rijndael Algorithm (AES)
- We briefly analyzed the five block cipher modes of operation for AES based on the Avalanche effect.
- For the future, I would like to simulate the DES and 3-DES algorithms and compare them with AES.
- And of course, my constant efforts to break the Rijndael algorithm. ☺

REFERENCES

- The Design of Rijndael, AES-The Advanced Encryption Standard, Joan Daemen & Vincent Rijmen, 2002 by Springer.
- Advanced Encryption Standard (AES), FIPS Publication 97, Nov 26, 2001.
- Cryptography and Network Security, William Stallings, Fourth Edition, 2006 by Pearson Education-Prentice Hall.
- <u>http://en.wikipedia.org/wiki/</u> <u>Advanced_Encryption_Standard</u>
- o http://en.wikipedia.org/wiki/Rijndael_S-box
- <u>http://en.wikipedia.org/wiki/Rijndael_key_schedule</u>
- <u>http://en.wikipedia.org/wiki/Rijndael_mix_columns</u>

QUESTIONS?

THANK YOU